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ABSTRACT
Diabetes patients have more than double the risk of ischemic stroke compared with non-
diabetic individuals, and its neuroimaging characteristics have important clinical implica-
tions. To understand the pathophysiology of ischemic stroke in diabetes, it is important to
focus not only on the stroke subtype, but also on the size and location of the occlusive
vessels. Specifically, ischemic stroke in diabetes patients might be attributed to both large
and small vessels, and intracranial internal carotid artery disease and small infarcts of the
posterior circulation often occur. An additional feature is that asymptomatic lacunar infarc-
tions are often seen in the basal ganglia and brain stem on brain magnetic resonance
imaging. In particular, cerebral small vessel disease (SVD), including lacunar infarctions,
white matter lesions and cerebral microbleeds, has been shown to be associated not only
with stroke incidence, but also with the development and progression of dementia and
diabetic microangiopathy. However, the pathogenesis of cerebral SVD is not fully under-
stood. In addition, data on the association between neuroimaging findings of the cerebral
SVD and diabetes are limited. Recently, the clinical importance of the link between cere-
bral SVD and retinal microvascular abnormalities has been a topic of considerable interest.
Several clinical studies have shown that retinal microvascular abnormalities are closely
related to cerebral SVD, suggesting that retinal microvascular abnormalities might be
pathophysiologically linked to ischemic cerebral SVD. We review the literature relating to
the pathophysiology and neuroimaging of cerebrovascular disease in diabetes, and discuss
the problems based on the concept of cerebral large and small vessel disease.

INTRODUCTION
The continually increasing number of diabetes patients is a
social problem worldwide, and thus prevention of the incidence
and recurrence of macrovascular complications, stroke and
ischemic heart disease in particular, is extremely important.
Compared with non-diabetics, ischemic stroke is two- to three-
fold more prevalent in diabetes patients1–4, and a recent meta-
analysis has reported that hemorrhagic stroke is approximately
1.5-fold more prevalent in diabetes patients than in individuals
without diabetes5. However, as there are ethnic differences in
hemorrhagic stroke prevalence6, diabetes is not recognized as a
risk factor for hemorrhagic stroke.

Regarding the characteristics of cerebral infarctions, accord-
ing to past autopsy studies7,8, small infarctions (lacunar infarc-
tions) in the thalamus, pons and other parts of the
vertebrobasilar artery system, and intracranial internal carotid
artery disease are more frequent in diabetes patients. In the
acute phase, there is often early neurological deterioration and
recurrence, and the prognosis is frequently poor. Generally, in
diabetes, endothelial nitric oxide synthase activity and nitric
oxide production decrease, leading to progression of endothelial
dysfunction and impaired vasodilatation. As intracranial vessels
are particularly susceptible to the effects of oxidative stress9,
there is a possibility that blood–brain barrier (BBB) disruption
in the intracranial carotid artery would precede the formation
of atherosclerotic lesions.Received 1 May 2016; accepted 23 May 2016
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The pathogenesis of cerebral small vessel disease (SVD) is
not fully understood. Endothelial activation, increased BBB per-
meability and inflammatory processes have been implicated10,11.
In addition, a previous study has shown that hyperglycemia-
induced polyol pathway hyperactivity might play an important
part in the development of diabetes atherosclerosis12. Recently,
the clinical importance of the link between cerebral SVD and
retinal microvascular abnormalities has been a topic of consid-
erable interest. Hyperglycemia-induced polyol pathway hyperac-
tivity is considered to be one possible mechanism underlying
the development of diabetic retinopathy13. As retinal microvas-
cular abnormalities are associated with magnetic resonance
imaging (MRI) markers of cerebral SVD14,15, polyol pathway
hyperactivity might play a possible pathogenic role in the devel-
opment and progression of cerebral SVD in diabetes patients.
In the present review, we discuss the possible mechanism
underlying the development and progression of diabetes
atherosclerosis, and relevant neurovascular imaging studies.

