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Several lytic mediators of CTL and NK cells have been described, including a
pore-forming protein (PFP, perforin or cytolysin) t contained in their cytoplasmic
granules (1-4) . PFP/perforin is known to lyse a variety of cellular targets with little
cell type specificity.
After lysing their targets, CTL and NK cells can recycle to kill additional targets

without undergoing self-injury (5, 6), indicating that these cells may be resistant
to their own cytolytic mediators . Recent work performed in this and other laborato-
ries has already shown that CTL clones are resistant to the cytotoxic activity medi-
ated not only by other CTL clones (7-10), but also by isolated CTL granules and
perforin (9-12) . The molecular basis for this self-protection mechanism is still un-
clear. It is also unknown whether the resistance of cells to perforin-mediated lysis
is restricted only to CTL and NK cells that have been maintained in long-term cul-
tures. In this study, we investigated the susceptibility ofprimary cytotoxic cell popu-
lations to the lytic activity of perforin and examined whether it correlates with in-
duction of cytolytic potential . In addition ; we have used CTL hybridomas with
inducible cytolytic activity and an IL-2-independent CTL line to examine whether
activation of perforin resistance is dependent on induction of cell proliferation. We
find that, like cytotoxicity, the resistance of these cells can be activated without in-
duction of cell proliferation.
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Materials and Methods
Animals.

	

8-wk-old BALB/c (H2d), CD2F, (H2d) and C57BL/6 (1126) mice were purchased
from The Charles River Breeding Laboratories (Wilmington, MA) and maintained in our
animal facility.

Antibodies .

	

ThemAbs against murine L3T4 (GK 1.5) and Lyt-2 (TIB 150) and human
CD3 (OKT3), CD4 (OKT4), and CD8 (OKT8) were generated in our laboratories from
hybridomas obtained from American Type Culture Collection (ATCC, Rockville, MD) . The
mAb B73.1 against human NK marker CD16, a generous gift from Dr. Bice Perussia from
The Wistar Institute (Philadelphia, PA), was produced as described (13) . Polyclonal antisera
against the NK markers asialo-GMI and laminin were obtained from Accurate Chemical
& Scientific Corp. (Westbury, NY) and Collaborative Inc. (Bedford, MA), respectively.

Cells .

	

Murine CTLL-R8 and CTLL-1 were maintained in IL-2-containing medium as
previously described (14, 15). CTLL-R8 was grown to large numbers and used as a source
of PFP/perforin (15) .
An IL-2-independent subclone of CTLL-R8 (R8i) was derived by serial passages of cells

in growth medium without IL-2, followed by subcloning using limiting dilution .
Peritoneal exudate lymphocytes (PEL) were harvested from BALB/c mice (H2d) that had

been injected with EL-4 (1126) cells intraperitoneally 10 d before (16) . PEL were collected
by peritoneal lavage and passed through a nylon-wool column . Recovery after nylon-wool
passage was 5-7 x 106 cells/mouse. The cells were washed, resuspended in modified MEM
(ciMEM ; Gibco Laboratories, Grand Island, NY), supplemented with 10% FCS, and used
immediately either as effector cells, or for "Cr labeling for use as target cells .
The CTL hybridomas were derived from BALB/c (H-2D') CTL as described previously

(17) . Hybrid clones Md90 and M8.23 (referred in the text as M-hybridomas) were derived
from MLC-CTL, and the clone PMMl (P-hybridoma) was derived from PEL. Nonfunc-
tional hybrid clone Md26.9 was isolated by limiting dilution from an active clone (Md26) .
Its characteristics will be reported in detail elsewhere (Kaufmann, Y., et al ., manuscript in
preparation) . All functional hybridomas demonstrate inducible killing activity and lymphokine
production . They can be activated by T cell mitogens (Con A or PMA), interferons, or by
cells expressing H-2D6 antigen (18) . The hybridomas were maintained in Dulbecco's
modified minimal essential medium (DMEM, Gibco Laboratories) supplemented with 1 mM
sodium pyruvate, 2 MM L-glutamine, and 15% FCS.
The A.Sn (H2a) lymphoma YAC-1, C57BL/6 lymphoma EL-4, DBA/2 mastocytoma

P815, and human erythromyeloid leukemia K562 were grown in suspension in RPMI 1640
(Gibco Laboratories) supplemented with 5% FCS.
Mouse Spleen Cytotoxic Cells and LAK/NK Cells.

