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Abstract In the mammalian cochlea, sound is encoded at
synapses between inner hair cells (IHCs) and type I spiral
ganglion neurons (SGNs). Each SGN receives input from a
single IHC ribbon-type active zone (AZ) and yet SGNs inde-
fatigably spike up to hundreds of Hz to encode acoustic stim-
uli with submillisecond precision. Accumulating evidence in-
dicates a highly specialized molecular composition and struc-
ture of the presynapse, adapted to suit these high functional
demands. However, we are only beginning to understand key
features such as stimulus–secretion coupling, exocytosis
mechanisms, exo–endocytosis coupling, modes of endocyto-
sis and vesicle reformation, as well as replenishment of the
readily releasable pool. Relating structure and function has
become an important avenue in addressing these points and
has been applied to normal and genetically manipulated hair
cell synapses. Here, we review some of the exciting new

insights gained from recent studies of the molecular anatomy
and physiology of IHC ribbon synapses.
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Introduction

Synapses transfer information from sensory cells or neurons to
other neurons or distinct target cell types, such as muscle cells.
A plethora of presynaptic proteins orchestrate neurotransmit-
ter release at the presynaptic active zone (AZ). These proteins
are organized into three main compartments, which are ultra-
structurally defined and classically referred to as (1) the
cytomatrix at the active zone (CAZ) with (2) presynaptic elec-
tron dense projections that are clustering (3) synaptic vesicles
(Zhai and Bellen 2004). The presynaptic dense projections
appear highly variable in size and shape, which have been
hypothesized to follow the function of a given synapse type.
They seem to be present at all neuronal AZs but differ greatly
in terms of order, density and morphology as well as molecu-
lar composition (Zhai and Bellen 2004). For example, rather
small structures of less than 100 nm height are found at mam-
malian conventional central nervous system (CNS) synapses
where they form a presynaptic grid, also termed a ‘particle
web’, with a triangular or hexagonal pattern (Vrensen et al.
1980; Phillips et al. 2001; Zhai and Bellen 2004; Limbach
et al. 2011; Südhof 2012). Remarkably regularly arranged struc-
tures can be observed at neuromuscular junctions of the frog
(Harlow et al. 2001; Szule et al. 2012). Moreover, presynaptic
dense projections are not an evolutionary invention of verte-
brates, as insects such as the fruitfly Drosophila melanogaster
also harbor elaborated dense projections termed ‘T-bars’, which
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are found at almost every synapse type (for review, see
Wichmann and Sigrist 2010). The anatomical hallmark of toni-
cally releasing sensory mammalian photoreceptor synapses, a
huge plate-like dense projection that tethers hundreds of synaptic
vesicles (Schmitz et al. 2000), was discovered in the 1950s (De
Robertis and Franchi 1956), when transmission electron micros-
copy started to become a commonly used technique.

Electron microscopy allowed researchers to visualize the
ultrastructure of cells in detail for the first time (De Robertis
and Bennett 1955), bringing exciting new knowledge about
morphology, organization and communication of cells in gen-
eral and synapses in particular (see, for example: De Robertis
and Bennett 1955; De Robertis and Franchi 1956). At this time,
synaptic vesicles were discovered at guinea pig retinal synap-
ses, where theywere called ‘minute granules’ (Sjostrand 1953).
Soon afterwards, the term ‘synaptic vesicle’ was coined by De
Robertis and Bennett (1955), who were inspecting bullfrog and
earthworm synapses. In parallel, the work of De Robertis and
Franchi (1956) on photoreceptors of light- or dark-exposed
rabbits provided the first experimental evidence correlating
synaptic vesicle numbers and presynaptic activity. A few
years later, the large presynaptic dense structures of these
synapses were named ‘ribbons’, when their characteristic
shape with extended longitudinal axis was recognized in
serial 3D reconstructions of guinea pig retinas (Sjostrand
1958). Subsequently, synaptic ribbons were also found to
decorate cochlear afferent hair cell synapses (Smith and
Sjostrand 1961).

Golgi or horseradish peroxidase labeling in combination
with transmission electron microscopy were also and still
are, widely used to visualize neurons (Meller et al. 1968;
LeVay 1973; White and Rock 1980; DeFelipe et al. 1986)
and to understand the anatomy of the inner ear. For example,
the afferent spiral ganglion neurons (SGNs) of the cochlear
nerve, which carry the information about an acoustical signal
from the inner ear to the brainstem, were studied intensely in
various mammals such as guinea pig, mouse or cat (Spoendlin
1972, 1975, 1979; Paradiesgarten and Spoendlin 1976;
Bodian 1978; Kiang et al. 1982; Liberman 1982a; Ginzberg
and Morest 1984; Ryugo and Rouiller 1988; Liberman et al.
1990). These studies revealed that inner and outer hair cells
are innervated by different SGN types (Kiang et al. 1982),
outer hair cells (OHCs) by unmyelinated (5 %) and inner hair
cells (IHCs) by myelinated (95 %) afferent fibers (Spoendlin
1969, 1975). Each of the myelinated, bipolar type I
SGNs sends a peripheral unmyelinated and unbranched
neurite to form a synapse with a single IHC ribbon synapse
(Liberman 1980; Liberman et al. 1990; Buran et al. 2010;
reviewed in Meyer and Moser 2010). Therefore, recordings
from SGNs enable the investigation of the function of indi-
vidual AZs within an IHC. Type I SGNs show different inten-
sity thresholds and dynamic ranges in cat (Liberman and
Kiang 1978). Paired recordings from hair cells and

postsynaptic neurons have provided insight into synaptic
sound encoding and its presynaptic determinants (Palmer
and Russell 1986). Finally, observations of postsynaptic ex-
citatory potentials by recordings from near the synapse re-
vealed the first information on the presynaptic release mech-
anism (Furukawa et al. 1978; Starr and Sewell 1991; Siegel
1992). Each IHC contains 5–30 AZs, dependent on species
and tonotopic position along the cochlea, generally peaking at
the region with the greatest sound sensitivity for the particular
species (Francis et al. 2006; Meyer et al. 2009; Meyer and
Moser 2010). Liberman and co-workers were among the pio-
neers coupling structural investigations of the mammalian au-
ditory system to its function. In his seminal study, Liberman’s
(1982b) functional characterization of cat single auditory
nerve fibers was followed by horseradish peroxidase labeling
to individually back-trace the innervation location at the re-
spective IHC AZs. This approach allowed the author to relate
functional parameters such as spontaneous firing rates and
firing thresholds to morphology of type I SGNs, described,
for example, by the dimension and location of their unmyelin-
ated terminals on the IHCs. These studies together led to the
hypothesis that ribbon synapses within a given IHC are struc-
turally and functionally heterogeneous (which will be
discussed later in this review) and pointed to the further need
for detailed structure–function analyses. Horseradish peroxi-
dase labeling combined with electronmicroscopy also provid-
ed insights into presynaptic vesicle cycling in hair cells (Siegel
and Brownell 1986). More recently, hair cell synapses have
increasingly attracted research activity and novel as well as
classical methods have been employed for assessing their
structure and function in combination with genetic or pharma-
cological manipulation of the synapses or noise exposure.
Quantitative electron microscopy analysis employing electron
tomography of different functional states as well as freeze-
fracture and subsequent electron microscopy have been intro-
duced by Roberts and others for studies of hair cell synapses
(Roberts et al. 1990; Saito 1990; Lenzi et al. 1999, 2002).
Molecular manipulations involving germline mutagenesis as
well as virus-mediated gene transfer were established. Further,
patch-clamp recordings have characterized Ca2+ currents
(e.g., Lewis and Hudspeth 1983; Fuchs et al. 1990; Roberts
et al. 1990; Platzer et al. 2000; Brandt et al. 2003) and mem-
brane turnover (e.g., Parsons et al. 1994; Moser and Beutner
2000; Schnee et al. 2005) of hair cells. Technically very chal-
lenging postsynaptic patch-clamp recordings have provided
insight into the excitatory postsynaptic currents (Glowatzki
and Fuchs 2002) and, combined with presynaptic recordings,
have elucidated hair cell synaptic mechanisms with superb
resolution (e.g., Keen and Hudspeth 2006; Goutman and
Glowatzki 2007; Li et al. 2009). Immunohistochemistry com-
bined with high-resolution microscopy as well as
transcriptomic and proteomic analyses have informed on the
molecular composition of hair cell synapses (Khimich et al.
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2005; Uthaiah and Hudspeth 2010; Kantardzhieva et al.
2011). Finally, fluorescence imaging has been implemented
for studies of hair cell synapse function (Tucker and
Fettiplace 1995; Issa and Hudspeth 1996; Zenisek et al. 2003;
Griesinger et al. 2005; Frank et al. 2009; Revelo et al. 2014).