EPIDEMIOLOGY OF STROKE IN DIABETES PATIENTS
The number of diabetes patients has been increasing worldwide,
and it has become a major public health problem, with the
recent International Diabetes Federation report stating that it
had surpassed 400 million. When diabetes is accompanied by
stroke, in many cases a caregiver is required to assist the
patient in daily life because of physical disability and cognitive
impairment. Compared with non-diabetic individuals, the inci-
dence of cerebral infarction in diabetes patients is two- to
threefold higher1–4 because of the combined effect of multiple
risk factors for atherosclerosis. A recent meta-analysis showed
that diabetes raised the risk not only of cerebral infarction, but
also of brain hemorrhage5. The Trial of Org 10172 in Acute
Stroke Treatment classification16 that is often used in stroke-
related clinical research has cerebral large vessel disease and
SVD as subtypes. When thinking about the pathophysiology of
cerebral infarction in diabetes, it is important to focus on the
size of the cerebral vessel that has been impaired. Diabetes is a
significant risk factor for both large vessel disease and SVD17,
and it is present in approximately 30% of cerebral infarction
cases. An autopsy study that examined cerebral infarctions by
vascular territory supply found that compared with non-dia-
betics, infarctions more often occurred in the vertebrobasilar
artery system of diabetes patients, in the pontine basal portion
in particular7,8.
Although few studies have examined an association between

the duration of diabetes and stroke incidence in detail, it has
been reported that for a disease duration of 10 years or more,
the risk of developing ischemic stroke was twofold greater as
compared with up to 5 years18. Compared with the recurrence
rate within 2 years of the initial stroke in non-diabetic individ-
uals of 11.4%, the recurrence rate in diabetes patients was sig-
nificantly higher at 15.2%19, and for recurrence from 5 years
onwards, diabetes was the strongest predictive factor20. In

contrast, glycated hemoglobin level was not associated with the
risk of stroke recurrence21.

PATHOGENESIS OF ISCHEMIC CEREBROVASCULAR
DISORDERS IN DIABETES
The hyperglycemic state causes cell damage by promoting
advanced glycation end-products, activating protein kinase C
and through polyol pathway activation. In particular, activation
of the polyol pathway consumes nicotinamide adenine dinu-
cleotide phosphate, which reduces endothelial nitric oxide syn-
thase activity and decreases nitric oxide production, causing
endothelial dysfunction. By increasing adhesion molecule
expression in the endothelium, and reducing anti-inflammatory
and vasodilatation actions, this is thought to promote
atherosclerosis, leading to thrombus formation, and further to
incidence and progression of cerebral infarction.
The risk factors for the development of atherosclerosis in

patients with diabetes are chronic hyperglycemia, dyslipidemia,
hypertension and hyperinsulinemia. These risk factors and their
related abnormalities, such as decreased bioavailability of vascu-
lar nitric oxide, are well known for patients with a long dura-
tion of diabetes and older age. The involvement in
atherosclerosis development of increased levels of molecular
mediators, such as circulating vascular cell adhesion molecule-1
and plasminogen activator inhibitor-1 and tissue factor, as well
as increased platelet activation, are also well known for such
patients. All of this contributes to vascular dysfunction with
ischemia/hypoxia22–26. In addition, a possible pathogenesis of
diabetic complications, including microvascular disease and
atherosclerosis, has been proposed on the basis of findings for
hyperglycemia-induced metabolic abnormalities, such as oxida-
tive stress, changes in protein kinase C, glycation and the
polyol pathway12,27. Increasing evidence suggests that oxidative
stress, glycation, protein kinase C activity and myoinositol
metabolism have cross-links with the polyol pathway (Fig-
ure 1).
Previous studies by our group28–32 and others33–39 have sug-

gested that hyperglycemia-induced polyol pathway hyperactivity
might, in part, play an important role in the development of
diabetes atherosclerosis. Recently, Tang et al.40 have observed
that the combination of hyperglycemia during collagen activa-
tion leads to a positive feedback cycle of release of platelet
thromboxane and enhanced platelet aggregation through polyol
pathway hyperactivity. This was ameliorated by an aldose
reductase (AR) inhibitor. Furthermore, a study using diabetic
apo E4-/- human AR mice aortas by Vedantham et al.41 sur-
mised that glucose flux through the polyol pathway in hyper-
glycemia mediates atherosclerosis in part by influencing
nicotinamide phosphoribosyl transferase-mediated nicotinamide
adenine dinucleotide biosynthesis, resulting in increased expres-
sion of vascular cell adhesion molecule-1 and tissue factor. All
of their observations were improved by an AR inhibitor. The
aforementioned previous studies28–39, and the novel findings of
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Tang et al. and Vedantham et al.40,41 strongly suggest that dia-
betes atherosclerosis has similarities with diabetic microangiopa-
thy12,27,42–44, and might partly develop from the metabolic
cascade activated through hyperglycemia-induced polyol path-
way hyperactivity, as seen in Figure 1.
Insulin resistance is also thought to be a risk factor for cere-

bral infarction, and it has been reported that insulin resistance
was observed in approximately half of non-diabetic individuals
who had experienced transient ischemic attack or ischemic
stroke45. Insulin resistance is not only related to impaired glu-
cose tolerance, it is also considered to promote atherosclerosis
by causing hypertension, dyslipidemia, reduced fibrinolytic
activity and increased platelet agglutination, and promoting
endothelial dysfunction46. Furthermore, insulin resistance has
also been reported to be a risk factor for atherothrombotic
infarction in non-diabetic individuals47.

