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Functional genomics reveal gene regulatory
mechanisms underlying schizophrenia risk
Yongxia Huo1, Shiwu Li1,2, Jiewei Liu1, Xiaoyan Li1,2 & Xiong-Jian Luo 1,2,3,4

Genome-wide association studies (GWASs) have identified over 180 independent schizo-

phrenia risk loci. Nevertheless, how the risk variants in the reported loci confer schizophrenia

susceptibility remains largely unknown. Here we systematically investigate the gene reg-

ulatory mechanisms underpinning schizophrenia risk through integrating data from functional

genomics (including 30 ChIP-Seq experiments) and position weight matrix (PWM). We

identify 132 risk single nucleotide polymorphisms (SNPs) that disrupt transcription factor

binding and we find that 97 of the 132 TF binding-disrupting SNPs are associated with gene

expression in human brain tissues. We validate the regulatory effect of some TF binding-

disrupting SNPs with reporter gene assays (9 SNPs) and allele-specific expression analysis

(10 SNPs). Our study reveals gene regulatory mechanisms affected by schizophrenia risk

SNPs (including widespread disruption of POLR2A and CTCF binding) and identifies target

genes for mechanistic studies and drug development. Our results can be accessed and

visualized at SZDB database (http://www.szdb.org/).
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Schizophrenia (SCZ) is a severe psychiatric disorder char-
acterized by positive symptoms, negative symptoms and
cognitive impairments. With high lifetime prevalence

(~0.5–1%), substantial morbidity and mortality, SCZ poses a
major threat to global health. The pathogenesis of SCZ remains
elusive. However, accumulating data suggest that inherited
genetic variants play critical roles in SCZ (the heritability of SCZ
is estimated around 0.81). To date, genome-wide association
studies (GWASs) have identified over 180 loci that show strong
association with SCZ2–14. Nevertheless, for most of the risk loci,
the causal variant(s) and the mechanisms by which the risk
variants exert their effects on SCZ remain unknown.

Most of the SCZ risk variants identified by GWAS are located
in non-coding regions12, implying that these variants exert their
effects through altering gene expression. Consistently, recent
studies have shown that schizophrenia-associated variants are
significantly enriched in regulatory regions15,16, suggesting that
disruption of regulatory function may represent a common
mechanism that non-coding genetic variants confer risk of SCZ.
Though accumulating evidence support the hypothesis that most
of the risk variants identified by GWAS contribute to SCZ risk
through affecting gene expression rather than protein structure or
function, only very limited functional variants have been identi-
fied so far17–19. Due to the complexity of linkage disequilibrium
(LD) and gene regulatory, identifying the functional (or causal)
variants (at each reported locus) and elucidating their regulatory
mechanisms remain major challenges in psychiatric genetics.

Regulatory elements (REs) (e.g., promoters and enhancers) are
non-coding DNA sequences that have a critical role in controlling
gene expression. Previous studies have shown that most of
associations identified by GWASs were attributable to variants
located in REs12,20. In fact, investigating if the risk variants are
localized in REs has been proved a useful way to identify causal
(or functional) variants for complex diseases21,22. Regulatory
elements usually contain multiple binding sites (i.e., DNA motifs
that can be recognized by transcription factors (TFs)) for TFs and
genetic variations in REs affect gene expression through altering
binding affinity of TFs. The architecture and function of REs are
variable in different tissues and previous studies have shown that
the activity of REs have strong tissue and cellular specificity23,24.
Thus, understanding the tissue-specific structure and activity of
REs is crucial to elucidate how genetic variants contribute to risk
of SCZ through affecting the regulatory function of REs.

Here we perform a systematic and deep analysis to identify
the functional variants and to elucidate the gene regulatory
mechanisms underlying the genetic associations reported by
recent schizophrenia GWASs12–14. We identify functional
variants at multiple risk loci through integrating a wide range of
data from high-throughput functional genomics experiments,
including genome-wide binding landscapes (chromatin immu-
noprecipitation and sequencing (ChIP-Seq)) for 30 TFs and
position weight matrices (PWMs). We identify 132 functional
single-nucleotide polymorphisms (SNPs) that disrupt TF
binding and investigate the gene regulatory mechanisms of
these TF binding–disrupting SNPs. We validate the regulatory
effect of several identified functional SNPs using reporter gene
assays and allele-specific expression analysis. In addition, we
identify the potential target genes of the identified regulatory
SNPs by using brain expression quantitative loci (eQTL) from
three independent eQTL datasets. Finally, we show that nervous
system development-related genes are significantly
enriched among the target genes of the TF binding–disrupting
SNPs, providing further support for the neurodevelopmental
hypothesis of schizophrenia. The results reported in this
study can be visualized and downloaded at SZDB (http://www.
szdb.org/)25.

Results
Prioritization of functional SNPs and experimental validation.
Potential causal risk SNPs from three large-scale GWASs12–14