Ribbon-type AZs cope with a demanding task: synaptic
vesicles need to be released indefatigably and rapidly recycled
at individual synapses in order to maintain high firing rates of
SGNs that fire at hundreds of Hz even during continued stim-
ulation (reviewed inMatthews and Fuchs 2010; Pangršič et al.
2012; Safieddine et al. 2012). Sustained exocytosis amounts
to up to 70 Hz from each release site, of which about a dozen
comprise the readily-releasable vesicle pool (RRP). This was
demonstrated in mouse IHCs (Pangršič et al. 2010) and is to
our knowledge one of the highest release rates per site de-
scribed to date (Pangršič et al. 2012). This process requires
very efficient means of clearing previously exocytosed mem-
brane and proteins from the site followed by immobilization
and priming of new vesicles for the next round of release.
Moreover, the release of the neurotransmitter must exhibit
both rapid ON and OFF kinetics to accurately follow acoustic
stimuli with a periodicity of 1 ms or less (Kiang et al. 1965;
Rose et al. 1967; Palmer and Russell 1986; Köppl 1997;
Goutman 2012; Li et al. 2014).

How the molecular machinery of IHC AZs meets these
requirements is just starting to emerge. It is becoming clear
that ultrastructural assessment of functional synapse states is
required in addition to the powerful combination of molecular
manipulation and physiological characterization. In this re-
view, we will emphasize recent approaches coupling function-
al and structural investigations of release at the level of IHCs
and their ribbon synapses, as well as recent findings regarding
vesicular recycling after transmitter release.

The structure of the inner hair cell is set up for efficient
signaling

How does the subcellular organization of sensory IHCs enable
mechanotransduction and transmitter release at high rates?
IHCs are epithelial cells by origin and exhibit several charac-
teristics that distinguish them from neurons. Most notably,
they show a strong polarization with respect to both long
and short cell axes. The polarization along the apicobasal axis
follows a clear compartmentalization, e.g., apparent by the
hair bundle harboring the mechanotransduction apparatus of
the apical membrane. Graded receptor potentials are formed
by mechanoelectrical (apical) and voltage-gated (basal) con-
ductances (Corey and Hudspeth 1979; Roberts et al. 1990).
Actin-filled stereocilia protrude into the endolymph in a high-
ly organized manner and their sophisticated supramolecular
mechanotransduction apparatus enables ultrasensitive detec-
tion of sound-born vibrations of the cochlear partition
(reviewed in Kazmierczak and Müller 2012). While the

molecular identity of the mechanotransducer channel still
awaits definitive demonstration, recent work indicates the
transmembrane channel-like proteins (TMC)-1 and -2 as
promising candidates (Pan et al. 2013). Opening of the apical
mechanotransducer channels depolarizes the IHC, subse-
quently activating CaV1.3 Ca2+ channels (Platzer et al. 2000;
Brandt et al. 2003; Dou et al. 2004) at the presynaptic AZ in
the basolateral membrane, where the incoming Ca2+ triggers
neurotransmitter release. The density of ribbon synapses
shows a strong basoapical gradient, with the supranuclear por-
tion of the hair cell being devoid of AZs (Francis et al. 2004;
Meyer et al. 2009). In the apex, the cuticular plate likely serves
as an anchor for the stereociliar actin bundles, containing a
rich protein network with cytoskeletal proteins such as actin,
α-actinin and tropomyosin (Slepecky and Chamberlain 1985;
Zine and Romand 1993). Moreover, the striated organelle,
located underneath the cuticular plate, likely modulates the
stereociliar actin bundles (Vranceanu et al. 2012).
Microtubules are primarily found beneath the cuticular plate
(Slepecky and Chamberlain 1985; Steyger et al. 1989; Furness
et al. 1990) but appear connected to cytoskeletal proteins in
the cuticular plate, for example via Acf7a (actin crosslinking
family protein 7a), as suggested for zebrafish neuromast hair
cells (Antonellis et al. 2014). Microtubule bundles are mainly
organized in the apicobasal direction (Furness et al. 1990),
providing the mechanical strength of hair cells (Szarama
et al. 2012) and tracks for efficient cargo protein trafficking
along the apicobasal axis (Furness et al. 1990).

In addition to the cellular apicobasal polarity, hair cells also
show planar cell polarity, which is reflected in the orderly
orientation of their hair bundles (reviewed in Ezan and
Montcouquiol 2013; Sienknecht et al. 2014). Whether the
basolateral organization of the hair cells is similarly instructed
by planar cell polarity remains to be tested.

In the next sections, we will focus on the organization of
the basal portion of IHCs and discuss structure and function of
hair cell ribbon synapses. Emphasis will be on the molecular
machinery of the synapse, synapse development, synaptic het-
erogeneity and synaptic vesicle recycling.

Molecular anatomy and physiology of hair cell ribbon
synapses

Phylogenetically, ribbons in sensory cells are old structures
that occur not only in mammals but also in fishes, amphibians
and birds. In the mammalian organ of Corti, they were first
described by Smith and Sjöstrand (1961) and are found in
both sensory cell types, i.e., IHCs and OHCs (Sobkowicz
et al. 1982). The discovery of the protein RIBEYE, initially
purified from bovine retina, (Schmitz et al. 2000), as the main
and structure-yielding component of ribbons in rat photore-
ceptors (Schmitz et al. 2000), frog saccular hair cells (Zenisek
et al. 2003), zebrafish photoreceptors and bipolar cells (Wan
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et al. 2005) and mouse cochlear hair cells (Khimich et al.
2005; see also immunogold labeling in Fig. 1a) highlights
the conservation of the ribbon in vertebrate evolution
(Schmitz 2009). Nonetheless, ribbons still vary greatly in size
and shape (Lenzi and von Gersdorff 2001; Moser et al. 2006;

Matthews and Fuchs 2010), likely reflecting structural adap-
tation to the specific needs of the respective synaptic connec-
tion for sensory coding.

RIBEYE is composed of two major domains: while the A
domain organizes the assembly of the synaptic ribbon and is

Fig. 1 Spatial distribution of IHC AZ proteins. a RIBEYE is the main
component of the ribbon as shown by pre-embedding immunogold label-
ing of a P14 IHC synaptic ribbon using an anti-CtBP2 antibody (courtesy
of Susann Michanski, InnerEarLab, University Medical Center,
Göttingen, Germany); a’ Representative image of an electron micrograph
of a round-shaped P9 immature ribbon exhibiting a dotted pattern
possibly caused by RIBEYE arrangement (contrast enhanced image in
a”), see also schematic representation (a”’). b A P14 mature ribbon with
the typical multi-lamellar pattern (contrast enhanced image in b’), see also
scheme in b”. Scale bars (a, a”, b’) 100 nm. cA serial 3D reconstruction
of a mature ribbon with two distinct morphological vesicle pools (yellow:
ribbon-associated vesicles; orange: membrane-proximal vesicles; red:
ribbon; blue: AZ membrane; magenta: presynaptic density). c’ The
membrane-proximal vesicles (orange) are arranged around the

presynaptic density (magenta) that is containing the scaffolding protein
bassoon as shown by the pre-embedding immunogold labeling in (d),
Scale bar (d) 100 nm (courtesy of Susann Michanski, InnerEarLab, Uni-
versity Medical Center, Göttingen, Germany); d’ 2-color STED image of
immunolabeled bassoon (magenta) and CaV1.3 channel clusters (green)
in mature IHCs: stripe‐like morphology and closely aligned immunoflu-
orescence of bassoon and CaV1.3 can be observed. Scale image:700×
700 nm; e, e’ Mathematic model showing the total mean steady state
[Ca2+] profile at the AZ membrane (e); e’ effective number of CaV1.3
channels contributing to total mean steady state [Ca2+] as shown in (e). (c,
c’, d’, e, e’ modified from Wong et al. 2014, EMBO J; reprinted with
permission © 2014 Wong et al.). f Schematic summary of the protein
arrangement at mature IHC ribbon synapses