DIABETES AND CEREBRAL LARGE VESSEL DISEASE
Carotid artery disease
In extracranial large arteries causing cerebral infarctions,
atherosclerosis frequently occurs in the bifurcation of the caro-
tid artery and origin of the vertebral artery. As an imaging
modality for evaluating atherosclerotic lesions in diabetes

patients, carotid artery ultrasonography is convenient, yields
much information and has high diagnostic value. The intima-
media thickness of the carotid artery is an indicator of
atherosclerosis that is superior in terms of quantitativeness and
reproducibility, and large-scale observational studies have
shown that it is a predictor of cardiovascular events, as well as
a factor for poor outcomes48,49. There is a strong tendency for
intima-media thickness to be greater in diabetes patients, and it
is important for evaluating stenotic lesions caused by plaque. In
a study that analyzed carotid artery plaque characteristics in
diabetes patients and non-diabetic individuals by high-resolu-
tion ultrasonography, it was reported that there was signifi-
cantly more echolucent plaque in the diabetes patients50.
Because echolucent plaque is associated with cerebrovascular
events, in recent years, evaluation of plaque characteristics using
MR plaque images and computed tomography angiography has
been playing an important role in this field (Figure 2a–c).
Hyperintense plaque on MR T1-weighted images is treated as
unstable plaque having a lipid-rich necrotic core or intraplaque
hemorrhage. A recently published study showed that calcified
plaque in type 2 diabetes patients predicted future cardiovascu-
lar events, so it will be necessary to explore further studies on
an association of plaque characteristics and vascular events51.
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Figure 1 | Schematic representation of the possible role of the polyol pathway in diabetes atherosclerosis. The polyol pathway consists of two
steps: glucose is first reduced to sorbitol by the enzyme, aldose reductase (AR), and the resulting sorbitol is then changed to fructose by sorbitol
dehydrogenase (SDH). During euglycemia, the utilization of glucose through the polyol pathway accounts for less than 3% of glucose
consumption in cells. However, during hyperglycemia, total consumption of glucose through this pathway represents up to 30%137, resulting in the
enhancement of glucose utilization through metabolic cascade shown. Thus, hyperglycemia-induced polyol pathway hyperactivity might contribute
to developing not only microvascular disease, but also atherosclerosis in the patients with diabetes. eNOS, endothelial nitric oxide synthase; MMP,
matrix metalloproteinases; NAMPT, nicotineamide phosphoribosyl transferase; NO, nitric oxide; PKC, protein kinase C; TF, tissue factor; TX,
thromboxane; VCAM, vascular cell adhesion molecule.
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In the treatment of carotid artery disease, it has been shown
that some statins have a stabilizing action on carotid artery pla-
que52, excepting patients with symptomatic severe carotid artery
stenosis and those at high risk, so optimal medical treatment
combining antiplatelet agents and statin would tend to be supe-
rior to surgical treatment (carotid endarterectomy and carotid
artery stenting).

Intracranial artery disease
It has been noted that ischemic stroke as a result of intracranial
large artery steno-occlusive lesions is more common in Asian
populations than in Caucasian populations. Also, in a recent
Chinese study, intracranial large artery stenosis (>50% stenosis)
was observed in 46.6% of acute ischemic stroke53. Regarding
risk factors for intracranial large artery disease, besides age and
hypertension, which are the main related factors, it has been
suggested that there are also associations with diabetes, insulin
resistance and dyslipidemia54. In this regard, a strong associa-
tion between diabetes and intracranial internal carotid artery
stenosis has been shown (Figure 3). In autopsy study findings,
there was an association between diabetes and both intracranial
stenosis and intracranial plaque55.
Compared with extracranial vessels, the adventitia is thinner

in internal vessels and the BBB is present. It is therefore consid-
ered that, for intracranial large arteries, BBB disruption might
precede the formation of atherosclerotic lesions. It has been
reported that anti-oxidant enzymes are significantly more

abundant in intracranial vessels than in extracranial vessels9, and
the effect of oxidative stress is particularly remarkable in cranial
vessels. Also, the decrease in endothelium-dependent vasodilata-
tion reactions with age is significantly greater in intracranial
arteries as compared with extracranial arteries, and vasodilata-
tion capacity is particularly susceptible to decline in diabetes
patients. This is possibly a reason for the large number of
intracranial internal carotid artery lesions in patients with dia-
betes.