were used in this study. The first GWAS was from the schizo-
phrenia working group of the psychiatric genomics consortium
(PGC2)12. PGC performed a large-scale GWAS of SCZ (36,989
cases and 113,075 controls) and reported 108 independent risk
loci12. The second GWAS was from the study of Li et al.13 which
identified 30 new SCZ risk loci recently through combining the
association results from the Chinese and PGC2 samples. The
third GWAS was from a recent study of Pardinas et al.14 that
reported 50 novel risk loci for SCZ. As each risk locus contains
hundreds of SNPs that showed similar association significance
(due to LD), potential causal SNPs were identified by PGC2 and
Pardinas et al.14. PGC2 identified set of SNPs (i.e., potential
causal set of SNPs) that were 99% likely to contain the causal
variants12. Pardinas et al.14 also identified potential causal SNPs
using FINEMAP26. A total of 18,707 potential causal SNPs from
PGC2 and 1799 potential causal SNPs (spanning 50 novel risk)
from the study of Pardinas et al.14 were used in this study. For the
30 new risk loci reported by Li et al.13, we performed LD analysis
and identified 4794 SNPs that were in LD with the index SNPs
(r2 > 0.3). The potential causal SNPs (from PGC212 and Pardinas
et al.14) and SNPs in LD with the index SNPs (from Li et al.13) are
likely to contain the causal variants. In total, 23,400 non-
overlapping potential causal SNPs from above three GWASs were
included in this study (Fig. 1). To pinpoint the potential causal
variant (or variants) at each locus, we systematically annotated
the credible causal SNPs through combining bioinformatic and
high-throughput functional genomics analyses (Fig. 1). We first
annotated the potential causal SNPs with well-characterized
functional annotation approaches (CADD27, GWAVA28, Eigen29,
RegulomeDB30 and LINSIGHT31) and identified the most pos-
sible functional SNPs at each risk locus (Supplementary Data 1
and Supplementary Tables 1 and 2). Of note, two different stra-
tegies were used by the functional annotation methods to prior-
itize the potential functional SNP. For CADD, Eigen, GWAVA
and LINSIGHT, the larger the score, the higher probability that
the SNP is functional. Therefore, the SNP with the highest score
was defined as the top (i.e., the most likely) functional SNP. For
RegulomeDB, smaller rating suggests higher probability that the
SNP is functional. Thus, the SNP with the smallest rating was
defined as the top functional SNP. For CADD, Eigen, GWAVA
and LINSIGHT, the SNP with the highest score at each locus was
defined as the top functional SNP. For RegulomeDB, the SNP
with the smallest rating was defined as the top functional SNP.
For each locus, we compared the top functional SNPs identified
by different annotation methods and found that 153 loci (PGC212

performed regular LD clumping (implemented in PLINK32) to
define the index SNPs (with following parameters: r2 < 0.1, P1 <
5 × 10−8, window size <500 kb) and the genomic region con-
taining all SNPs that were in LD (i.e., r2 > 0.6) with each of the
128 index SNPs was defined as a locus) contained overlapping top
functional SNPs prioritized by at least two different annotation
methods (i.e., at least two methods annotated the same SNP as
the most possible functional or causal SNP) (Supplementary
Data 1 and Supplementary Tables 1 and 2), suggesting these SNPs
were promising functional SNPs. Most of the prioritized func-
tional SNPs were located in intergenic and intronic regions
(Fig. 2a).

To identify the potential target genes regulated by the
prioritized top functional SNPs (i.e., top SNPs identified by at
least two different annotation approaches), we examined the
associations between the prioritized top functional SNPs and
gene expression in three brain eQTL databases (including the
Lieber Institute for Brain Development (LIBD) eQTL browser33
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(dorsolateral prefrontal cortex, N= 412, including 175 patients
with schizophrenia and 237 unaffected controls) (http://eqtl.
brainseq.org/phase1/eqtl/), the Genotype-Tissue Expression
(GTEx)34 (tissues were from 13 brain regions, N ranges from
80 to 154) (Supplementary Table 3) and the CommonMind
Consortium (CMC)35 (dorsolateral prefrontal cortex, N= 467).

In total, 66 prioritized top functional SNPs showed significant
association (default false discovery rates (FDRs) used in the
original papers were used in this study, i.e., FDR < 0.05 in CMC,
FDR < 0.01 in LIBD). We used P < 0.001 for GTEx) with gene
expression in human brain tissues (Supplementary Data 2). We
validated the regulatory effects of 10 prioritized top functional
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Fig. 1 Prioritization and identification of regulatory single-nucleotide polymorphisms (SNPs) at schizophrenia risk loci. Risk SNPs (including credible causal
SNPs and SNPs that were in linkage disequilibrium (LD) with the index risk SNPs) from three large-scale genome-wide association studies (GWASs) were
subjected to functional annotation and functional genomics analyses. Five annotation methods were used to prioritize the most possible functional (or
causal) SNPs (i.e., SNPs with the largest scores (CADD, Eigen, LINSIGHT and GWAVA) or the lowest rankings (1a, RegulomeDB)). The most possible
functional SNPs (we call these SNPs top functional SNPs) were further distilled and the same top functional SNP prioritized by at least two different
annotation approaches was subjected to expression quantitative loci (eQTL) annotation and reporter gene assays. We also utilized functional genomics to
identify the potential causal SNPs at the risk loci. Chromatin immunoprecipitation and sequencing (ChIP-Seq) experiments performed in brain tissues or
neuronal cell lines were used to identify the motifs (i.e., position weight matrices (PWMs) of corresponding transcription factors (TFs)). The identified
PWMs from ChIP-Seq experiments and PWM database were compared, and the matched PWMs were used to map if the risk SNPs were located in the
identified PWMs. Reporter gene assays were used to validate the effects of the identified TF binding–disrupting SNPs and eQTL annotation was performed
to identify the potential target genes of the identified regulatory SNPs. The results of this study can be accessed and visualized at SZDB database (http://
www.szdb.org/)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08666-4 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:670 | https://doi.org/10.1038/s41467-019-08666-4 |www.nature.com/naturecommunications 3

http://eqtl.brainseq.org/phase1/eqtl/
http://eqtl.brainseq.org/phase1/eqtl/
http://www.szdb.org/
http://www.szdb.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