98 Cell Tissue Res (2015) 361:95–114



unique in structure, the B domain is structurally nearly identical
to the transcription repressor CtBP2, which is encoded by the
same gene but uses a different transcription initiation site
(Schmitz et al. 2000) and exhibits enzymatic activity
(Schwarz et al. 2011). The B domain is also assumed to be
involved in tethering of synaptic vesicles to the ribbon
(Schmitz et al. 2000; Schmitz 2009), though the proteins that
form tethers remain to be identified. RIBEYE appears to orga-
nize ribbon shape directly based on its domain structure
(Schmitz 2009) and its aggregation properties (Magupalli
et al. 2008). A trifold lamellar pattern has been described for
photoreceptor ribbons and assigned to the polarized arrange-
ment of RIBEYE (Schmitz 2009). Also at mature IHC ribbons,
a lamellar substructure is observed that harbors multiple lamel-
lar foldings (Sobkowicz et al. 1982; Rutherford and Pangršič
2012; Fig. 1b–b”) contrasting photoreceptor ribbons. This ef-
fect can be attributed to the differences in the ribbon shape in
IHCs and photoreceptors. In immature IHC ribbons, the lamel-
lar pattern is not prominent but instead a dotted pattern can be
observed (Fig. 1a’–a”’). Recently, at zebrafish hair cell ribbon
synapses, it was found that the RIBEYE A and B domain
segregate along the vertical axis of the ribbons, with the B
domainmore located towards the basal end (Sheets et al. 2014).

RIBEYE, in contrast to other AZ proteins, is not found in
invertebrates such as the fruitfly Drosophila melanogaster;
however, Bruchpilot (Brp), the homolog of the vertebrate AZ
protein CAST (CAZ-associated structural protein)/ERC2, func-
tions as the main building block of T-bars (Kittel et al. 2006;
Wagh et al. 2006). In fact, only the N-terminus is conserved and
shows sequence homologies to CAST, whereas the C-terminus
is only found in dipteran insects and rather resembles cytoskel-
etal elements such as plectin due to its numerous coiled-coil
domains (Wagh et al. 2006). Moreover, the C-terminus medi-
ates vesicle tethering to the T-bar (Hallermann et al. 2010).

At conventional synapses of vertebrate neurons, the structur-
ally related proteins bassoon and piccolo as well as CAST,
ELKS, rab3-interacting molecule (RIM) and Munc13 are pres-
ent (Betz et al. 1998; Fenster et al. 2000; Dresbach et al. 2001;
Deguchi-Tawarada et al. 2006;Wang et al. 2009; Südhof 2012).
Additionally, CtBP2 and CtBP1 have also been found at con-
ventional AZs (tom Dieck et al. 2005). Except for piccolo,
which at ribbon synapses is solely expressed as a shorter splice
variant nicknamed as piccolino (Regus-Leidig et al. 2013), the-
se proteins also largely form the CAZ at photoreceptor ribbon
synapses (Wang et al. 1997; tom Dieck et al. 2005; Uthaiah and
Hudspeth 2010; Limbach et al. 2011; Cooper et al. 2012). The
components of hair cell AZs, on the other hand, are still largely
unexplored, except for bassoon (Khimich et al. 2005) and
piccolo/piccolino (Khimich et al. 2005; Regus-Leidig et al.
2013). In fact, a recent study indicates that IHC synapses oper-
ate without Munc13-like priming factors (Vogl et al. 2015).

Bassoon, together with RIBEYE, is responsible for the
ribbon shape and, hence, might contribute to its function.

Studies of IHCs from bassoon mutant mice indicated an an-
choring function of bassoon (Khimich et al. 2005; Frank et al.
2010; Jing et al. 2013), in line with findings at photoreceptor
ribbon synapses (Dick et al. 2003; tom Dieck et al. 2005). The
fraction of ribbon-occupied synapses remaining in bassoon-
deficient IHCs seems to depend on age and residual levels of
full-length bassoon (Khimich et al. 2005; Frank et al. 2010;
Jing et al. 2013). In the partial deletion mutant BsnΔEx4/5, the
fraction of ribbonless synapses increased from 50 % at post-
natal day 11 (P11) up to 88 % at P70. A lower and relatively
constant fraction of 56 % ribbonless synapses was found in a
gene-trap bassoon mutant (Bsngt) likely due to a weak residual
synaptic expression of bassoon (Jing et al. 2013). However,
the anchorage of the remaining ribbons seems impaired
(Frank et al. 2010; Jing et al. 2013). In line with a better
maintained AZ ultrastructure, Bsngt animals exhibited a larger
number of Ca2+ channels at IHC synapses compared to
BsnΔEx4/5 mice and also displayed an intermediate phenotype
regarding sustained IHC exocytosis (Jing et al. 2013). In con-
trast, the size of the readily releasable vesicle pool (RRP) was
strikingly reduced in both mutants. Moreover, single unit re-
cordings of the SGNs show comparably severe defects in
Bsngt and BsnΔEx4/5 mice, as both genotypes had impaired
sound onset coding and lower evoked and spontaneous spike
rates. Taken together, these results indicate that the remaining,
loosely anchored ribbons might function inadequately (Jing
et al. 2013). This further suggests that the mere presence of
the ribbon, even with tethered vesicles, is not sufficient to
maintain normal transmitter release and sustain the RRP at
IHC ribbon synapses. Moreover, it seems that bassoon con-
tributes to organizing the IHC AZ beyond anchoring the rib-
bon. This has been concluded from impaired clustering of
Ca2+ channels at BsnΔEx4/5 ribbon-occupied synapses (Frank
et al. 2010) and indicates a potential direct contribution of
bassoon in organizing the AZ (Frank et al. 2010;
Hallermann and Silver 2013).

In contrast to conventional synapses, where often only the
combined knockdown of bassoon and its homolog piccolo
causes synaptic defects (Altrock et al. 2003; Leal-Ortiz et al.
2008; Mukherjee et al. 2010; Waites et al. 2011, 2013), these
proteins seem not to act redundantly at ribbon synapses. As
mentioned above, at hair cell and photoreceptor ribbons, only
the short isoform of piccolo, piccolino, is expressed, which
lacks a large C-terminal part (Regus-Leidig et al. 2013, 2014).
Binding sites for the proteins Abp1, Pra1, GIT1 and profilin
(Wang et al. 1999; Fenster et al. 2000, 2003; Kim et al. 2003)
are still present, whereas binding sites for, e.g., bassoon or
RIM are lacking (Regus-Leidig et al. 2013). Therefore, differ-
ent functions of piccolino and bassoon at ribbons synapses can
be assumed. Accordingly, piccolino exhibits a different spatial
distribution at ribbon synapses of photoreceptors, where it is
found directly on the ribbon, as indicated by pre-embedding
immunogold-labelings, using an antibody recognizing the N-
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terminus of the protein (Limbach et al. 2011; Dick et al. 2001).
Furthermore, a recent study by Regus-Leidig et al. (2014)
revealed a striking impairment in the ribbon structure upon
piccolino RNAi-based knockdown. After piccolino knock-
down, the typical plate-like structure failed to form properly.
Instead, a high proportion of attached spherical ribbons was
found that resemble ribbon precursors of photoreceptor rib-
bons suggesting a role of piccolino in structural ribbon matu-
ration (Regus-Leidig et al. 2014). Taken together, RIBEYE
and presumably piccolino as well as bassoon present the main
structural components of the ribbon and/or the anchorage of
the ribbon to the AZ.