(a)

(b)

(c)

Figure 2 | Extracranial carotid artery disease. A 75-year-old man with symptomatic carotid artery stenosis. (a,b) Reconstructed computed
tomography angiography and 3-D computed tomography angiography show severe stenosis of the left internal carotid artery (arrows). (c) Unstable
plaque is visualized as a hyperintense signal on axial fat-suppressed black-blood T1-weighted image (arrow).

Figure 3 | Intracranial carotid artery disease. A 66-year-old woman with
an ipsilateral transient ischemic attack. Magnetic resonance imaging
angiography volume rendering image shows severe stenosis in the
right intracranial internal carotid artery.
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DIABETES AND CEREBRAL SVD
Branch atheromatous disease and lacunar infarction
Lacunar infarctions (LIs) are attributed to disease of penetrating
branches of large cerebral arteries, and the pathological mecha-
nism is considered to mainly involve arteriosclerosis as a result
of lipohyalinosis caused by hypertension56. Multiple LIs are more
frequent in diabetes patients. In a 5-year observation of type 2
diabetes patients, macroalbuminuria was the only contributing
factor to the increased lacuna57. As multiple LIs are associated
not only with stroke recurrence, but also cognitive decline, they
have an important clinical implication. Also, it has been reported
that diabetes patients with lacunar infarctions are associated with
the high recurrence rate of ischemic stroke and worse clinical
outcomes58. Past research based on autopsy subjects7,8 and diag-
nostic imaging58–60 has also noted that posterior circulation
stroke is more frequent in diabetes patients. Furthermore, with
recent advances in MRI technology, it has become possible to
diagnose small brainstem infarcts at the early phase of onset.
The paramedian pontine artery is more directly branched at the
orifice of the basilar artery, and when it becomes occluded,
infarcts extending to the basal surface of the pons occur, in
many cases with a poor functional prognosis (Figure 4a–c).
Caplan et al.61 proposed the term ‘branch atheromatous dis-

ease’, having as its cause microatheroma at the orifice of the
penetrating artery. It has been noted that in diabetes, there are
relatively many infarcts of this type that occur in the parame-
dian pontine artery area, and neurological deterioration is likely
to progress in the acute phase62. In contrast, for penetrating

artery infarcts including branch atheromatous disease in the
region of the lenticulostriate artery, which branches from the
middle cerebral artery (Figure 4d,e), it was reported that there
was no significant association between diabetes and early neu-
rological deterioration, whereas albuminuria was an indepen-
dently related factor63. In this regard, using diffusion-tensor
imaging (Figure 4f), a study aiming to predict neurological
deterioration by evaluating the location of the corticospinal
tract has been carried out64. In recent years, the ability to visu-
alize plaque lesions by high-resolution MRI in penetrating
branches of the basilar and middle cerebral arteries has been
receiving attention65–67. Regarding treatment of branch athero-
matous disease, in the acute phase, many patients have resis-
tance to drugs, and although small-scale research suggests that
administration of cilostazol, a drug with endothelial protective
and vasodilatory actions, in addition to anticoagulants (arga-
troban), free radical scavengers (edaravon) and statins is effica-
cious, there is no established optimal medical therapy at
present. However, in Asian populations, as the risk of intracra-
nial hemorrhage increases with the use of antithrombotic drugs,
it is important to consider hemorrhagic risk when choosing
agents for medical therapy.