	

Spleens were removed from CD2F, mice
and minced to a single cell suspension. Contaminating erythrocytes were lysed with 0.88%
NH4C1 (5-min incubation at room temperature) . After three washes in aMEM, cells were
suspended in aMEM/5% FCS to 2.5 x 106 cells/ml . To prepare murine antigen-nonspecific
cytotoxic lymphocytes, spleen cells were resuspended in the medium supplemented with 10%
IL-2-containing, leukocyte-conditioned medium and cultured at 37°C in a 5 170 C02 hu-
midified incubator for the indicated times. The leukocyte-conditioned medium was obtained
by stimulating rat spleen cells with 5 Rg/ml Con A and 10 ng/ml PMA for 24 h before har-
vesting the cell spent medium . Lymphocyte subsets were separated by a negative-selection
panning procedure using anti-L3T4, anti-Lyt-2, and anti-la mAbs. The spleen cells were
resuspended in ctMEM/5% FCS to 5 x 10 6 cells/ml and incubated with appropriate hy-
bridoma supernatants (1 :3 vol/vol dilution) on ice for 1 h. The antibody-coated cells were
washed, resuspended to 3 x 106 cells/ml, and plated onto petri dishes precoated with either
goat anti-rat or goat anti-mouse IgG (120 lrg in 9 ml of PBS per 10 x 60 mm plate), which
were then used with either anti-L3T4-coated cells or anti-Lyt-2-coated cells, respectively.
After a 4-min centrifugation at 40 g and an additional 20-min incubation on ice, plates were
washed three times and the nonadherent cells were removed and resuspended in aMEM/5 %
FCS. The cells were enriched for either L3T4` or Lyt-2. cells as determined by FRCS
(Becton Dickinson & Co., Mountain View, CA) analysis .

Allospecific murine CTL were generated from MLC. Briefly, nylon wool-nonadherent
spleen cells obtained from C57BL/6 (1126) or C57BL/1 (H2k) mice were mixed with irradi-
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ated (3,000 rad) spleen cells obtained from CD2F, (H2d) at a responder/stimulator ratio of
1 :1 . The mixed cell populations at 5 x 106/ml were cultured in aMEM/5% FCS/5 x 10-5
M 2-ME for the indicated times, after which cells were washed three times and resuspended
in aMEM/5% FCS and used as effector cells . In some experiments, mixed cell populations
were harvested, resuspended in serum-free medium, and then treated with perforin or con-
trol buffer before their use as effector cells .

To prepare murine lymphokine-activated killer (LAK)/NK cells, spleen cells were prepared
as before, with the exception that the incubation medium contained 1,000 U/ml of human
rIL-2 (generously provided by Cetus Corp ., Emeryville, CA) . NK cells were obtained asplastic-
adherent cells after rIL-2 stimulation, essentially as described (19) .
Human Lymphocyte Subsets.

	

Human PBMC were isolated by Ficoll-Hypaque gradient cen-
trifugation from leukocyte concentrates obtained in plateletpheresis bags (New York Blood
Center, New York, NY) . Monocytes and B lymphocytes were removed by adherence to plastic
dishes and to nylon-wool columns, respectively (20) . Nylon wool-nonadherent lymphocytes
were washed and resuspended in RPMI 1640/10% FCS . A panning procedure was used to
enrich for NK, CD4', and CD8' cells . Briefly, cells were incubated with OKT3 hybridoma
supernatant (1 :3 dilution) for 1 h at 4°C, washed three times, and resuspended to 3 x 10 6
cells/ml in RPMI 1640/FCS. Cells were then plated in petri dishes precoated with goat anti-mu-
rine IgG (120 ug per 60 x 15 mm petri dish) . Plates were then centrifuged at 40 g for 4 min
and incubated at 4°C for 60 min, after which the nonadherent cells were collected and washed
three times with RPMI 1640 . This cell population was enriched for NK cell phenotype and
typically contained >95% of cells staining positive for the NK cell marker B73.1, as deter-
mined by FAGS analysis. The plates containing adherent cells were incubated for an addi-
tional 3 h at 37°C, after which plate-adherent cells were collected . Stimulation of human
LAK/NK cells with rIL-2 was performed as for murine cells, at 1,000 U of rIL-2 per milliliter.

Purification ofPFPIPerforin.

	

Perforin was purified from CTLL-R8 cells by a procedure out-
lined elsewhere (21). Briefly, perforin from granule-enriched material was purified sequen-
tially on DEAE-Sepharose, Q Sepharose, mono Q, and Superose 12 columns adapted to an
FPLC system (Pharmacia Fine Chemicals, Uppsala, Sweden) . The purified protein migrated
as a single band of 70 kD when analyzed on SDS-polyacrylamide gels performed under
disulfide-reducing conditions and stained with silver nitrate (not shown) . Human perforin
activity was obtained from peripheral blood NK cells essentially as described (21) .

Hemolysis Assayfor Perforin.

	

A hemolysis microassay (15) was used to measure perforin ac-
tivity. SRBC were used as targets at 10 8 cells/ml in PBS; 200 pl of SRBC suspension per
microtiter well was tested in triplicates against 20 p,l of lytic reagent in the presence of 1 mM
CaC12 (14) . Hemolysis was determined after a 30-min incubation at 37°C by spectrophoto-
metric reading ofthe plates at 700 nm. The extent of hemolysis was given as percent hemol-
ysis by [1 - (b-c)/(a-c)] x 100, where a represents At00 of the intact SRBC suspension, b the
A7oo of the lysed erythrocyte suspension, and c the A700 of the SRBC suspension completely
lysed with water. One hemolytic unit (HU) is defined as the amount of perforin required
to lyse 50% of 2 x 10 7 SRBC in a total volume of 220 pl . The specific activity of purified
perforin used in most of the experiments was ti150 HU/kg protein .