SNPs using reporter gene assays (Methods). The selection criteria
of top functional SNPs for reporter gene assays were as follows.
First, this SNP was prioritized as the top functional SNP (has the
highest score or the smallest rating) at least by two different
annotation methods simultaneously. Second, this SNP was
associated with gene expression in human brains (Supplementary
Data 2). We tested 10 SNPs and found that 7 out of 10 prioritized
top functional SNPs (including rs11655813, rs9908888,
rs17821573, rs301791, rs37718, rs7304782 and rs7752421)
showed significant allelic effects in reporter gene assays in HEK
293 cells (i.e., different alleles at these SNPs affected the
expression of reporter gene significantly) (P < 0.05, two-tailed
Student’s t-test, not corrected for multiple testing) (Fig. 2b). For
these 7 significant SNPs, we compared the allelic effects on
luciferase activity observed in reporter gene assays with the
estimated eQTL effects of the corresponding alleles in CMC
dataset. Among these 7 significant SNPs, 5 SNPs (rs11655813,
rs9908888, rs17821573, rs301791 and rs7752421) were signifi-
cantly associated (FDR < 0.01) with gene expression in CMC
dataset. For these 5 significant eQTL SNPs, we found that the

allelic effects on luciferase activity observed in reporter gene
assays are consistent with the estimated eQTL effects of the
corresponding alleles in CMC dataset (Supplementary Fig. 1).
These results prioritized the most possible functional SNPs at
each risk locus and suggested that these functional SNPs may
confer risk of schizophrenia through modulating gene expression.

Identification of regulatory risk SNPs using functional geno-
mics. Though promising functional SNPs have been prioritized
by the well-characterized annotation approaches (Supplementary
Data 1 and Supplementary Tables 1 and 2), there are several
limitations for these annotation methods. First, sequence con-
servation is an important factor for some annotation approaches
(including CADD, Eigen and LINSIGHT). However, considering
that some of the schizophrenia-associated variants are located in
human-specific (or accelerated) region36,37 (e.g., a recent study
showed that a human-specific tandem repeat in intronic region of
CACNA1C have pivotal role in schizophrenia susceptibility36), it
is challenging for these annotation methods to prioritize the
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Fig. 2 The distribution of the prioritized top functional single-nucleotide polymorphisms (SNPs) in genome and validation of the regulatory effects of
the prioritized top functional SNPs. a Most of the prioritized top functional SNPs were located in intronic and intergenic regions. b Results of the reporter
gene assays. Among the 10 tested SNPs, different alleles at 7 SNPs affected the expression of reporter gene significantly in HEK293 cells (P < 0.05). Data
are expressed as mean ± SD from 8 technical replicates. NS, not significant, *P < 0.05, ***P < 0.001. Two-tailed Student’s t-test. Source data are provided as
a Source Data file
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potential functional SNPs located in these human-specific
regions. Second, despite genomic features such as ChIP-Seq, TF
binding sites and eQTL were used by some of these annotation
methods, the tissues and cell types used to derive these genomic
features were usually not from the brain or neuronal-related
tissues. Considering that many of the regulatory variants have
strong tissue-specificity, the potential functional SNPs prioritized
by these annotation approaches may not be functional in human
brains. Third, even the potential functional SNP prioritized by
these annotation methods have functional consequences in brain
or neuronal-related tissues, and the exact gene regulatory
mechanisms (e.g., binding of which transcription factor was
disrupted by the potential functional SNPs) of these potential
functional SNPs remain unknown.

To further investigate how schizophrenia risk variants affect
gene expression and elucidate the regulatory mechanisms of the
potential causal variants, we annotated the potential causal SNPs
by combining ChIP-Seq and PWM data (Fig. 1), as described
previously38. We focused on risk variants that have regulatory
effect in human brain tissues (or neuronal cells) as schizophrenia
is thought to be a disorder that is mainly originated from
dysfunction of brain function. First, most schizophrenia risk
genes (including genes involved in neurotransmission (e.g.,
DRD2, GRM3, GRIN2A, CACNA1C and CACNA1I)) identified
by genetic studies play pivotal roles in brain12,14. Second,
accumulating evidence supports the neurodevelopmental hypoth-
esis of schizophrenia39,40. Consistently, studies have showed that
schizophrenia risk genes (including DISC1, RELN and GLT8D1)
have important role in brain development through regulating
proliferation and differentiation of neural stem cells41–43. More
important, a recent study showed that schizophrenia associations
were strongly enriched at enhancers active in brain tissues12.
These lines of evidence suggest that schizophrenia risk variants
exert their effects mainly in brain tissues. Therefore, brain tissues
(or neuronal cells) may represent the most relevant tissues for
studying the effects of SCZ risk variants. We thus used ChIP-Seq
and eQTL data from brain tissues (or neuronal cells) to identify
the potential causal SNPs and target genes regulated by the
identified TF binding–disrupting SNPs. We downloaded and
processed 34 ChIP-Seq experiments (Supplementary Table 4)
from ENCODE44. After quality control, ChIP-Seq data of 30 TFs
were retained and the genome-wide binding sites of each TF were
identified using the ChIP-Seq data. We derived the DNA binding
motifs of individual TF using the genomic binding locations from
the ChIP-Seq data (Methods)45. DNA binding motifs derived
from ChIP-Seq experiments were then compared with PWM data
(from PWM databases) (Methods) and the matched PWM was
used for further analysis (as EZH2 PWM results derived from
ChIP-Seq were inconsistent with the PWM databases, we chose
the most significant PWM (i.e., with the smallest E-value) from
ChIP-Seq for further analysis). Potential causal SNPs were
mapped to the matched PWMs and risk SNPs residing in PWMs
were identified. To test if a risk SNP (located in a given PWM)
disrupts TF binding, we used FIMO (Find Individual Motif
Occurences)46 to analyze the genomic sequences containing two
different alleles of the given SNP (Methods). By doing so, we
could identify TFs whose binding are disrupted by credible causal
risk SNPs at single-base resolution by combining ChIP-Seq and
corresponding PWM data.