Silent brain infarctions, white matter lesions and cerebral
microbleeds
In elderly diabetes patients without a history of stroke, silent
brain infarctions (SBIs), white matter lesions (WMLs) and cere-
bral microbleeds (CMBs) are often observed on brain MRI

(a)

(c)

(b) (d)

(f)

(e)

Figure 4 | Example of infratentorial branch atheromatous lesion extending to the basal surface of the pons on diffusion-weighted images. (a) Axial
image. (b) Coronal image. (c) Magnetic resonance imaging angiography shows mild stenosis of the basilar artery. (d,e) Example of supratentorial
branch atheromatous lesion in the left lenticulostriate artery territory on diffusion-weighted images. (d) Axial image. (e) Coronal image. A 73-year-
old man presented progressive motor deficits on day 2 after symptom onset. (f) The infarct is located in the posterior segment of the
lenticulostriate artery territory, and the corticospinal tracts (red cables) are shown to cross the lenticulostriate artery territory in the posterosuperior
segment on diffusion tensor imaging.
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(Figure 5a–c). These lesions are MRI expressions of SVD, and
have an important clinical significance because of the associa-
tion of their progression with stroke incidence10. A recent sys-
tematic review and meta-analysis showed that SBI is associated
with a twofold increased risk of future stroke68. Apart from
age, hypertension is the most widely accepted risk factor for
SBI; however, whether diabetes is also a risk factor for SBI
remains unclear69,70. Indeed, the results of large-scale observa-
tional studies have been inconsistent with the relationship
between diabetes and the incidence of SBI71–74. Also, neu-
roimaging findings for diabetes patients have found associations
of diabetes with LIs and brain atrophy, but there is no unified
view regarding an association with SBIs and WMLs (Table 1)74–
82. The pathogenesis of cerebral SVD is not fully understood.
Cerebral SVD is considered to be caused by an increased per-
meability of the BBB, leading to development of SBIs, WMLs
and CMBs11,83,84. A previous small study showed that type 2
diabetes patients showed increased BBB permeability associated

with neuroimaging features using MRI with intravenous
gadolinium-diethylene triamine pentaacetic acid85. However, it
is not clear whether BBB permeability readily increases in dia-
betes. Regarding the possible mechanism for the development of
WMLs, recent pathological research suggests that there is first a
decline in vessel integrity and then an increase in BBB perme-
ability as a result of endothelial dysfunction86. With recent
advances in MRI techniques, changes in brain microstructure
obtained in assessments by diffusion tensor imaging have
become an early marker for WMLs in type 2 diabetes patients,
and it has been suggested that this marker has higher sensitivity
than classical MRI markers of SVD87,88. Inflammatory processes
are also involved in the pathogenesis of cerebral SVD. Endothe-
lial dysfunction is a possible causal factor, and circulating mark-
ers of endothelial activation and inflammation are elevated in
patients with SVD89–91. Circulating levels of endothelial and
inflammatory markers are elevated in people with type 2 dia-
betes compared with non-diabetic population78,92. We
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Figure 5 | Magnetic resonance imaging expressions of cerebral small vessel disease. (a) New lacunes (arrows) in the basal ganglia and lateral
ventricular anterior horn have appeared on 8-year follow-up fluid-attenuated inversion recovery images. (b) Periventricular white matter lesions
(open circle) extend into deep white matter over 6-year follow up. (c) Gradient-recalled echo T2*-weighted magnetic resonance imaging of
patients who had developed new microbleeds without cardiovascular events over 3-year follow up. Arrows indicate new microbleeds on the
follow-up scan.
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previously reported associations between levels of soluble inter-
cellular adhesion molecule-1, a marker of vascular endothelial
dysfunction, and progression of SBI and WMLs in type 2 dia-
betes patients93,94. Furthermore, previous studies showed that
higher levels of soluble intercellular adhesion molecule-1 and
high-sensitivity C-reactive protein were associated with the risk
of future stroke in type 2 diabetes patients95. Vascular endothe-
lial dysfunction easily progresses in diabetes patients, and at the
level of small and microvessels in the brain, associations with
incidence and progression of SVD are also possible, as a result
of microcirculation and vasodilatation disorders.
CMBs are also a manifestation of cerebral SVD on brain

MRI, and have attracted considerable attention. CMBs are visu-
alized as small, round, well-defined foci of low signal intensity
on T2*-weighted MRI. It has been suggested that CMBs are a
useful imaging marker for pathological damage to small vessels
from hypertension or cerebral amyloid angiopathy96. Histologi-
cally, CMBs represent hemosiderin, likely from leakage through
cerebral small vessels, contained within surrounding macro-
phages in the brain parenchyma97. Age and hypertension have
been strictly associated with CMBs. However, the relationship
between diabetes and the development of CMBs is still unclear.