In order to resolve the function of ribbons, several hypotheses
have been put forward. The ribbonwas suggested to (1) promote
a large readily releasable pool of vesicles via establishing/
stabilizing many Ca2+ channels and vesicular release sites
(Khimich et al. 2005; Frank et al. 2010), (2) facilitate vesicle
replenishment at the AZ (conveyor belt model, e.g., Bunt 1971;
Gray and Pease 1971; Vollrath and Spiwoks-Becker 1996;
Lenzi and von Gersdorff 2001; Snellman et al. 2011), (3) facil-
itate multivesicular release (Edmonds 2004; Fuchs 2005), or (4)
serve as a diffusion barrier to enable high local Ca2+ concentra-
tions (Graydon et al. 2011). Functional interpretations have also
been provided for the morphologically distinct populations of
synaptic vesicles at ribbon synapses but in each case remain to
be validated. Ribbon-associated vesicles—structurally attached
through filamentous protein tethers—form a halo around the
ribbon (Fig. 1b, c). The ones at the base of the ribbon face the
presynaptic plasma membrane (membrane-proximal vesicles;
Fig. 1c, c’) and are often tethered to the membrane and/or to
the presynaptic density (tethered vesicles). Lateral to this sub-
population of ribbon-associated vesicles, there are few addition-
al membrane-proximal and even membrane-tethered vesicles
that are not in close vicinity to the ribbon. While further testing
is required, current evidence suggests that the membrane-
proximal vesicles comprise theRRP (e.g., in retinal bipolar cells:
von Gersdorff et al. 1996; Zenisek et al. 2000; frog saccular hair
cells: Lenzi et al. 1999, 2002; Rutherford and Roberts 2006; and
mouse inner hair cells: Khimich et al. 2005; Frank et al. 2010;
Wong et al. 2014). Support for this hypothesis comes from the
approximate matching between the morphologically estimated
number of membrane-proximal vesicles and the functionally
defined size of the RRP, i.e., the fast component of exocytosis
upon depolarization-evoked Ca2+ influx (von Gersdorff et al.
1996; Pangršič et al. 2010; Frank et al. 2010), as well as from
the observation that these vesicles are most heavily depleted
upon stimulation (Lenzi et al. 2002; Pangršič et al. 2010).
Furthermore, the tethering of vesicles to the AZ membrane
might reflect a structural correlate of fusion competence
(Siksou et al. 2009; Frank et al. 2010; Fernández-Busnadiego
et al. 2013). New high-resolution imaging approaches using
rapid freezing methods and/or electron tomography have re-
vealed that synaptic vesicles in proximity to the membrane

exhibit several morphologically distinct stages. Tethers of differ-
ent numbers and lengths connecting synaptic vesicles to the AZ
membrane could be observed at conventional synapses and syn-
aptosome preparations (Siksou et al. 2007, 2009; Fernández-
Busnadiego et al. 2010, 2013) but also at IHC ribbon synapses
(Frank et al. 2010). Moreover, cryo-electron tomography, a
method allowing visualization of hydrated and unstained tissue,
revealed that tethering of synaptic vesicles in synaptosomes pre-
pared from hippocampal tissue precedes the full contact of a
synaptic vesicle with the membrane (Fernández-Busnadiego
et al. 2010). In this process, single long tethers initially seem
to be formed and synaptic vesicles likely enter the RRP via the
formation of several short tethers (<5 nm). In line with this
hypothesis, this fraction of vesicles could be depleted by appli-
cation of hypertonic sucrose, that is thought to trigger RRP
release (Rosenmund and Stevens 1996). Moreover, the forma-
tion of short tethers could be inhibited using tetanus toxin,
pointing towards the fact that neuronal soluble NSF attachment
protein receptors (SNARE) proteins are involved in this process
(Fernández-Busnadiego et al. 2010). The priming factors
Munc13-1 (Betz et al. 2001; Siksou et al. 2009; Fernández-
Busnadiego et al. 2013) and RIM1α (Fernández-Busnadiego
et al. 2013) play a crucial role in tethering vesicles to the
membrane at conventional CNS synapses. Interestingly,
Munc13 and CAPS priming factors seem not to operate at the
IHC ribbon synapse (Vogl et al. 2015). Some authors even argue
that the entire ribbon-associated vesicle population is fusion-
competent and, therefore, can be released within a few millisec-
onds or less (Heidelberger et al. 1994; Edmonds
2004). Evidence for a priming function of the ribbon has recent-
ly been presented (Snellman et al. 2011).

In contrast to CAZ proteins, which are, at least in part,
conserved at IHC AZs, the molecular machinery involved in
the regulation of synaptic vesicle fusion seems to deviate
strongly from that of ‘conventional’ CNS synapses.

As mentioned above, neurotransmitter release at conven-
tional synapses is mediated by neuronal SNAREs, namely
SNAP-25, syntaxin 1 and synaptobrevin 1 or 2 (reviewed in
Jahn and Fasshauer 2012). SNARE activity can be blocked by
neurotoxin-mediated cleavage or genetic manipulations
(Schiavo et al. 1992, 2000; Nouvian et al. 2011). At photore-
ceptor ribbon synapses, the SNARE protein machinery appears
to be present and functional (Brandstätter et al. 1996; Morgans
et al. 1996; Morgans 2000; von Kriegstein and Schmitz 2003;
Uthaiah and Hudspeth 2010; Cooper et al. 2012). In contrast,
IHC exocytosis seems to be insensitive to neurotoxins and ge-
netic ablation of neuronal SNAREs (Nouvian et al. 2011) and,
hence, a functional role of syntaxin 1, synaptobrevin 1 and 2 as
well as SNAP-25 in IHC exocytosis is questionable. While
some studies detected SNARE mRNAs and proteins in the
sensory epithelium and hair cells (Safieddine and Wenthold
1999; Uthaiah and Hudspeth 2010; Nouvian et al. 2011), nei-
ther SNAP-25, synaptobrevin 1–3 nor syntaxin 1 could be
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detected by immunofluorescence imaging in mouse IHCs
(Nouvian et al. 2011). Moreover, SNARE regulators such as
synaptotagmins 1–3 (Beurg et al. 2010; Reisinger et al. 2011)
and complexins (Strenzke et al. 2009; Uthaiah and Hudspeth
2010) appear to be absent from mature IHCs. In contrast, the
multi-C2 domain protein otoferlin plays a central role for hair
cell exocytosis (Roux et al. 2006; Beurg et al. 2008; Dulon et al.
2009; Pangršič et al. 2010).

The absence or mutation of otoferlin causes deafness or
temperature-sensitive hearing impairment in humans
(Yasunaga et al. 1999; Varga et al. 2006; Rodríguez-
Ballesteros et al. 2008) and rodents (Roux et al. 2006; Longo-
Guess et al. 2007; Schwander et al. 2007). Ultrastructurally,
otoferlin is also found at ribbon synapses, mostly but not exclu-
sively at synaptic vesicles and the AZ membrane (Roux et al.
2006). Sufficient amounts of otoferlin appear to be required for
correct vesicular fusion and replenishment (Roux et al. 2006;
Pangršič et al. 2010, 2012). Otoferlin is suggested to act as the
Ca2+ sensor in IHCs (Roux et al. 2006; Johnson and Chapman
2010), due to its Ca2+-binding capabilities (Roux et al. 2006;
Ramakrishnan et al. 2009, 2014; Johnson and Chapman 2010;
Pangršič et al. 2010) and facilitates SNARE-mediated liposome
fusion (Johnson and Chapman 2010). In its absence, no
depolarization-evoked RRP exocytosis is observed in IHCs
(Roux et al. 2006; Pangršič et al. 2010). Transgenic expression
of synaptotagmin 1, the major Ca2+ sensor of neuronal synaptic
vesicle exocytosis, failed to restore IHC exocytosis and hearing
in otoferlin KOmice, which may not be too surprising given the
overall low conservation of the molecular composition between
conventional and IHC synapses (Reisinger et al. 2011).

Next to proteinaceous exocytosis machineries, the actual
mechanisms of vesicle fusion as well as the transport of ves-
icles to the IHC release site are still largely unknown. The
large and, in terms of amplitude and shape, heterogeneous
excitatory postsynaptic currents (EPSCs) measured at post-
synaptic afferent boutons of SGNs have been interpreted to
result from multivesicular (multiquantal) release at IHC AZs
(Glowatzki and Fuchs 2002). Large EPSCs ensure rapid and
temporal precise spike generation of SGNs (Rutherford et al.
2012) and the relevance of such large EPSCs for achieving a
high synchronization index of postsynaptic firing (i.e., better
phase locking precision) has recently been shown in the frog
papilla (Li et al. 2014).

Several multiquantal release scenarios at IHC ribbons have
been discussed: (1) synchronized vesicle fusion of several
single vesicles as well as (2) compound fusion, following
homotypic vesicle-to-vesicle fusion and (3) sequential fusion
involving homotypic vesicle-to-vesicle fusion while release
occurs (Glowatzki and Fuchs 2002; Edmonds 2004; Neef
et al. 2007). Recent findings suggest an alternative candidate
mechanism for IHC exocytosis. Combining experimental
approaches and mathematical modeling Chapochnikov et al.
(2014) indicated that univesicular (uniquantal) release can

explain the large size of SGN EPSCs and that the control of
release by a dynamic vesicular fusion pore can account for the
observed EPSC heterogeneity. At this point, none of the above
discussed mechanisms can definitively be ruled out or con-
firmed and future work, including detailed morphological
analysis using electron microscopy of defined functional
states, will be required to advance our understanding of exo-
cytosis mechanism at IHC ribbon synapses.