Through annotating 23,400 potential causal risk SNPs with
ChIP-Seq and PWM data, we identified 132 SNPs that disrupted
the binding of 21 distinct TFs (Fig. 3a and Supplementary
Data 3). Each of these SNPs was located in a TF binding motif
that overlapped with a PWM match (P < 0.001, P was converted
from log-odds scores, assuming a zero-order background model)
on one or both alleles (http://www.szdb.org/)25. These TF

binding–disrupting SNPs (which we call regulatory SNPs) are
located in DNA binding motifs that have strong nearby ChIP-Seq
signals, indicating that corresponding TFs can bind to the
genomic regions containing these SNPs in human brain tissues or
neuronal cell lines. Over 70% TF binding–disrupting SNPs were
located in intronic and intergenic regions (Fig. 3a). To compare
the distribution of TF binding–disrupting SNPs identified in this
study and random SNPs, we sampled random SNPs and
annotated their genomic locations using ANNOVAR47 (see
Methods). We found that 56% random SNPs were located in
intergenic regions (Supplementary Fig. 2). However, only 21% TF
binding–disrupting SNPs were located in intergenic regions. By
contrast, 50% TF binding–disrupting SNPs and only 35% random
SNPs were located in intronic regions, suggesting that causal risk
variants for schizophrenia were enriched in intronic regions.
Nevertheless, more work is needed to verify this observation.
Among the 132 TF binding–disrupting SNPs, 40 were located in
POLR2A (RNA polymerase II subunit A) binding motifs and 38
were located in CTCF binding sites, suggesting widespread
disruption of POLR2A and CTCF binding by SCZ risk SNPs
(Fig. 3a). We noticed that some regulatory SNPs disrupted
binding of two or more TFs simultaneously (Fig. 3b). The binding
motif (PWM), ChIP-Seq signal, DNase-Seq signal and histone
modification marks for each of the 132 SNPs can be accessed and
visualized at SZDB (http://www.szdb.org/).

Disruption of POLR2A binding by regulatory SNPs. Forty SCZ
risk SNPs disrupted binding of POLR2A (Fig. 3a), implying
disruption of POLR2A binding may represent a common
mechanism that schizophrenia risk variants exert their effect. We
investigated how a risk SNP (rs1801311) at 22q13.2 disrupted
POLR2A binding. Genetic variants at 22q13.2 showed significant
association with SCZ in recent GWAS12 (Supplementary Fig. 3).
However, due to the complexity of LD, it is challenging to pin-
point the causal (or functional) SNP at this locus. Through
integrating ChIP-Seq and PWM data, we identified a functional
SNP (rs1801311) at 22q13.2. rs1801311 was located in a well-
characterized binding motif for POLR2A (Fig. 4a). Strong
POLR2A ChIP-Seq signal clearly showed the binding of POLR2A
to the genomic region containing rs1801311 in human brain
tissues and neuronal cell lines. Consistently, DNase-Seq and
histone modification data indicated that rs1801311 was located
in an actively regulatory region (Fig. 4b). We further validated
the regulatory effect of rs1801311 using reporter gene assays
(Fig. 4c–e). Genomic sequences (638 bp) containing different
alleles of rs1801311 were cloned into pGL3-promoter vector to
modulate the expression of luciferase reporter gene (Methods).
The A allele of rs1801311 conferred a significant higher activity
compared with G allele in all three tested cell lines (HEK293, SK-
N-SH and SH-SY5Y) (P < 0.001, two-tailed Student’s t-test),
supporting the regulatory effect of rs1801311. Collectively,
the data from ChIP-Seq, PWM, DNase-Seq, histone modification
and reporter gene assays consistently support that rs1801311
may exert its regulatory effect through disrupting POLR2A
binding.

Disruption of CTCF binding by regulatory SNPs. In addition to
POLR2A, binding of CTCF and other TFs were also frequently
disrupted by SCZ risk SNPs (Fig. 3a). CTCF binding was dis-
rupted by 38 SCZ risk SNPs, including rs12912934 (15q25.2),
rs16937 (1q32.1) and rs7012106 (8q24.3) (Figs. 5 and 6a). These
three regulatory SNPs (i.e., rs12912934, rs16937 and rs7012106)
were located in CTCF binding sites and allelic differences at these
SNPs disrupted the binding of CTCF. DNase-Seq data showed
that these three SNPs were located in transcriptionally active
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regions. ChIP-Seq data indicated that CTCF could bind to the
genomic regions containing these three regulatory SNPs in
human brain tissues or neuronal cell lines (Fig. 5). We further
verified the regulatory effect of these three SNPs with reporter

gene assays. We found that the T allele of rs12912934 conferred a
significant higher reporter gene activity compared with C allele in
SK-N-SH and SH-SY5Y cells (P < 0.05, two-tailed Student’s t-test)
(Fig. 5c, d). For SNP rs16937, the G allele conferred a significant
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higher expression activity compared with A allele in HEK293 and
SH-SY5Y cells (P < 0.001, two-tailed Student’s t-test) (Fig. 5f, h).
For rs7012106, the construct containing G allele exhibited sig-
nificant higher luciferase activity compared with the construct