"Cr-Release Assay.

	

Target cell lines at 2 x 106/ml were incubated in 1 ml of FCS con-
taining 100 uCi of Na25'CrO4 (New England Nuclear, Boston, MA) at 37'C for 2 h with
occasional mixing. For primary cells, labeling was done in aMEM/5% FCS for 5 h at 37°C .
Labeled cells were then washed in aMEM three times and resuspended to 105 cells/ml in
serum-free aMEM. For measurement of perforin-induced cytotoxicity, 104 5 'Cr-labeled cells
were incubated with the indicated amounts ofperforin in a final volume of 200 p.l per micro-
titer well, followed by a 4-h incubation at 37°C . After the incubation, the plates were cen-
trifuged at 200 g for 5 min and 100 A1 of the supernatant was removed from each well for
determination of the radioactivity in a gamma counter. To measure the cytotoxic activity
of CTL hybridomas or primary killer cells, 104 "Cr-labeled target cells resuspended in
ceMEM/10% FCS were mixed with appropriate effector cells at indicated E/T ratios in a
round-bottomed microwell in a total volume of 200 pl, followed by a 5-h incubation at 37°C .
In some experiments, the cytotoxic reaction mediated by primary spleen cytotoxic cells was
carried out in medium containing 5 wg/ml ofCon A. The percent cytotoxicity is calculated
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as : 100 x [(experimental "Cr release - spontaneous "Cr release)/(total ''Cr release - spon-
taneous "'Cr release)] . "Cr release by target cells cultured in medium alone was taken as
spontaneous release, while "Cr release by target cells lysed with 1% NP-40 was measured
as total release .

Induction of Cytotoxic Activity in CTLHybridomas .

	

For induction ofcytotoxic activity, Md90
cells were treated with 5 Fog/ml of Con A for the indicated periods of time at 37°C, washed
three times in ceMEM containing 1 leg/ml a-methyl manoside, and immediately used either
as effectors or as targets after "Cr labeling as described above. For antigenic stimulation,
hybridomas M8.23, PMM1, and Md26.9 were cocultured with 4,000-rad irradiated EL-4
cells at the hybridoma/target ratio of 2 :1 for 20 h (18) ; cells were then washed and used as
effectors against "Cr-labeled EL-4 target cells .

Reatment ofCTL with Protein andRNA Synthesis Blockers .

	

Md90 hybridomas were activated
as described above in the presence of 10 l~g/ml of cycloheximide (CHX) (Sigma Chemical
Co., St . Louis, MO). To ensure complete termination ofprotein synthesis before the activa-
tion event, Md90 cells were incubated with CHX for 30 min before stimulation with Con A
or EL-4 cells and for the duration ofthe subsequent cytotoxicity assays in which MOO cells
were tested . In experiments using emetine (Sigma Chemical Co.), an irreversible protein syn-
thesis inhibitor, CTL hybridomas, and cloned CTLs were pretreated with 5 x 10 -6 M of
emetine for 30 min, washed three times for removal of any residual emetine, and then sub-
jected to induction . "Cr labeling and cytotoxic reaction were performed exactly as described
above . In some experiments, emetine was present throughout the induction period and the
cytotoxicity assay. Alternatively, cells were induced in the presence of actinomycin D (actD;
Sigma Chemical Co.), an RNA synthesis inhibitor, and processed for functional assays ex-
actly as described above . Viability of cells was given by trypan blue exclusion .

PSJMethionine Labeling of Cells .

	

[ 3,5S]Methionine incorporation was determined in CTL
hybridomas and cloned CTL that have been treated with metabolic inhibitors . 10' cells were
incubated for 4 h in 40 ml ofmethionine-free RPMI/5° FCS (using a Select amine kit [Gibco
Laboratories] and FCS that had been dialyzed extensively against PBS) containing 200 /ACi
of [-''S]L-methionine (New England Nuclear) . Cells were washed three times in PBS,
resuspended in 1 ml ofPBS containing 1% NP-40 and 1 mMPMSF After a 30-min incuba-
tion on ice and centrifugation in a microfuge for 5 min, the cytosol supernatant was collected .
Proteins were then precipitated by extraction with 10% (wt/vol) TCA. The protein pellet
was washed with diethyl ether and resuspended in PBS . Aliquots were taken from each sample
and counted in a,# scintillation counter in triplicate . The percent ofinhibition of label incor-
poration was calculated as: 100 x [(control cpm - experimental cpm)/(control cpm)], where
cpm ofcells cultured in medium alone was taken as control and cpm ofcells cultured in medium
containing inhibitors was measured as experimental data.

Results

Effect ofPurified Perforin on Cloned CTL.