In case vesicles do not homotypically fuse with other ves-
icles at the ribbon while releasing, a transport mechanism of
the vesicles to the membrane has to exist. The conveyor belt
model, transporting the vesicle actively along the ribbon to the
membrane, was one of the first models to be introduced (Bunt
1971; Gray and Pease 1971; Vollrath and Spiwoks-Becker
1996; Lenzi and von Gersdorff 2001). Accordingly, a kinesin
polypeptide, Kif3a, was identified on photoreceptor ribbons
that could serve as a motor for vesicle transport involving the
filamentous tethers observed at the ribbon (Muresan et al.
1999), which were also proposed to function as ‘stepping
stones’ for synaptic vesicles (Usukura and Yamada 1987;
Parsons and Sterling 2003). Recently, the tethers at the ribbon
were suggested to be directly involved in coordinating vesicle
transport towards the membrane via ‘crowd surfing’, based on
passive diffusion following the gradient established by
exocytic vesicle consumption at the base of the ribbon
(Graydon et al. 2014). In this model, the tethers simply need
to bind the vesicles and prevent them from detaching until
they reach the AZ membrane, where release maintains the
diffusion gradient (Graydon et al. 2014). However, future ex-
periments involving mutant analyses will be necessary to
identify the proteins mediating vesicular tethering to the rib-
bon and estimate their affinity to the vesicles and the function-
al relevance of the tethers for synaptic transmission.
Moreover, it will be interesting to investigate whether and
how the tethering can be influenced by factors such as activity
or even developmental stage. For example, maturation from
pre-hearing to hearing significantly determines structure and
function of the ribbon synapses and the spatial arrangement of
AZ proteins such as the Ca2+ channels or bassoon, as will be
emphasized in the next section.

Structural and functional maturation of inner hair cell ribbon
synapses

During maturation of the organ of Corti, ribbon synapses and
SGN fibers undergo drastic morphological changes. How do
morphological alterations during the transition from a pre-
hearing to a hearing state correlate to functional maturation
of ribbon synapses? Generally, synaptic contacts are ultra-
structurally defined as pre- and postsynaptic electron-dense
membranes that are closely aligned. The postsynaptic density
(PSD) is clearly visible as an electron-dense structure beneath
the postsynaptic membranes directly juxtaposed to the
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presynaptic AZ. The innervation pattern of SGN fibers at hair
cells within the immature rodent cochlea is significantly dif-
ferent from the mature configuration and massive rearrange-
ments of the fibers that occur before the onset of hearing.
Hereby, type I SGN fibers retract from the OHCs, whereas
type II SGN fibers disappear from the IHCs (Perkins and
Morest 1975; Echteler 1992; Simmons 2002). These develop-
mental processes of fiber innervation take place in the first
postnatal week in three distinct phases: (1) in E18-P0 animals,
fibers of both afferent types extend towards all hair cells; (2)
between P0 and P3 a refinement occurs, where the outer spiral
bundle forms that innervate the OHCs; and (3) the type I fibers
retract from the OHCs around P3–P6, accompanied by syn-
aptic pruning, while they keep their projections on the IHCs
(Huang et al. 2007). In line with SGN fiber type I retraction,
AMPA-typed glutamate receptors and scaffold proteins like
bassoon and shank1 disappear during the maturation process
from OHCs. In contrast, at IHC afferent PSDs AMPA-
receptors persist. GluA2/3 subunits remain stable throughout
development and into adulthood, while GluA4 subunit ex-
pression significantly increase in adult type I fibers (Huang
et al. 2012).

Recently, the molecular arrangement of afferent synapses
in relation to functional changes at the IHCs has been ad-
dressed in more detail using a combination of confocal, stim-
ulated emission depletion (STED) and electronmicroscopy, as
well as IHC presynaptic physiology and computational
modeling (Wong et al. 2014). It is known that, in the early
pre-hearing stages between P6 and P9, several small apposing
pre- and postsynaptic densities mark nascent synapses. Some
of the presynaptic densities are occupied by synaptic ribbons,
which are small and round in shape and attached via two
triangular-shaped proteinaceous anchors (Sobkowicz et al.
1982; Wong et al. 2014). However, floating ribbons were also
frequently observed in close proximity to AZ areas at these
developmental stages (Wong et al. 2014). Serial 3D electron
microscopic reconstructions corroborated the notion of sever-
al discontinuous pre- and postsynaptic specializations. Such
synaptic sites are organized as loose suprastructures on the
bouton surface and are likely functional, as immunohisto-
chemistry indicates the presence of presynaptic Ca2+ channels
and postsynaptic AMPA receptors (Wong et al. 2014). STED
microscopy, which enables resolution below the diffraction
limit (Klar et al. 2000; Hell 2007), revealed that CaV1.3 chan-
nels are arranged in small round spots (Wong et al. 2014)
rather than the stripes previously described for mature AZs
(Frank et al. 2010; see also Fig. 1d’). In addition, a huge
number of extrasynaptic CaV1.3 channels can be observed in
immature IHCs (Zampini et al. 2010; Wong et al. 2014),
which enable the cells to fire Ca2+ action potentials (Kros
et al. 1998; Brandt et al. 2003). These action potentials evoke
exocytosis in the pre-hearing stage (Beutner and Moser 2001;
Glowatzki and Fuchs 2002; Johnson et al. 2005) but show

lower ‘Ca2+ efficiency’ (Beutner and Moser 2001; Brandt
et al. 2003; Johnson et al. 2005) and a supra-linear Ca2+ de-
pendence (Johnson et al. 2005). The pre-sensory IHC activity
appears to drive bursting activity in the developing auditory
system (Glowatzki and Fuchs 2002; Tritsch et al. 2007, 2010;
Wong et al. 2013; Clause et al. 2014). In this context, the
regulation of presynaptic firing by paracrine and/or efferent
synaptic control is being subject to intense research
(Glowatzki and Fuchs 2000; Tritsch et al. 2007; Johnson
et al. 2011; Sendin et al. 2014). Efferent innervation, more-
over, seems to play an important role in the maturation process
of IHCs (Glowatzki and Fuchs 2000;Marcotti 2004; Goutman
et al. 2005). Efferent fibers originate from the superior olivary
complex and, before onset of hearing, form transient
axosomatic contacts with IHCs (Simmons et al. 1996; Katz
et al. 2004). Later, they largely retract from IHCs and rather
form axodendritic contacts to the afferent terminals (Pujol
et al. 1998). The transient efferent inhibition is thought to
counteract the IHC depolarization resulting from the resting
mechanotransducer current (Géléoc and Holt 2003;
Waguespack et al. 2007; Lelli et al. 2009). Upon genetically
induced impairment of the efferent input, the linearization of
Ca2+ dependent exocytosis is affected (Johnson et al. 2007)
and the maturation of IHC afferent synapses is also disturbed
(Johnson et al. 2013b). Around the onset of hearing (at around
P11; Mikaelian and Ruben 1965), when graded receptor po-
tentials start governing transmitter release, extrasynaptic
CaV1.3 channels get pruned and spatial coupling of Ca2+

channels and vesicular release sites is tightened. This leads
to an increase of the ‘Ca2+ efficiency’ of exocytosis and a
near-linear Ca2+ dependence of RRP exocytosis when probed
with changes in the number of open Ca2+ channels (Wong
et al. 2014). Therefore, while the intrinsic Ca2+ dependence
of exocytosis apparently does not change upon the onset of
hearing, experimental data and biophysical modeling of exo-
cytosis at mature and immature AZ topographies support the
notion of a developmental switch from the more ‘Ca2+

microdomain-like control’ of exocytosis by several Ca2+

channels per vesicle to a more ‘Ca2+ nanodomain-like control
of exocytosis’ (Wong et al. 2014; Fig. 1e, e’). Interestingly, in
adult gerbils, the open probability of Ca2+ channels in IHCs
increased due to a preference of the Ca2+ channel for the
bursting mode (Zampini et al. 2013).