containing the C allele in all three tested cell lines (P < 0.001, two-
tailed Student’s t-test) (Fig. 6b–d). The results of reporter gene
assays provide further evidence that support the regulatory effect
of these three CTCF binding–disrupting SNPs.
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Disruption of other TF binding by regulatory SNPs. We
demonstrated how a regulatory SNP (rs2270363, located in
16p13.3) disrupted binding of USF1 and MAX1 through inte-
grating data from ChIP-Seq and PWM (Fig. 6e). SNP rs2270363
was located in upstream of NMRAL1 and HMOX2 genes (these
two genes have opposite transcription direction). However, as
HMOX2 has multiple isoforms, rs2270363 is also located in the
intron 1 of the longest transcript of HMOX2. DNase-Seq profiles
and histone modification data showed that rs2270363 was located
within an active transcription genomic region (Fig. 6e). In addi-
tion, ChIP-Seq profiles indicated that USF1 and MAX1 could
bind to the region containing rs2270363 in human neuronal cell
line. rs2270363 was located in binding motif of USF1 and MAX1,
and FIMO analysis showed that rs2270363 disrupted occupied
USF1 and MAX1 binding sites. We amplified the DNA fragments
containing different alleles of rs2270363 and cloned them into
pGL4.11 vector. We then compared the luciferase activity driven
by the cloned DNA fragments containing different alleles of
rs2270363. The construct containing A allele of rs2270363
exhibited significant higher luciferase activity compared with the
construct containing the G allele in all three tested cell lines (P <
0.01, two-tailed Student’s t-test) (Fig. 6f–h). In addition to
rs2270363, USF1 binding was disrupted by other regulatory SNPs.
For example, SNP rs7014953 also disrupted the binding of USF1
(Fig. 7a). We confirmed the regulatory effect of rs7014953 in SK-
N-SH and SH-SY5Y cells (P < 0.001, two-tailed Student’s t-test)
(Fig. 7b, c).

In addition to above-mentioned TFs, the identified regulatory
SNPs also disrupted bindings of other TFs. As shown in Fig. 7d,
TCF12 binding was disrupted by SNP rs6992091. Again, we
validated the regulatory effect of rs6992091 (Fig. 7e, f) with
reporter gene assays. The construct containing G allele of
rs6992091 exhibited a significantly higher luciferase activity
compared with the construct containing the A allele in SK-N-
SH and SH-SY5Y cells (P < 0.001, two-tailed Student’s t-test).
Taken together, these results provide further evidence that
supports the identified TF binding–disrupting SNPs are regula-
tory SNPs.

Regulatory effect of additional TF binding–disrupting SNPs.
We identified 132 SCZ-associated regulatory SNPs that disrupted
bindings of TFs through annotating potential causal SNPs with
ChIP-Seq and PWM data (Supplementary Data 3). These 132 TF
binding–disrupting SNPs were from 81 SCZ risk loci (i.e., cor-
responding to 81 index SNPs). Most of the regulatory SNPs were
located in intronic and intergenic regions (Fig. 3a). The wide
overlapping of the regulatory SNPs with H3K27ac histone
modification (http://www.szdb.org/) suggested that these SNPs
were mainly located in enhancer regions. We thus performed
reporter gene assays to validate the regulatory effect of some of
the identified TF binding–disrupting SNPs. The selection criteria
of TF binding–disrupting SNPs for reporter gene assays were as

follows. First, this TF binding–disrupting SNP was associated
with expression of the same gene simultaneously in at least two
independent eQTL datasets. Second, this SNP was located in a
genomic region with strong DNase-Seq or Histone modification
signal. In addition to the 7 SNPs investigated above (i.e.,
rs1801311, rs12912934, rs16937, rs7012106, rs2270363,
rs7014953 and rs6992019) (Figs. 4–7), regulatory effects of two
additional SNPs (rs2535629 and rs2711116) were also tested with
reporter gene assays (Supplementary Figs 4 and 5). In total, we
studied the regulatory effect of 9 SNPs and found that all of the
cloned genomic sequences (containing the tested SNPs) enhanced
the activity of luciferase compared with control vector (empty
pGL3-promoter) in the tested cell lines (Figs. 4–7, Supplementary
Figs 4 and 5), supporting that these SNPs were located in
enhancer regions. We also compared the effect of different alleles
on luciferase activity and found that all of the tested SNPs showed
a significant difference in luciferase activity for the two given
alleles in at least one of the tested cells (Figs. 4–7, Supplementary
Figs 4 and 5). These allele-specific reporter gene assays indicated
that genetic variations (i.e., allelic differences) at the regulatory
SNPs influenced the luciferase activity significantly, providing
further evidence that supports the regulatory effects of the
identified SNPs.

Identification of the target genes of the regulatory SNPs. To
further identify the potential target genes regulated by the 132
identified regulatory SNPs, we examined the association between
the identified regulatory SNPs and gene expression in human
brain tissues in three independent brain eQTL datasets, including
CMC35, LIBD eQTL browser33 and GTEx48. Tissues from the
prefrontal cortex were used in CMC and LIBD datasets. Tissues
from 13 brain regions (sample size range from 80 to 154) (Sup-
plementary Table 3) were included in GTEx. We utilized the
default FDR or P thresholds used in the original papers. In CMC
dataset, the default FDR threshold is 0.05. In LIBD dataset, the
default FDR is 0.01. In GTEx, we used P < 0.001 as the threshold.
We found that 97 of the 132 regulatory SNPs were significantly
associated with gene expression in human brain (FDR < 0.05 in
CMC, FDR < 0.01 in LIBD and P < 0.001 in GTEx) (Supple-
mentary Data 4). Among the 132 regulatory SNPs, 58 showed
significant association with the expression of the same gene in at
least two independent eQTL datasets (Supplementary Table 5),
suggesting these genes are true targets of the identified regulatory
SNPs. Nevertheless, further functional assays (e.g., reporter gene
assays) are needed to validate if these genes represent true targets
of the identified regulatory SNPs. Of note, 29 regulatory SNPs
showed significant association with the expression of the same
gene in three independent brain eQTL datasets (e.g., rs1801311 is
significantly associated with FAM109B expression in all of the
three eQTL datasets) (Table 1), strongly suggesting that these
genes were regulated by these regulatory SNPs. Interestingly, we
noticed that six distinct regulatory SNPs (rs1801311, rs2269524,