IMPACT OF CEREBRAL SVD AND BRAIN ATROPHY ON
COGNITIVE IMPAIRMENT IN DIABETES
It has been known for some time that diabetes is associated not
only with the risk of vascular dementia, but also with Alzhei-
mer’s disease (AD)98. Regarding associations of diabetes and
AD, it has been reported that there was significant atrophy in
the medial temporal lobe, including the hippocampus and amyg-
dala, in diabetes patients as compared with non-diabetic individ-
uals99, and an association between medial temporal lobe atrophy
and insulin resistance was also shown100. Recently, computer-
aided voxel-based morphometry has been applied to detect early
brain atrophic changes. Matsuda et al.101,102 developed a com-
puter-assisted analysis using voxel-based morphometry for diag-
nosing AD at an early phase. Atrophy in the medial temporal
lobe might be semiquantitatively assessed using free software for
this procedure, called vozel-based specific regional analysis sys-
tem for analysis system for Alzheimer's disease (VSRAD) (Eisai
Co., Ltd, Tokyo, Japan), and it is used as a diagnostic tool for
the early diagnosis of AD101,102. It has been reported that, as
evaluated by VSRAD, internal hippocampal atrophy was stron-
ger in degree in diabetes patients than in non-diabetic individu-
als, and that there was an association of such atrophy and
cognitive dysfunction103,104.
It has also been shown that elderly people with diabetes

develop extensive vascular pathology, which alone or together
with AD-type pathology, particularly in apo E4 carriers, results
in an increased risk of clinical dementia105. Although significant
associations of severity and progression of brain atrophy with
cognitive decline have been reported in diabetes
patients75,80,82,106,107, as there might also be an influence from
WMLs, the ability to evaluate brain microstructure and damageTa
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to vessel integrity from MRI is important to understanding the
pathophysiology of the disease in the early phase.
SVD is associated with dementia, and it has been noted

that progression of SBIs and WMLs is associated with cogni-
tive decline, in particular frontal lobe dysfunction94,108,109. A
previous longitudinal follow-up study showed that the rate of
brain atrophy in patients with SVD is approximately twice
compared with age-matched control subjects110. Although the
mechanism of brain atrophy in SVD is not fully understood,
endothelial and inflammatory biomarkers would be associated
with neuroimaging markers of brain atrophy. Regarding asso-
ciations between biomarkers and brain atrophy, an association
of high levels of sICAM-1 and vasodilatation impairment in
the brain has been reported in type 2 diabetes patients, and it
has been suggested that changes in vasoregulation might be
related to brain atrophy111. In community-based cross-sec-
tional analysis, circulating inflammatory markers (interleukin-
6, osteoprotegerin and tumor necrosis factor-a) were signifi-
cantly associated with total brain volume112. Also, higher inter-
leukin-6 levels were associated with MRI markers of brain
atrophy including white matter hyperintensities volume, lower
gray matter and hippocampal volumes in community-dwelling
participants113. Furthermore, a previous study suggested that
albuminuria, a maker of chronic kidney disease, was associated
with increased white matter hyperintensity volume114. A recent
study has shown that albuminuria is associated with the sever-
ity and progression of hippocampal atrophy in elderly type 2
diabetes patients104,115.

In the future, irrespective of the presence or absence of dia-
betes, it will be necessary to elucidate mechanisms for associa-
tions between biomarkers of chronic kidney disease and cardiac
failure with brain atrophy, as well as with atrophy of the hip-
pocampus and amygdala. Regarding prevention, as it remains
unclear whether the administration of drugs with vascular
endothelial protective effects, such as statins and antihyperten-
sives (angiotensin receptor blockers, etc.), and agents with neu-
roprotective effects (dipeptidyl peptidase-4 inhibitors, etc.) will
reduce the incidence and progression of SVD or the progres-
sion of brain atrophy, it will be necessary to explore their asso-
ciations in prospective research.