Structurally, alongside Ca2+ channels, other presynaptic
AZ components become reorganized such as the bassoon con-
taining presynaptic density (Fig. 1d). These alterations are
accompanied by changes of the postsynaptic glutamate recep-
tor fields that also develop to one continuous ring-like cluster
(Wong et al. 2014). Moreover, ribbons increase in size and
undergo striking changes of shape. At the ultrastructural level,
their cross-sectional shape changes from predominantly
round (Fig. 1a’) to a rather oval-, droplet- or wedge-like shape
between P14 and P20 (Wong et al. 2014; Fig. 1b) and ribbon
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architecture extends in the longitudinal direction (Sobkowicz
et al. 1982; Wong et al. 2014) likely by gaining additional
ribbon material. The two rootlets seem to merge to a contin-
uous presynaptic density that contains the scaffolding protein
bassoon, as revealed by immunogold labeling (Wong et al.
2014; Fig. 1d). Shortly after onset of hearing at P14, a large
proportion of ribbons with two rootlets can still be found,
whereas about a week later the morphological maturation
appears to be completed (Wong et al. 2014, see, for summary,
Fig. 1f). Factors that participate in the maturation of IHC
synapses, next to the efferent olivocochlear transmission
(see above; Johnson et al. 2013a), are thyroid hormone
(Sendin et al. 2007) and myosin 6 (Heidrych et al. 2009;
Roux et al. 2009). For both, a higher proportion of morpho-
logical immature ribbons have been observed in genetic de-
letion models.

In conclusion, during development from pre-hearing to
hearing, IHC ribbon synapses undergo major morphological
and functional refinements, resulting in tighter spatial cou-
pling between Ca2+ influx and exocytosis (Wong et al. 2014).

Dynamics and heterogeneity of hair cell ribbon synapses

The number of Ca2+ channels, vesicular release sites and
ribbon-associated vesicles seems to scale with the size and
number of ribbons at the AZ (Martinez-Dunst et al. 1997;
Frank et al. 2009; Graydon et al. 2011; Kantardzhieva et al.
2013; Wong et al. 2013, 2014). Strengthening of presynaptic
transmitter release might therefore be accomplished by in-
creasing ribbon or AZ size and/or ribbon numbers per AZ.
Moreover, synaptic strength might be determined by the
amount and distribution of postsynaptic AMPA receptors.
Finally, lateral olivocochlear efferent fibers might modulate
postsynaptic excitability and thereby affect afferent synaptic
strength. To establish which of these mechanisms contribute
to determining and regulating synaptic strength of hair cell
synapses awaits further structural and functional
characterization.

Interestingly, the size and shape of ribbons appear to be
highly variable and dynamic. In fact, in photoreceptors, these
parameters strongly correlate with activity in light (silent) or
dark (active) conditions (Spiwoks-Becker et al. 2013).
Similarly, in IHCs, a diverse spectrum of ribbons has also been
observed (Bodian 1978; Sobkowicz et al. 1982; Merchan-
Perez and Liberman 1996; Wong et al. 2014). The specific
ultrastructural properties seem to depend on several factors:
(1) the maturation/age (see section above), (2) position within
the inner hair cell and maybe also (3) dynamic adaptation to
activity. A pioneering study in cats was one of the first to
identify the correlation between structural heterogeneity of
ribbon synapses and functional characteristics of auditory
nerve fibers (Merchan-Perez and Liberman 1996).
Surprisingly, large AZs with big and/or several ribbons,

supposedly reflecting large presynaptic strength, seem to drive
SGNs with low spontaneous rate and high thresholds (see also
scheme in Fig. 2a). Whereas this conundrum remains un-
solved, the mechanisms of functional presynaptic heterogene-
ity are now beginning to be understood. Evidence for such
heterogeneity within individual IHCs was obtained using con-
focal imaging of presynaptic Ca2+ influx (Frank et al. 2009;
see also Fig. 2b, b’). This study showed that presynaptic Ca2+

signals varied substantially in amplitude and voltage-
dependence among the AZs within individual IHCs. The am-
plitude of the Ca2+ signal scaled with ribbon size as approxi-
mated by simultaneous imaging of a fluorescently tagged
RIBEYE-binding peptide (Frank et al. 2009) and seemed to
be greater at the neural side of the IHCs (Meyer et al. 2009).
Linking such estimates to the functional and morphological
properties of the postsynaptic neurons will be an important
task for future studies. So far, correlative arguments based
on coincidental changes in maximal strength of presynaptic
Ca2+ influx and postsynaptic spiking during development and
upon genetic disruption as well as modeling have been
brought forward to argue that strong synapses drive SGNs that
have high spontaneous rates and low thresholds (Wong et al.
2013). Interestingly, an inverse correlation of pre- and post-
synaptic parameters of synaptic strength has recently been
reported for mouse IHCs: Liberman et al. (2011) suggested
that synapses with many AMPA receptors exhibit small rib-
bons. The authors favored the interpretation that the SGNs
inserting at the neural (modiolar) face of IHCs exhibit low
spontaneous rates and high thresholds despite their corre-
spond ing la rge IHC AZs , because they have a
smaller complement of AMPA receptors than those at the
neural (pillar) side. This would agree with the conclusion of
the classical study, which showed a neural–abneural gradient
of AZ size using electron microscopy for cat IHCs whereby
large AZs faced SGNs with low spontaneous rates and high
thresholds (Merchan-Perez and Liberman 1996). In a laborious
approach, the authors traced 11 functionally-characterized fi-
bers to the IHCs using serial 3D reconstructions of ultrathin
sections. In this way, it was possible to directly correlate mor-
phological parameters such as ribbon length, fiber contact area,
synaptic plaque area and synaptic vesicle numbers to the func-
tional parameters determined prior to fiber labeling using single
unit recordings. Recently, such a gradient was also suggested
for mouse IHCs and reported to be influenced by the lateral
olivocochlear innervation (Yin et al. 2014). The segregation
of nerve fibers on neural and abneural sides was further ob-
served in a study investigating the abundance of mitochondria
in postsynaptic terminals. Here, postsynaptic boutons facing the
abneural side seem to harbor more mitochondria (Francis et al.
2004). Monitoring EPSCs from single afferent boutons, which
is a suitable method to address synaptic function on the level of
individual release sites (Glowatzki and Fuchs 2002), further
showed differences among synapses. In these experiments,
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varying fractions of multiphasic EPSCs were observed and pro-
posed to underlie the diverse firing properties of SGNs (Grant
et al. 2010).

Further insights into the morphological heterogeneity
require modern 3D reconstructions of larger volumes such
as serial block face scanning electron microscopy (Denk and
Horstmann 2004) or focused ion beam scanning electron mi-
croscopy (see, e.g., Knott et al. 2008; Kreshuk et al. 2011).
Using these methods, a detailed 3D view of single IHCs in-
cluding afferent and efferent innervations would be possible,
finally allowing correlation of parameters, such as presynaptic
ribbon size and postsynaptic bouton diameter, as a function of
position on the IHC for a large number of synapses, together
with the functional assessment of pre- and postsynaptic prop-
erties in cochlear explants by electrophysiology (Goutman
and Glowatzki 2007) and/or imaging of IHC Ca2+ and exocy-
tosis (e.g., Frank et al. 2009; Neef et al. 2014) and postsynap-
tic activity (Boyer et al. 2004).