Fig. 4 A single-nucleotide polymorphism (SNP; rs1801311) at schizophrenia risk locus 22q13.2 disrupts binding of three transcription factors (TFs). a SNP
rs1801311 is located in the binding motif of POLR2A, TAF1 and YY1 TFs, and disrupts occupied POLR2A, TAF1 and YY1 binding site in human brain tissues or
neuronal cell lines. Position weight matrices (PWMs) of corresponding TFs and the location of rs1801311 are shown (with red dotted box). b Genomic
region (1 kb) surrounding SNP rs1801311 is shown with three featured visualization tracks, including DNase-Seq signal (light blue), chromatin
immunoprecipitation and sequencing (ChIP-Seq) signal (green) for the selected TF and histone modifications (purple). The heights of the colored graphs
(in b) reflect the ChIP-Seq and DNase-Seq signal intensities, which were scaled from 0 to 50 (signal intensities larger than 50 were truncated and not
shown). The location of rs1801311 is highlighted with the dotted red line. c–e Reporter gene assays showed that the allelic differences at the rs1801311
influenced the luciferase activity significantly in HEK293 cells (c), SK-N-SH cells (d) and SH-SY5Y cells (e). Of note, the A allele of rs1801311 conferred a
significant higher activity compared with G allele in all three tested cell lines. Data represent mean ± SD; n= 8 for each group in c HEK293 cells; n= 16 for
each group in d SK-N-SH cells and e SH-SY5Y cells. ***P < 0.001, two-tailed Student’s t-test. Source data are provided as a Source Data file
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Fig. 5 Disruption of CTCF binding by risk single-nucleotide polymorphisms (SNPs; rs12912934 and rs16937). a SNP rs12912934 is located in CTCF binding
motif and disrupts occupied CTCF binding site. The matched position weight matrix (PWM) and the location of rs12912934 (red dotted line) are shown.
DNase-Seq and chromatin immunoprecipitation and sequencing (ChIP-Seq) experiments showed that rs12912934 is located in an actively transcribed
region, with strong DNase-Seq and ChIP-Seq signals. b–d Reporter gene assays revealed that the allelic differences at the rs12912934 affected the
luciferase activity significantly in SK-N-SH (c) and SH-SY5Y cells (d). e SNP rs16937 is located in CTCF binding motif, a region with strong ChIP-Seq signals
in brain tissues or neuronal cell lines. f–h Reporter gene assays showed that the allelic differences at the rs16937 influenced the luciferase activity
significantly in HEK293 (f) and SH-SY5Y cells (h). Data represent mean ± SD; n= 8 for each group in b, f (HEK293 cells) and c, g (SK-N-SH cells); n= 16
for each group in d, h (SH-SY5Y cells). NS, not significant, *P < 0.05, ***P < 0.001, two-tailed Student’s t-test. Source data are provided as a Source Data
file
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Fig. 6 Disruption of CTCF, USF1 and MAX1 binding by schizophrenia risk single-nucleotide polymorphisms (SNPs; rs7012106 and rs2270363). a SNP
rs7012106 is located in CTCF binding motif and disrupts occupied CTCF binding site. b–d Reporter gene assays showed that the construct containing G
allele exhibited significant higher luciferase activity compared with the construct containing the C allele in all three tested cell lines (b–d). e Disruption of
USF1 and MAX1 binding by SNP rs2270363. SNP rs2270363 is located in binding motif of USF1 and MAX1 and disrupts occupied USF1 and MAX1 binding
site. Genomic region (1 kb) surrounding SNP rs2270363 is shown with three featured visualization tracks, including DNase-Seq signal (light blue),
chromatin immunoprecipitation and sequencing (ChIP-Seq) signal (green) for the selected transcription factor (TF) and histone modifications (purple).
b–d Reporter gene assay showed that the construct containing A allele (of rs2270363) exhibited significant higher luciferase activity compared with the
construct containing the G allele in all three tested cell lines (f–h). Data represent mean ± SD; n= 8 for each group in b, f (HEK293 cells) and g (SK-N-SH
cells); n= 16 for each group in c (SK-N-SH cells) d, h (SH-SY5Y cells). **P < 0.01, ***P < 0.001, two-tailed Student’s t-test. Source data are provided as
a Source Data file
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Fig. 7 Disruption of USF1 and TCF12 binding by risk single-nucleotide polymorphisms (SNPs) rs7014953 and rs6992091. a SNP rs7014953 is located in
binding motif of USF1 and disrupts occupied USF1 binding site. The matched position weight matrix (PWM) and the location of rs7014953 (red dotted line)
are shown. DNase-Seq and chromatin immunoprecipitation and sequencing (ChIP-Seq) experiments showed that rs12912934 overlaps with DNase-Seq
and ChIP-Seq peaks, indicating that USF1 can bind to the genomic region containing rs12912934 in human brain tissues or neuronal cell lines. b, c Reporter
gene assay showed that the construct containing A allele (of rs7014953) exhibited significant higher luciferase activity compared with the construct
containing the C allele in SK-N-SH (b) and SH-SY5Y (c) cells. d SNP rs6992091 is located in the binding motif of TCF12 and disrupts occupied TCF12
binding site in human brain tissues or neuronal cell lines. Matched PWM of TCF12 and the location of rs6992091 are shown (with red dotted box).
Genomic region (1 kb) surrounding SNP rs6992091 is shown with three featured visualization tracks, including DNase-Seq signal (light blue), ChIP-Deq
signal (green) for TCF12 and histone modifications (purple). The location of rs6992091 is highlighted with the dotted red line. e, f Reporter gene assay
showed that the construct containing G allele (of rs6992091) exhibited significant higher luciferase activity compared with the construct containing the A
allele in SK-N-SH (b) and SH-SY5Y (c) cells. Data represent mean ± SD; n= 8 for each group in b (SK-N-SH cells) and n= 16 for each group in
c, f (SH-SY5Y cells) and e (SK-N-SH cells). ***P < 0.001, two-tailed Student’s t-test. Source data are provided as a Source Data file
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rs28633410, rs5751195, rs6002621 and rs8135801) showed sig-
nificant association with the expression of FAM109B gene (Sup-
plementary Table 5 and Table 1), indicating that these SNPs may
confer risk of schizophrenia through modulating FAM109B
expression. In addition to FAM109B, expression of other genes
(including TMEM81, EFTUD1P1, BDH2, RERE, CORO7, NAGA,
etc) also showed significant association with different regulatory