	

Although previous studies indicated that
cloned CTL are resistant to granule-mediated killing, it was not clear whether pri-
mary cytotoxic cells are also resistant to the lytic effect of the pore-forming protein
perforin . For the present study, purified perforin was obtained from murine CTLL-
RS after several steps of liquid chromatography (Materials and Methods) . The
membrane-lytic activity ofthis purified material was ascertained through hemolytic
assays (used to define lytic activity in hemolytic units) and through "Cr-release cy-
totoxicity assays for nucleated target cells . Fig . 1 illustrates the typical dose-dependent
cytotoxic effect of purified perforin on P815 mastocytoma and YAC-1 lymphoma
cells . While both targets were susceptible to perforin, in parallel assays, perform
lysed poorly CTLL-1 (a perforin nonproducer) and did not produce any measurable
cytotoxicity on CTLL-R8 (Fig . 1) . For comparison, at concentrations that produced
at least 70% lysis of tumor targets, <10% of CTLL-1 were lysed while CTLL-R8
were completely refractory to lysis . These results extend our previous findings made
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with perforin-enriched granules (10), suggesting that the CTL lines tested are also
resistant to purified perforin . Purified perforin was next used to assess the resistance
of primary cytotoxic cells to perforin-mediated killing.

Effect of Purified Perforin on Primary Cytotoxic Cells .

	

Primary cytotoxic lymphocyte
populations were generated by culturing spleen cell populations obtained from
CD2F1 mice in the presence of IL-2-containing leukocyte-conditioned medium
(Materials and Methods) . Cells stimulated for 1-5 d in this conditioned medium
were tested as effectors against EL-4 targets in a lectin-dependent cell-mediated cy-
totoxicity (LDCC) assay (Fig . 2 a) . This assay measures the development ofnonspecific
effector cells that are triggered to lyse targets to which they bind via a lectin-dependent
mechanism. The results showed clearly that cytotoxicity increased with the number
of days that spleen cells were stimulated with leukocyte-conditioned medium. The
relatively high E/T ratio required to achieve any substantial amount of cell lysis (Fig .
2 a) was probably due to the fact that bulk unfractionated spleen cell populations
containing also non-killer cells were used for these experiments .

Spleen cells stimulated with leukocyte-conditioned medium were labeled with
"Cr and used as target cells for purified perforin . A marked increase in cellular
resistance against perforin-mediated lysis was observed 24 h after stimulation with
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FIGURE 2.

	

Lytic efficiency ofprimary splenic killer cells correlates with their resistance to perforin-
mediated lysis . Murine spleen nylon wool-nonadherent cellswere grown in leukocyte-conditioned
medium (a, b) or in control medium (c) for the indicated number of days . These cells were then
either (a) used as effectors in LDCC assays against 51Cr-labeled EL-4 cells, or (b, c) were la-
beled with "Cr and used as targets for purified perforin . 4-h cytotoxicity assays were performed,
each one in triplicate. The spontaneous 51Cr release was <20% .
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conditioned medium, and resistance increased steadily from day 1 to day 5 of cul-
ture (Fig . 2 b) . After 5 d of in vitro stimulation, <10% of spleen cells were lysed
by 30 HU of perforin (Fig. 2 b), corresponding to the resistance level observed with
cloned CTLL. In parallel experiments in which spleen cells were cultured in the
absence of leukocyte-conditioned medium, cells remained highly susceptible to
perforin-mediated lysis (Fig . 2 c) . However, the viability of cells in the absence of
leukocyte-conditioned medium decreased to <30% on the third day of culture, as
determined by trypan blue exclusion ; moreover, the remaining viable cells labeled
poorly with "Cr (not shown) . Thus, a direct comparison between the resistance of
stimulated and unstimulated spleen cells could only be made during the first 2 d
of culture (Fig . 2, b vs . c) .
The cell type distribution of spleen cells cultured in vitro was studied by FAGS

analysis using mAbs directed against L3T4 (CD4) and Lyt-2 (CD8) (not shown) .
After stimulation with leukocyte-conditioned medium, the percentage of Lyt-2+
cells increased from 18% (range 9-27%) on day 0 (before treatment) to 66% (range
41-90%) on day 5, corresponding to approximately a fivefold increase . The per-
centage of L3T4+ cells, on the other hand, decreased from 57% (45-69%) on day
0 to 13% (range 8-17 17,o) on day 5 . Unstimulated cells, however, did not show significant
change during the first 2 d of culture in their relative distribution ofLyt-2 and L3T4
phenotypes . Since Lyt-2+ cells include CTL, our results suggest further that an in-
crease in cell resistance to perform may correlate with an increase in the number
of CTL in the bulk spleen population .
Primary CTL were also obtained through an MLC reaction (H2' anti-H2' and

H2k anti-H2d) . MLC-derived bulk spleen cell populations were either treated with
perforin or control buffer (Table I) . The rationale of these experiments was based
on the premise that if primary alloimmune CTL were resistant to perforin, then
perforin-treated cells would retain cytotoxic activity toward allospecific targets . Thus,
perforin-treated and control cells were used as effectors against P815 mastocytoma
targets (H2d). The data summarized in Table I show that although 30-69% of
spleen cells were lysed in different experiments by various doses of perforin, perforin-
treated cells could still lyse P815 as effectively as untreated MLC-activated cells, sug-
gesting that the perforin-resistant cells were also the cells with cytotoxic capability.
Perforin-resistant cells must have represented mostly allospecific CTL since they killed
MHC-imcompatible target cells poorly (e.g ., only up to 8% of YAC-1 [H2a] were
killed at an E/T ratio of 50 :1) .