Synaptic vesicle recycling in inner hair cells

Tight coupling between exo- and endocytosis is a prerequi-
site for maintaining the enormous vesicle turnover rates at
ribbon synapses. The underlying mechanisms of endocytosis
in IHCs are just starting to become uncovered. Clathrin-
coated structures but also large cisterns without clathrin-
coats, are observed close to synaptic ribbons (Siegel and
Brownell 1986; Sendin et al. 2007; Frank et al. 2010;

Kantardzhieva et al. 2013; Neef et al. 2014; Revelo et al.
2014). Kantardzhieva et al. (2013) set out to determine
whether such cisterns participate in vesicle reformation and
what differences can be observed in correlation to the func-
tional properties of high and low spontaneous rate fibers
(Fig. 2c, c’, d, d’). An extensive quantitative analysis of
ribbons, vesicles and cisterns from serial sections of cat
IHC ribbon synapses suggested a ‘sphere of influence’ of
350 nm around the ribbon (Kantardzhieva et al. 2013). Here,
fewer cisterns and more synaptic vesicles are found, which
indeed points towards a contribution of cisterns to locally
restricted vesicle formation. Other studies used membrane
capacitance measurements to provide an initial functional
assessment of endocytic membrane retrieval at IHC AZs
(Moser and Beutner 2000; Beutner and Moser 2001; Neef
et al. 2014). Moreover, pH-sensitive GFP (pHluorin;
Miesenböck et al. 1998) targeted to the intraluminal face
of vesicle membranes by attachment to vesicular glutamate
transporters (Zhu et al. 2009) has become an important tool
in studying exo- and endocytosis, not only from neurons but
also IHCs (Neef et al. 2014; Revelo et al. 2014).
Additionally, a novel membrane tracer specifically tailored
to use in the organ of Corti has been devised and applied to
investigate endocytosis (Revelo et al. 2014), as the common-
ly used styryl dye FM1-43 penetrates stereociliar
mechanotransduction channels and hence is of limited use
to study endocytosis, in IHCs (Gale et al. 2001; Kamin et al.
2014; Revelo et al. 2014). To date, expression analysis and
immunohistochemistry have revealed the presence of several
important molecular players of endocytosis such as
dynamins, amphiphysin, clathrin (Neef et al. 2014) and
adaptor protein 2 (AP-2) (Duncker et al. 2013) in IHCs. A
very recent DNA microarray study investigating IHC and
OHC transcriptomes might even give more insight into pro-
teins involved in vesicle recycling (Liu et al. 2014).

Currently, in IHCs, three distinct mechanisms are consid-
ered to mediate endocytosis: slow CME, fast bulk endocytosis
and potentially kiss-and-run or ‘ultrafast’ endocytosis (Neef
et al. 2014). CME is the main pathway of membrane retrieval
for mild stimulation and proceeds at a constant rate; it repre-
sents the linear component of endocytosis following exocyto-
sis of the RRP (Fig. 3a). This mechanism is not only inhibited
by the clathrin-inhibitor pitstop-2 but also by disruption of
dynamin 1 via pharmacological and genetic means (Neef
et al. 2014). None of these manipulations seem to affect exo-
cytosis. In contrast, a different study reported inhibition of
sustained exocytosis by the presumptive dynamin inhibitor
dynasore but did not investigate endocytic membrane retrieval
(Duncker et al. 2013). Finally, when exocytosis exceeds three
to four RRP equivalents, IHCs additionally recruit a faster
mode of membrane retrieval, which proceeds with an expo-
nential time course within a few seconds. It has been proposed
to represent bulk endocytosis (Neef et al. 2014; Fig. 3a’) and,

�Fig. 2 Principle of functional heterogeneity in IHCs. a Schematic of an
organ of Corti showing afferent and efferent innervations at IHCs.
Modified from Meyer and Moser 2010, Curr Opin Otolaryngol Head
Neck Surg, reprinted with permission from © 2010 Wolters Kluwer
Health. b, b’ Heterogeneous Ca2+ signaling in IHCs. b Mean and SD of
ΔF (gray) as a function of depolarizing potential (Vm), obtained from
spot-detection experiments at the center of the Ca2+ microdomain; ΔF
was averaged over the last 15 ms of a 20-ms stimulus. ΔF (mean gray)
and ICa (mean black) show a similar voltage dependence (thin lines
corresponding SDs). b’ Heterogeneous voltage dependence and Ca2+

channel number of synaptic Ca2+ channel clusters in IHCs. Pronounced
variability in the voltage dependence of activation, even within the same
cell (dashed traces individual data curves from 3 Ca2+ microdomains in
an IHC).Modified from Frank et al. (2009), PNASUSA, with permission
from © Frank et al. c, c’ Colorized spatial distribution of vesicles and
cisterns around the ribbon in low- and high-spontaneous rate (SR) fibers.
Sections through a high-SR (c) and a low-SR (c’) synapse containing the
synaptic ribbon are shown with cisternal (maroon) and vesicular (green)
profiles. Scale bar (cm c’) 200 nm. d, d’ Distribution of docked vesicles
and cisterns. dMean density (± SE) of docked vesicles, i.e., within 20 nm
of the presynaptic density along the presynaptic membrane. d’ Mean
number (± SE) of cisterns within 20 nm of the presynaptic density
versus distance along the presynaptic membrane is shown for all
synapses. In addition, counts for low- and high-SR synapses are plotted
separately. Rectangle the area of significant differences between low- and
high-SR synapses. SE standard error; SR spontaneous rate. (c, c’, d, d’
modified from Kantardzhieva et al. 2013, J Comp Neurol, reprinted with
permission from © 2013 Wiley Periodicals)
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indeed, there is plenty of evidence for the invagination and
fission of large stretches of plasma membrane in the vicinity
of hair cell AZs (Lenzi et al. 2002; Frank et al. 2010; Pangršič
et al. 2010; Kamin et al. 2014; Neef et al. 2014; Revelo et al.
2014). Bothmechanisms seem to engage in different phases of
release: CME supports vesicle cycling duringmild stimulation
but bulk endocytosis finally occurs after prolonged stimula-
tion, providing a mechanism that assures the balance between
exo- and endocytosis in IHCs and thus, assures high release
rates (Neef et al. 2014).

But where does the retrieval of synaptic vesicle membrane
take place and where and how are synaptic vesicles regener-
ated following membrane retrieval in hair cells? Does synaptic
endocytosis complywith the apicobasal compartmentalization
of the hair cell? At photoreceptor ribbons, a periactive zone,
marked by the presence of endocytic proteins, was identified
directly adjacent to the AZ area (in a range of 120–250 nm
from the ribbon) using high-resolution and electron microsco-
py (Wahl et al. 2013). But does this also apply to IHC ribbons?
At the resolution of confocal microscopy, a similar
perisynaptic accumulation of endocytic proteins has, so far,
not been found (Neef et al. 2014); however, future studies
using nanoscopy will hopefully clarify this issue. Clearly,
electron micrographs indicate that both bulk and CME endo-
cytosis take place near the AZ (Siegel and Brownell 1986;
Lenzi et al. 2002; Frank et al. 2010; Kamin et al. 2014; Neef
et al. 2014). A radically different model of IHC endocytosis
has been sketched based on life imaging of FM1-43 uptake
into IHCs, whereby exocytosed membrane was postulated to
move towards the IHC apex for endocytosis and recycling via
the Golgi apparatus (Griesinger et al. 2002, 2005). Recent
elaborative studies using various styryl dyes and more suitable
fluorescent membrane markers lead us to reconsider this hy-
pothesis. First, it was corroborated that many styryl dyes in-
cluding FM1-43 permeate into the cytosol of IHCs via the
mechanotransducer channels (Kamin et al. 2014; Revelo
et al. 2014). Therefore, on the ultrastructural level, the
photo-oxidation technique revealed a fuzzy dark
diaminobenzidin (DAB) smear inside the cytosol in addition
to the precipitate in membrane-bound organelles likely
resulting from internalized FM1-43. The stimulation-induced
endocytic uptake of FM1-43 could still be followed by ob-
serving an electron-dense precipitate within vesicular struc-
tures, which allows the determination of the presence or ab-
sence as well as the localization of stained structures under
resting (Fig. 3b), stimulated (Fig. 3b’) and recovery (Fig. 3b”,
b”’) conditions in serial 3D reconstructed IHCs (Kamin et al.
2014). At rest, endosome-like organelles were detected in the
apex of the IHCs, whereas larger tubulo-cisternal organelles
dominated at the nuclear region. At the basal region, only a
few labeled structures were present. Stimulation massively
increased the amount of basolateral membrane trafficking,
reflected by the appearance of labeled small vesicles and

endosome-like vacuoles; however, no changes in the apical
and nuclear regions could be observed (Kamin et al. 2014;
Fig. 3b’). Strikingly, the basolateral cisterns were replaced in
the basal region by small, synaptic-like vesicles during a few
minutes of recovery from stimulation, suggesting a highly
efficient mechanism of vesicle regeneration from cisternal
membranes internalized by bulk endocytosis. The combina-
tion of FM1-43 uptake and photo-oxidation therefore suggests
that synaptic vesicle recycling takes place at the basal part,
close to ribbons at least during synaptic activity (Kamin
et al. 2014).