SNPs. Considering that these regulatory SNPs are located in DNA
binding motifs (with corresponding PWM match) and allelic
differences at these SNPs disrupt binding sites of TFs, the sig-
nificant associations between the regulatory SNPs and genes in
independent brain eQTL datasets strongly suggest that these
genes are true targets for the identified regulatory SNPs. Further
functional experiments (such as reporter gene assays and

Table 1 Association significance between the TF binding–disrupting SNPs and gene expression in human brain tissues

SNP Gene P (CMC) FDR (CMC) P (LIBD) FDR (LIBD) P (GTEx)

rs10795 GOLGA2P7 1.63E−17 6.37E−15 1.07E−09 1.88E−07 4.50E−13 (Cau)
rs12136320 TMEM81 2.97E−05 2.00E−03 9.91E−06 7.98E−04 1.10E−06 (Putamen)
rs12912934 GOLGA2P7 2.75E−28 2.91E−25 9.30E−19 4.52E−16 1.20E−24 (Cau)

EFTUD1P1 4.07E−13 9.63E−11 8.48E−07 8.84E−05 1.10E−05 (Hyp)
DNM1P51 9.84E−05 4.96E−03 5.54E−10 1.02E−07 2.50E−11 (Front Cor)

rs16937 TMEM81 1.06E−05 8.06E−04 3.64E−10 6.88E−08 9.70E−07 (Putamen)
RBBP5 1.16E−09 1.84E−07 1.53E−04 8.56E−03 2.70E−09 (NAc)

rs1801311 NAGA 4.06E−17 1.43E−14 4.46E−29 4.42E−26 5.70E−10 (Cere)
FAM109B 1.46E−06 1.34E−04 6.23E−17 2.58E−14 6.30E−06 (Cortex)

rs223390 LRRC37A15P 2.58E−13 4.55E−11 1.43E−04 8.10E−03 2.30E−09 (Cere Hemi)
rs2269524 NAGA 5.33E−18 2.03E−15 1.04E−26 8.81E−24 2.90E−09 (Cere)

FAM109B 1.02E−06 9.73E−05 7.35E−16 2.77E−13 5.80E−06 (Cortex)
rs2270363 CORO7 2.06E−10 5.06E−08 1.72E−17 7.46E−15 8.90E−13 (ACC)

NMRAL1 1.62E−10 4.05E−08 4.88E−16 1.87E−13 9.00E−41 (Cere Hemi)
CDIP1 3.05E−07 4.40E−05 1.43E−05 1.11E−03 5.10E−34 (Cere)

rs2304204 CPT1C 8.51E−14 2.55E−11 4.56E−05 3.05E−03 2.00E−05 (Cere)
rs2385395 CNPPD1 4.21E−06 3.11E−04 1.10E−06 1.12E−04 4.10E−11 (Spinal cord)
rs2711116 DFNA5 5.07E−04 1.88E−02 6.63E−08 8.62E−06 2.00E−07 (Cortex)
rs281759 FTCDNL1 2.98E−13 6.79E−11 3.92E−11 8.51E−09 2.00E−06 (Hyp)

TYW5 2.25E−09 3.07E−07 1.80E−06 1.74E−04 5.60E−09 (Cere Hemi)
rs2856268 RLBP1 2.58E−12 5.56E−10 1.28E−08 1.89E−06 6.50E−06 (Cortex)

POLG 5.20E−05 2.87E−03 4.47E−06 3.93E−04 7.20E−09 (Cere)
rs2974999 TOM1L2 6.61E−14 4.75E−12 1.20E−04 6.97E−03 2.90E−06 (Cere)
rs340836 PROX1−AS1 9.71E−06 7.46E−04 3.16E−07 3.60E−05 3.30E−07 (Cere)
rs3814880 INO80E 2.28E−13 7.83E−11 7.60E−29 7.44E−26 3.30E−10 (Cere)
rs3822346 PCDHA10 1.96E−14 4.50E−12 1.30E−13 3.86E−11 1.40E−11 (Front Cor)

PCDHA13 3.90E−19 1.49E−16 3.21E−14 1.02E−11 4.90E−10 (Cere Hemi)
PCDHA8 2.43E−18 8.29E−16 5.03E−32 5.90E−29 3.20E−07 (Cere Hemi)
PCDHA2 3.69E−08 3.96E−06 3.96E−06 3.53E−04 6.80E−08 (Cere)
PCDHA7 9.78E−20 4.04E−17 1.30E−14 4.29E−12 5.80E−09 (Spinal cord)

rs4786494 CORO7 2.78E−10 6.71E−08 2.57E−20 1.42E−17 3.10E−13 (ACC)
rs5751195 NAGA 6.64E−19 2.71E−16 1.49E−23 1.03E−20 1.80E−21 (Cere)

WBP2NL 2.05E−41 4.08E−38 7.53E−12 1.81E−09 2.70E−09 (ACC)
rs6002621 FAM109B 3.09E−06 2.67E−04 3.53E−15 1.24E−12 3.40E−06 (Cortex)

NAGA 2.19E−17 7.87E−15 1.87E−23 1.29E−20 2.60E−09 (Cere)
rs61660810 USP32P3 5.82E−10 3.21E−08 1.40E−04 7.96E−03 2.00E−06 (Cortex)
rs6992091 FAM86B3P 5.79E−29 5.69E−26 7.93E−29 7.76E−26 7.30E−10 (Front Cor)
rs7014953 FAM86B3P 2.19E−29 2.19E−26 1.01E−26 8.58E−24 3.10E−09 (Front Cor)
rs72748702 EFTUD1P1 7.36E−14 1.95E−11 2.07E−06 1.97E−04 1.40E−05 (Hyp)