To further verify the phenotype ofthe perforin-resistant cells, a panning technique
was used to separate B, L3T4+, and Lyt-2' lymphocytes, which were then tested
for their sensitivity to perforin-mediated lysis . As shown in Fig. 3, B and L3T4',
but not Lyt-2 + , lymphocytes were readily lysed by perforin, indicating that even
unstimulated CTL (e.g., cells of Lyt-2 + phenotype) were the least sensitive to
perforin-mediated killing when compared with other lymphocyte subsets .

In another set of experiments, perforin was also tested against PELobtained from
mice undergoing rejection of MHC-incompatible tumors (Materials and Methods) .
PEL were also significantly more resistant to perforin-mediated lysis when com-
pared with peritoneal macrophages or B cells (data not shown) .

Resistance ofPrimary NK/LAK Cells to Perforin-mediated Killing.

	

Primary NK/LAK
cells from mouse spleen were obtained by stimulation of spleen cells with high con-
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TABLE I

Treatment ofAllospecific CTL with Perforin Does Not Decrease
their Cytotoxic Activity

" MLC-generated cells were harvested on the indicated day of MLC and used
as effectors against allospecific H2d-bearing P815 cells or H2a+ YAC-1 cells
(control) .

l MLC-derived effector cells were tested against "Cr-labeled P815 cells at E/T
ratio of 40 :1 in a 5-h cytotoxicity assay . Effector cells that had been treated
with PFP/perforin were washed and resuspended in fresh medium to initial
volume before their use in cytotoxicity assays .

S MLC-derived cells (5 x .106/ml) were incubated for 3 h with purified PFP at
a close that in parallel experiments killed 90% of equivalent numbers ofYAC-1
cells . At this dose, 69% of MLC-generated cells were killed, as determined
by trypan blue exclusion .

II PFP was used at a dose that killed 30% of MLC cells .
PFP was used at a dose that killed 55% of MLC cells .

centrations ofHL-2 (1,000 U/ml), following apublished protocol (19) . Rat NK/LAK
cells were previously found to proliferate and to adhere to plastic after short-term
stimulation with high doses of IL-2 (19) . We found that mouse NK/LAK cells ac-
quired similar adherence properties under these conditions, thereby allowing their
separation from other lymphocyte subsets by a single plastic-adherence step . Using
this protocol (outlined in Materials and Methods), we typically obtained >95% NK
cells, as judged by enrichment for the NK cell marker asialo-GMI (Materials and
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FIGURE 3 .

	

Murine Lyt-2' lymphocytes
are least susceptible to perforin-mediated
lysis . Murine spleen cells were fraction-
atedby a panningprocedure (see Materials
and Methods), labeled with S 'Cr, and in-
cubated in triplicate for 4 h with varying
doses ofperforin . The spontaneous release
was <15% .

Effector cells"
Target
cells

PFP
treatment

Cytotoxic
activityl
%

MLC (H2b anti-H2d), 3rd day P815 - 31 .6
P815 + S 38 .8

MLC (H26 anti-H2d), 4th day P815 - 68 .5
P815 +S 54 .1

MLC (H26 anti-H2d), 5th day P815 - 69 .4
P815 + S 59 .2

MLC (H2k anti-1 -12 d), 5th day P815 - 81 .2
P815 + II 75 .8
P815 + 69 .0

MLC (H2k anti-H2 d), 5th day YAC-1 + 8 .0
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Methods). IL-2-stimulated NK cells, but not plastic-nonadherent cells, effectively
killed NK-sensitive YAC-1 cells (Fig . 4 a) . In parallel experiments, stimulated NK
cells, but not plastic-nonadherent cells, were shown to be markedly resistant to perforin-
mediated killing (Fig . 4 b; only data for cells stimulated with rIL-2 for 4 d shown
here). These experiments suggest that both primary CTL and NK cells are resistant
to perforin-mediated lysis .
We also studied the resistance of human peripheral blood-derived primary CTL

and NK cells to lysis mediated by human perforin . Human NK cells isolated by
apanning procedure (Materials and Methods) were stimulated with 1,000 U of rIL-
2 for 2 or 4 d. This treatment increased significantly the cytotoxicity of stimulated
cells against the K562 target, an NK-sensitive tumor (Fig . 5 a) . IL-2-stimulated cells
also became progressively resistant to the lytic effect of human perforin when tested

FIGURE 4.