INTERACTION BETWEEN CEREBRAL AND RETINAL
MICROVASCULAR ABNORMALITIES IN DIABETES
Association of hyperglycemia and polyol pathway
hyperactivity with diabetes atherosclerosis
Cerebral and retinal small vessels have similar vascular structure
(end small arteries that have no anastomoses), and the BBB is
structurally and functionally similar to the blood–retinal bar-
rier116. The retinal vascular bed can be visualized directly and
non-invasively using retinal photography, and retinal microvas-
cular abnormalities (arteriovenous nicking, focal arteriolar nar-
rowing, microaneurysms and microhemorrhages) can be
serially evaluated117. Several clinical studies have shown that
retinal microvascular abnormalities are closely related to cere-
bral SVD, including LIs, WMLs and CMBs, suggesting that
retinal microvascular abnormalities are an imaging marker for

Cerebro-retinal interaction in diabetes

Cerebral small-vessel disease Retinal microvascular abnormalities

Figure 6 | Cerebro–retinal interaction in diabetes. A 76-year-old woman with simple diabetic retinopathy. (a) Magnetic resonance imaging
expressions of cerebral small vessel disease including silent brain infarction (red arrow), white matter lesion (white arrow) and microbleed (arrow
head). (b) Retinal photograph of diabetic retinopathy signs showing microaneurysm and retinal hemorrhages (arrow), and hard exudates (arrow
head).
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cerebral microvascular disease14,15,118. In addition, previous pop-
ulation-based studies suggest that retinal microvascular abnor-
malities are also associated with decline in cognitive
performance, such as executive function and processing
speed119. These studies further reinforce the idea that retinal
microvascular abnormalities might be pathophysiologically
linked to ischemic cerebral SVD.
In fact, there are several studies suggesting an association

between diabetic retinopathy and lacunar stroke120–122 or cogni-
tive impairment123,124 in patients with diabetes. As a potential
mechanism of lacunar stroke in patients with diabetes, they
hypothesize that similar changes, as well as those in the blood–
retina barrier, might induce breakdown of the BBB with subse-
quent damage to the walls of the small vessels and perivascular
edema120,121. In addition, other findings strongly support an
association between retinal microvascular signs and lacunar
stroke122. Furthermore, as some cognitive dysfunction in
patients with diabetes is associated with vascular impairment,
breakdown of the BBB might play an important role in the
development of cognitive dysfunction123,124.
The retinal tissue is protected from the bloodstream by a

tight barrier. It consists of an anterior blood–retina barrier
component towards the retinal circulation and a posterior
blood–retina barrier component towards the choroidal circula-
tion. The anatomical bases of the posterior and anterior blood–
retina barriers are tight junctions between the pigment epithelial
cells, and between the retinal vascular endothelial cells, respec-
tively125. M€uller cells are also involved in the maintenance of
the blood–retina barrier. Clinically, breakdown of the blood–
retina barrier in patients with diabetes can be observed as leak-
age of intravenously administered fluorescein. Furthermore, it is
well known that the loss of pericytes located outside of the
endothelial cells of the microvascular wall in the retinal tissue
initiates the abnormality of morphological detection in the early
stage of diabetic retinopathy126,127. The interaction between per-
icytes and the endothelial cells plays a crucial role in maintain-
ing the structural and functional integrity of the retinal vascular
walls. The failure of this integrity induced by hyperglycemia
might contribute to breakdown of the blood–retina barrier, and
the subsequent development of diabetic retinopathy. Although
an exact mechanism for the disruption of the blood–retina bar-
rier in patients with diabetes has not been established, one of
the possibilities is that hyperglycemia-induced polyol pathway
hyperactivity might partially play an important role13,42,44,128–133.
Indeed, studies on human retinal tissues134, as well as those on
animal retinal tissues135,136, have shown the presence of AR, a
key enzyme of the polyol pathway, in blood vessels, pigment
epithelial cells and M€uller cells. Based on all of this evidence,
besides the proposed mechanism for blood–retina barrier dis-
ruption mentioned above, acceleration of the polyol pathway
hyperactivity-induced metabolic cascade (Figure 1) might be
partly involved in lacunar stroke or cognitive impairment in
patients with diabetes. As retinal microvascular abnormalities
are associated with neuroimaging markers of cerebral SVD

(Figure 6), polyol pathway hyperactivity might be a possible
mechanism for the development and progression of cerebral
SVD in diabetes patients.

CONCLUSION AND FUTURE PERSPECTIVE
Diabetes promotes atherosclerosis and raises the risk of stroke,
in particular that of ischemic stroke. As vasodilatation impair-
ment as a result of endothelial dysfunction is an important fac-
tor in diabetes, it will be necessary to develop endothelium-
targeted therapeutic strategies in the future. In particular, as
prevention of SVD progression not only leads to preventing
stroke incidence, but also dementia, comprehensive treatment is
desirable from the early stage of diabetes. Collaboration
between diabetologists and neurologists would help achieve
such therapeutic strategies.
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