Recently, a novel membrane tracer, named membrane-
binding fluorophore-cysteine-lysine-palmitoyl group
(mCLING), which does not permeate the mechanotransducer
channel, tightly binds biological membranes and can be fixed,
has been developed (Revelo et al. 2014). In combination with
super-resolution light microscopy (i.e., STED), the spatial or-
ganization and pathways of endocytosis in IHCs could be
further investigated. In order to improve the spatial resolution

�Fig. 3 Endocytosis in inner hair cells. a, a’ Representative recordings in
response to 20 ms (a) or 200 ms (a’) depolarizations. After the Cm

increase upon 20 ms depolarization, the slope-corrected Cm traces
(middle) typically showed a linear decay (a). The 200-ms-long
depolarization resulted in a combination of exponential and linear decay
(a’). Modified from Neef et al. (2014) reprinted with permission from ©
2014 Neef et al. b–b”’ 3D reconstructions of resting (b), stimulated (b’)
and recovered IHCs (b”, b”’). Endocytotic organelles are shown in
purple. Note the presence of tubular organelles both before and after
stimulation. Most organelles, including the tubular ones, are replaced by
small vesicles during the recovery periods. Insetsmagnified regions from
the four different cell regions (cuticular plate, top, nuclear and basal
regions). Note the increased number of endosome-like organelles at the
base of the cell after stimulation and during recovery. Modified from
Kamin et al. (2014), reprinted with permission © 2014 Kamin et al. c
mCLING-labeled organs of Corti were immunostained for Vglut3 and
otoferlin (first row), for Vglut3 and syntaxin 6 (Sx 6, second row), for
otoferlin and syntaxin 16 (Sx 16, third row) and finally for syntaxin 6 and
syntaxin 16 (fourth row). The samples were cut into 20-nm sections and
were imaged using an epifluorescence microscope. Dashed white lines
the plasma membrane of the IHCs. White arrowheads organelles where
the signals for mCLING and the two immunostained proteins colocalized.
Scale bar 2 μm. d Graphic representation of Pearson’s correlation
coefficients: otoferlin and syntaxin 6 (or syntaxin 16) correlate in the
mCLING-labeled organelles at the top and nuclear levels. Vglut3
correlates best with otoferlin at the basal level. At least 100 organelles
were analyzed for each condition. Error bars SEMs. e Model of
membrane recycling in IHCs. Organelles with a different molecular
composition recycle membrane in different regions, taking up
mCLING. Apical endocytosis takes up the membrane into round
organelles, a sizeable proportion of which is similar to late endosomes
(light blue). Endocytosis in the top and nuclear regions reaches tubular
organelles containing otoferlin and two endosome markers, syntaxin 16
and syntaxin 6. This suggests that these organelles participate in
constitutive pathways, probably by maintaining membrane traffic
between the plasma membrane and the trans-Golgi. At the base of the
cell, stimulation induces the formation of membrane infoldings and
cisterns that are characterized by the presence of Vglut3, Rab3 and also
otoferlin. (c–e modified from Revelo et al. 2014, reprinted with
permission from © 2014 Revelo et al.)
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of STED microscopy in the axial direction, thin sections of
IHCs were imaged after embedding the organs of Corti in
melamine, which maintains the fluorescence (Revelo et al.
2014). The apical, nuclear and basal regions under conditions
of rest, stimulation and recovery from stimulation, were inves-
tigated and the uptake of mCLING monitored. In order to
reveal the molecular identity of mCLING-labeled structures
and thereby identify the respective endocytic pathways, sam-
ples were co-stained with different protein markers for the
endoplasmic reticulum (ER) and Golgi as well as synaptic
vesicle endo- and exocytosis. In these experiments, a strong
correlation for basolateral mCLING localization with Vglut3,
rab3 and otoferlin immunofluorescence was found. Otoferlin
as well as syntaxin 16, a late endosomal marker, colocalized
with apical and nuclear mCLING (Fig. 3c–e). Moreover, the
lysosomal-associated membrane protein 1 (LAMP1)
colocalized with mCLING in the apical region of the IHC.
Stimulation led to a selective uptake of mCLING at the base
of the IHC, corroborating the notion of local recycling of
synaptic vesicles that was postulated based on electron mi-
croscopy and photo-oxidation (Kamin et al. 2014; Revelo
et al. 2014). The local recycling hypothesis was further sup-
ported by the finding that exogenous Vglut1-pHluorin fluo-
rescence not only transiently appeared at ribbon-type AZs but
remained there for tens of seconds after stimulation (Neef
et al. 2014; Revelo et al. 2014).

Finally, the mCLING experiments revealed large membra-
nous organelles near synapses, which were replaced by small
organelles a few minutes after stimulation, thereby providing
direct evidence of bulk endocytosis and vesicle regeneration
from the internalized plasma membrane. The association of
otoferlin with all three putative membrane recycling pathways
suggests a more general role of this protein in endocytosis.
Otoferlin has recently been assigned a role in vesicle endocy-
tosis due to its interaction with AP-2. Using a high-resolution
liquid chromatography coupled with a mass spectrometry ap-
proach, multiple subunits of AP-2 were identified as interac-
tion partners of otoferlin in the mammalian cochlea and the
proposed interactions were biochemically confirmed by co-
immunoprecipitation (Duncker et al. 2013). AP-2 plays a role
in clathrin-mediated endocytosis via binding to clathrin-
coated vesicles budding from the plasma membrane (Keyel
et al. 2008; Boucrot et al. 2010) and has been shown to be
expressed in IHCs (Duncker et al. 2013). Future work is re-
quired to clarify the role of AP-2 in hair cell endocytosis and
the relevance of its interaction with otoferlin.

Outlook

Recently, major progress has been made towards dissecting
the molecular anatomy and physiology of hair cell ribbon
synapses. This includes powerful single synapse techniques
such as (1) patch-clamp of postsynaptic afferent terminals of

SGNs, (2) high resolution -functional imaging of presynaptic
IHC Ca2+ dynamics and membrane turnover, as well as (3)
super-resolution light microscopy and electron tomography
following high-pressure freezing. However, in order to inves-
tigate the release mechanisms of IHCs and firmly correlate
structure and function, the development of new functional
and morphological approaches is required. Functional and
morphological analysis of single synapses will be necessary
and some questions require reading out both pre- and postsyn-
aptic properties at the same time. The commonly used K+

stimulation of cochlear tissue likely mimics strong physiolog-
ical steady-state stimulation. But this stimulation does not
provide the temporal resolution to allow the observation of
the release kinetics at IHC ribbon synapses. Especially,
knowledge about short-term plastic changes is lacking, since
it is not possible to apply very short stimuli (i.e., millisecond
range) and investigate the cells during and at defined times
after stimulation. Therefore, approaches are needed that meet
two requirements: (1) a precise stimulation protocol combined
with (2) rapid immobilization of the sample, e.g., by using
high-pressure freezing. One emerging tool that promises to
fulfill these requirements is the combination of optogenetic
stimulation with high-pressure freezing. This could involve
the expression of a light-sensitive ion channel such as
channelrhodopsin-2 (ChR-2) from the green algae
Chlamydomonas reinhardii (Nagel et al. 2003) in hair cells
and stimulation would ideally be performed within a chamber
that should be mounted in a freezing machine in order to
minimize the time delay before freezing. Such optogenetic
investigations of synapses combined with electron microsco-
py have been emerging. Recently, synaptic recovery of moto-
neurons from C. elegans was analyzed using optogenetic
stimulation in combination with high-pressure freezing
(Kittelmann et al. 2013). Moreover, after a single light stimu-
lus, docked vesicles fused along a broad AZ on C. elegans
motoneurons expressing ChR-2. These vesicles were
replenished with a time constant of about 2 s. Further, endo-
cytosis occurred within 50 ms adjacent to the dense projection
and after 1 s adjacent to adherens junctions (Watanabe et al.
2013a). Moreover, a study on optically stimulated cultured
hippocampal neurons revealed an ultrafast endocytosis mech-
anism at central synapses (Watanabe et al. 2013b). These ini-
tial experiments indicate that optogenetics, in combination
with high-pressure freezing (‘flash and freeze’; Watanabe
et al. 2013b) and subsequent electron tomography, might pro-
vide sufficient resolution to study the ultrastructure of spatio-
temporally defined functional states and thus provide a
completely new view on the release mechanism of IHC ribbon
synapses.
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