	

Murine LAK/NK cells are efficient killers but remain refractory to perforin-mediated
lysis . (a) Murine plastic-adherent LAK/NK cells (") or plastic-nonadherent lymphocytes (O)
obtained from rIL-2-stimulated spleen cells were used as effectors against 5I Cr-labeled YAC-1
cells at the indicated E/T ratios in a 4-h cytotoxicity assay. (b) Murine LAK/NK cells (") or
plastic-nonadherent cells (O) (same batch as in a) were labeled with 5ICr and tested as targets
for purified perforin. Data points represent averages of triplicates. The spontaneous "Cr release
was <15% .
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Cytotoxicity and resistance
ofhuman LAK/NK cells as a function
of days of rIL-2 stimulation . (a)
Human peripheral blood LAK/NK
cells ; stimulated with rIL-2 (1,000
U/ml) for the indicated number of
days, were used as effectors against
5'Cr-labeled K562 cells at the indi-
cated E/T ratios in a 4-h cytotoxicity
assay. (b) Human LAK/NK cells (same
batch as in a) were labeled with 5'Cr
and tested as targets for purified mu-
rine perforin . Data points represent
averages of triplicates.
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on

days 0, 2, and 4 after IL-2 treatment (not shown)

.

In parallel experiments, purified

murine

perforin was tested against human NK cells (Fig

.

5 b)

.

The pattern of in-

crease

in resistance was comparable to that observed with murine NK cells

.

This

cross-species

experiment revealed that human NK cells were also markedly more

resistant

to lysis by murine perforin than several other cell types tested (CD4+,

CD8',

and B lymphocytes

;

data not shown)

.

However, human LAK/NK cells were

in

general less resistant than murine NK cells after IL-2-stimulation (compare Figs

.
4

b and 5 b, with cells on day 4 of rIL-2-stimulation)

.
Resistance

to Perforin-mediated Killing Is Inducible

.

	

The

results presented above would

suggest

that the lymphocyte resistance to perforin is an inducible phenotype

.

How-

ever,

since lymphocytes proliferate vigorously after antigen or IL-2 stimulation, one

cannot

dissociate induction of the resistance phenotype from cell proliferation

.

Since

primary

killer cells could not be used to address this issue, we instead studied two

IL-2-independent

CTL clones

:

(a) CTLL-R8i, derived originally from CTLL-R8

and

(b) murine CTLT cell hybridomas

.

These CTL hybridomas had previously

been

shown to acquire cytotoxicity under certain conditions of stimulation without

enhancement

ofcell proliferation (22, 23)

.

We found that both these cell types could

be

induced to become resistant to purified perforin under conditions in which prolifer-

ation

was not enhanced

.
The

proliferation of R8i cells observed by direct cell counting after 48 h of stimu-

lation

with either rIL-2 (100 U/ml) or leukocyte-conditioned medium (20% final

medium

volume, see Materials and Methods) was not significantly different from

that

ofcontrol cells grown in medium alone

.

Unstimulated R8i cells, unlike the parent

CTLL-R8,

were partially susceptible to lysis by perforin (Fig

.

6 a)

.

Upon stimula-

tion

for 24 h with rIL-2 or leukocyte-conditioned medium, as before, R8i cells be-

came

markedly resistant to perforin (Fig

.

6 a)

.
R8i

cells were found to produce measurable levels ofperforin-mediated hemolytic

and

BLTesterase activities (two granule markers) before any stimulation

:

for per-
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FIGURE

6

.

	

The

production of perforin and BLTesterase and the cellular resistance to perforin-

mediated

lysis are inducible

.

(a) Untreated CTLL-R8i (control) or CTLL-R8i treated either with

rIL-2

(100 U/ml) or leukocyte-conditioned medium (20% final volume) for 24 h were tested for

their

sensitivity to PFP-mediated lysis in a 4-h cytotoxicity assay

.

The amounts ofPFP used are

given

in hemolytic units

.

(b, c) CTLL-R8i was stimulated with rIL-2 (100 U/ml) for the indicated

times

(b) or for 24 h (c) after which they were assayed for either perforin (b) or BLTesterase (c)

contents

(see Materials and Methods)

.

Results are given in relative units, with the amounts of

activity

measured at time 0 taken as unity

.
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forin, 3 HU per 10 5 R8i cells compared with 25 HU per 105 parental R8 cells ; for
BLTesterase, 0.12 and 0.55 A410 units for same numbers of R8i and R8 cells, respec-
tively (Fig . 6, b and c) . A marked increase in PFP/perforin and BLTesterase content
was found in the R8i cell lysates (15-20-fold increase of PFP and 4-fold increase
of BLTesterase after stimulation for 24 h ; Fig. 6, b and c, shows data only for rIL-2
stimulation) . These observations suggest that, like the resistance phenotype, the
production ofgranule contents in perforin-containing cells may also be induced without
concomitant cell proliferation.
The IL-2-independent CTL hybridoma Md90 has previously been shown to ac-

quire cytotoxicity gradually in 4-20 h after stimulation with the lectin Con A (18) .
This time-dependent activation of Md90 cells was confirmed in the present studies
using Con A at 5 ug/ml (not shown) . In parallel experiments, Md90 cells were shown
to acquire partial resistance to perforin after Con A stimulation (Fig . 7) . The time
courses for development of cytotoxicity and resistance were comparable .
Two other IL-2-independent CTL hybridomas, M8 .23 and PMM 1, were also

tested . Upon incubation with irradiated EL-4 cells, both CTL hybridomas became
more efficient killers as well as more resistant to perforin (Table II) . However, a sub-
clone of M-hybridomas, Md26 .9, which could not be induced to become cytotoxic
(Kaufmann, Y., et al ., manuscript in preparation), did not become significantly more
resistant to perforin-mediated lysis under stimulation (Table II) .

Protein Synthesis Is not Requiredfor Induction of Resistance.

	

Resistance induction in
R8i and CTLT hybrids was next carried out in the presence of either CHX (10
tug/ml for Md90, and 2 jug/ml for CTLL-R8i) or emetine (50 uM), an irreversible
protein synthesis blocker (Table III) . In the presence ofeither one of the two inhibi-
tors, induction ofboth resistance and cytotoxicity was unaltered (Table III) . To ascer-
tain that CHX and emetine were effective at the doses used, cells were biosyntheti-
cally labeled with ["S]methionine either in the presence or absence of the inhibitor
(Table IV). Theamount ofradiolabeled proteins was then determined by TCA precipi-
tation . These experiments revealed that CHX or emetine blocked 81-95% (range
of three experiments) of 35S incorporation into cellular proteins . To further ensure
that conditions used here were optimal for inhibition of protein synthesis, the inhib-
itor was added 30 min before the addition of cell induction reagents (IL-2 in the
case of R8i and Con A for Md90 cells) . This type of treatment was also ineffective
in blocking resistance induction .

r
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X
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U
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U
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FIGURE 7 .

	

The CTL hybridoma Md90
acquires partial resistance to perforin-
mediated lysis upon activation with Con
A. Md90 cells were stimulated with 5
hg/ml ofConA for the indicated periods
of time, after which cells were labeledwith
"Crand used as targets for purified per-
forin in a 4-h cytotoxicity assay. Each data
point represents average of triplicates .
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TABLE II

Functional CTL Hybridomas Become More Resistant to Perforin-mediated
Lysis upon Antigenic Stimulation

CTL-T cell hybridomas were co-cultured with irradiated (4,000 rad) EL-4 cells
at the cell ratio of 2 :1 for 20 h . Treated or untreated control hybridomas were
then used as effectors against 5 'Cr-labeled EL-4 cells at E/T of 20 :1 in a 5-h
cytotoxicity assay .

$ Stimulated or control hybridomas were 51Cr labeled and tested as target cells
using 30 HU of perforin in a 4-h cytotoxicity assay .

TABLE III

Protein and RNA Neosynthesis Are Not Requiredfor Resistance Induction

CTL hybridoma Md90 was stimulated with 5 kg/ml of Con A for 8 h, while
CTLL-R8i was treated with rIL-2 for 24 h .

: CHX was used at 1014g/ml for Md90 cells and 2 Ag/ml for CTLL-R8i . Eme-
tine was used at 5 x 10 -5 M . ActD was used at 1 /~g/ml.

s After treatment, Md90 or CTLL-R8i cells were labeled with 5 'Cr and used
as targets for purified perforin (30 HU) in a 4-h assay .
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RNA synthesis also appeared not to be required for the induction of resistance
in cytotoxic cells . This conclusion was inferred from experiments in which actD was
added at 1 Wg/ml, while CTL hybridoma Md90 and R8i were induced as before
(Table III) . Although actD effectively interrupted [3H]thymidine incorporation into
treated R8i or Md90 cells (90-95% inhibition), this treatment did not affect the
resistance increase in these cells seen after activation (Table III) .

Discussion
Both CTL and NK cells in culture are known to produce granules that contain

the pore-forming protein perforin . While there is still some controversy regarding

Cells Inducers* Inhibitors : Lytic sensitivitys

Md90 - - 77
+ - 42
+ CHX 34
+ Emetine 40
+ ActD 39

CTLL-R8i - - 34
+ - 3
+ CHX 8
+ Emetine 4
+ ActD 11

Hybridomas Stimulants Cytotoxic activity' Lytic sensitivity :

0/0 %

PMM 1 - 5.2 73 .5
EL-4 cells 37 .0 36 .0

M8 .23 - 8 .0 76 .0
EL-4 cells 27 .3 48 .0

Md26 .9 - 0 78 .0
EL-4 cells 0 65 .6
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the distribution of this protein in various cytolytic cell types (24-26), there is little
doubt that perforin is among the more potent mammalian cytotoxins isolated to
date . $y growing large numbers of CTL and NK cells in vitro, it is possible now
to obtain purified perforin in amounts sufficient for biochemical and functional studies.
Using purified perforin, we have shown here that both cloned CTL and primary
killer cell populations, including allospecific CTL, NK/LAK cells, and MHC-non-
restricted CTL, are more resistant to perforin-mediated killing than other lympho-
cyte populations. The resistance of killer cells to perform appears to correlate with
their cytolytic capability, i.e ., cells that are or have become competent killers are
also the more resistant cells . For a given cytolytic cell population, resistance and
cytotoxicity are shown to increase simultaneously after stimulation with certain re-
agents such as IL-2 or leukocyte-conditioned medium. The acquisition of resistance
to perforin-mediated lysis is independent of the induction ofcell proliferation, since
IL-2-independent CTL lines and hybridomas, when triggered to become cytotoxic,
acquire perforin resistance . It should be pointed out that the acquired resistance
to perforin is not complete and that the resistance can be overcome with high doses
of perforin .
Whether cells are required to produce perforin in order to become perform resis-

tant is not clear yet. Of the primary cytolytic populations tested, only cells that have
been activated directly with IL-2 acquire measurable levels of perforin (our unpub-
lished observations ; see also references 24-27) . CTL activated through MLC do
not appear to produce any measurable levels of perform (reference 25 and our un-
published observations), while they do become partially perforin resistant . The var-
ious CTL hybridomas tested also acquire resistance upon stimulation with Con A
and APCs. However, our preliminary studies show that they do not produce any
measurable amounts ofperforin upon activation . Several perforin-nonproducer CTLL,
such as CTLL-1 shown here, have remained perforin resistant . Experiments with
PEL also indicate that while these cells do not produce measurable amounts of per-
forin, they become resistant to killing induced by other CTL and by perforin (data
not shown) . Another more recent study by Nagler-Anderson et al . (28) also showed
that primary CD8+ T cells elicited in vivo or in vitro are more resistant than CD4+
T cells and non-T cells to lysis mediated by CTL granules. Since primary CD8+
cells are now known to be perforin-negative under the conditions studied by these
authors, together these results imply that the acquisition of resistance to perforin
may be dissociated from the production ofperforin in the same cells. More experi-
ments are required, however, to substantiate this statement .
Our analysis of the IL-2-independent CTL variant R8i indicates that IL-2 may

supply the necessary signal in this case to induce cells to produce perforin as well
as to acquire the perforin-resistant phenotype. How this could occur without con-
comitant protein and/or RNA neosynthesis remains a puzzling finding. These results
do not rule out, however, that a post-translational event or modification may be in-
volved in the development of the resistance phenotype .
While perforin-treated primary killer cells were shown here to retain their capa-

bility to kill targets, it should be pointed out that in another study (29) we have
shown that CTL granules contain an inhibitory activity, distinct from perforin, that
is capable ofinactivating reversibly the lytic activity ofCTL. Accordingly, we confirmed
here that perforin is not responsible for this inhibitory activity present in the granules .
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We are currently attempting to dissect further the molecular details underlying
the lymphocyte resistance to perforin . In two previous reports (30, 31), human lym-
phocytes were shown to acquire resistance to perforin upon stimulation with anti-
CD3 antibodies . The reports by the same group also showed an augmented expres-
sion of homologous restriction factor (HRF) (31, 32) (also named C8/C9-binding
protein [32, 33]) on lymphocyte surface after stimulation with antibodies specific
for CD3, and the authors suggested that HRF is the molecular species responsible
for self-protection of lymphocytes (34) . This conclusion is not supported by ourown
studies, which have demonstrated that the phenomenon of homologous species re-
striction, while applicable to complement-mediated lysis, is not observed in the lym-
phocyte perforin system (12) . Thus, although murine perforin lyses poorly, or not
at all, homologous and heterologous cytotoxic lymphocyte populations, it lyses very
well noncytotoxic cell targets of various species (including the homologous species)
that nevertheless contain HRF Here we have also shown that both murine andhuman
LAK/NK cells, upon rIL-2 stimulation, become more resistant to murine perforin,
further indicating that the lymphocyte resistance to perforin is not restricted to the
perforin of homologous species. We hypothesize that other molecules/mechanisms
must be involved in conferring resistance to lymphocytes against perforin-mediated
lysis. Current studies in our laboratories are directed towards elucidating these mech-
anisms.

Summary
CTL and NK cells cultured in vitro areknown to produce acytolytic pore-forming

protein (PFP, perforin) localized in their cytoplasmic granules . Using purified per-
forin, we showed here that both cloned CTL and primary killer cell populations,
including allospecific CTL, NK/lymphokine-activated killer cells, and MHC-non-
restricted CTL, were more resistant to perforin-mediated killing than other lym-
phocyte populations and cell types. Similar results were obtained with both murine
and human cytolytic lymphocyte populations. Resistance of killer cells to perforin
correlated in general with their cytolytic capability. Thus, cells that have acquired
competence to kill after stimulation with Con A, IL-2, or leukocyte-conditioned
medium, were also the more resistant cells . IL-2-independent CTL lines and hy-
bridomas derived in our laboratories could be triggered to become cytotoxic and
perforin resistant by short-term stimulation with various cytokines, indicating that
the acquisition ofresistance to perforin-mediated lysis was independent ofcell prolifer-
ation. Activation of one IL-2-independent CTL line with IL-2 also resulted in en-
hanced production of perforin and in enhanced serine esterase activity. The acquisi-
tion ofcell resistance to perforin by these IL-2-independent cell lines after activation
with stimulatory reagents was independent ofprotein and RNA neosynthesis : eme-
tine, cycloheximide, and actinomycin D, while effectively blocking the incorporation
of [35S]methionine into cell proteins, did not affect the induced increase in perforin
resistance.
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