DNM1P51 1.33E−04 6.41E−03 5.39E−09 8.46E−07 2.20E−11 (Front Cor)
GOLGA2P7 1.40E−27 1.40E−24 2.36E−18 1.11E−15 1.90E−24(Cau)

rs778593 PCDHA10 5.19E−10 7.48E−08 1.50E−12 3.93E−10 2.40E−08 (Front Cor)
PCDHA13 1.06E−12 2.08E−10 2.60E−10 5.03E−08 4.00E−06 (Cere)
PCDHA8 4.71E−14 1.04E−11 6.25E−21 3.61E−18 9.10E−06 (Cere Hemi)
ZMAT2 6.87E−10 9.75E−08 1.28E−08 1.90E−06 2.40E−06 (ACC)
WDR55 1.27E−04 6.37E−03 3.83E−05 2.62E−03 1.90E−06 (Cere)

rs78532287 USP32P3 4.48E−10 2.49E−08 9.14E−13 2.46E−10 5.60E−06 (NAc)
CCDC144C 6.20E−17 5.16E−15 2.90E−11 6.42E−09 1.70E−06 (Putamen)

rs796364 FTCDNL1 1.01E−13 2.46E−11 9.50E−09 1.44E−06 5.80E−07 (Hyp)
TYW5 1.28E−08 1.54E−06 1.99E−06 1.91E−04 2.50E−08 (Cere Hemi)

rs8135801 NAGA 1.14E−17 4.22E−15 6.67E−29 6.55E−26 5.10E−09 (Cere)
FAM109B 6.60E−07 6.55E−05 3.84E−17 1.62E−14 6.30E−06 (Cortex)

rs9362397 C6orf162 3.16E−21 1.01E−18 4.47E−25 3.42E−22 7.70E−17 (Cere)

Brain tissues from the dorsolateral prefrontal cortex (DLPFC) were used in CMC (N= 467) and LIBD brain eQTL browser (N= 412). Tissues from 8 brain regions were used in GTEx. Only SNPs that
showed significant association with the expression of the same gene in all three independent expression quantitative locus (eQTL) datasets are shown
TF transcription factor, SNP single-nucleotide polymorphism, CMC CommonMind Consortium, FDR false discovery rate, LIBD Lieber Institute for Brain Development, GTEx Genotype-Tissue Expression,
Front Cor frontal cortex, Cau caudate, ACC anterior cingulate cortex, NAc nucleus accumbens, Cere cerebellum, Hyp hypothalamus, Cere Hemi cerebellar hemisphere, Sub nig substantia nigra, NA not
available
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CRISPR/CAS9 (clustered regularly interspaced short palindromic
repeats/CRISPR-associated 9) experiments) are needed to verify if
these genes are regulated by these regulatory SNPs.

To identify all of the possible target genes of the regulatory
SNPs, we performed eQTL annotation (using CMC dataset) to
test the associations of the regulatory SNPs with all genes in close
physical proximity (e.g., ±2Mb). For each regulatory SNP (the TF
binding–disrupting SNPs are listed in Supplementary Data 3, a
total of 132 SNPs), we performed eQTL annotation through using
the genotype and expression data from the CMC dataset. The
eQTL analysis was conducted with PLINK (v1.9). The associa-
tions of the regulatory SNPs with all genes in close physical
proximity (e.g., ±2 Mb) are listed in Supplementary Data 5 (Of
note, only associations with a P < 0.01 are shown).

To explore if the identified regulatory SNPs were significantly
associated with gene expression than random SNPs, we
conducted 10,000 simulations (Methods). Compared with the
random SNPs, the identified regulatory SNPs showed significant
association with gene expression (Z= 14.23, P= 3.09 × 10−46,
Methods) (Supplementary Fig. 6), further supporting the
potential regulatory effect of the identified TF binding–disrupting
SNPs. Collectively, these results identified the potential target
genes of the identified TF binding–disrupting SNPs and suggested
that these regulatory SNPs may confer schizophrenia risk through
affecting the expression of their target genes.

Linkage disequilibrium analysis between the regulatory SNPs.
In some cases, we identified several TF binding–disrupting SNPs
at a single schizophrenia risk locus. For example, we identified 6
TF binding–disrupting SNPs (rs1801311, rs2269524, rs28633410,
rs5751195, rs6002621 and rs8135801) at 22q13.2. To investigate
the LD between the 132 TF binding–disrupting SNPs, we per-
formed LD analysis using SNiPA (a tool for annotating and
browsing genetic variants)49. We found that 40 TF
binding–disrupting SNPs showed LD (r2 > 0.3) with other TF
binding–disrupting SNPs in Europeans (Supplementary Table 6).
Of note, 8 TF binding–disrupting SNPs (rs10083370, rs2304206,
rs3773744, rs4759413, rs60754073, rs76514049, rs78866909 and
rs9616378) showed complete LD (i.e., r2= 1) with other TF
binding–disrupting SNPs (Supplementary Table 6). These LD
results indicate that some of the TF binding–disrupting were in
linkage disequilibrium with each other. However, considering
that all of these 132 SNPs disrupt binding of TFs, suggesting that
these 132 TF binding–disrupting SNPs may have functional
consequences. Thus, more work is needed to investigate if all of
the highly linked TF binding–disrupting SNPs or only some of
the highly linked TF binding–disrupting SNPs confer risk of
schizophrenia through affecting gene expression.

Allele-specific expression of the regulatory SNPs. Our eQTL
annotation showed that most of the identified regulatory SNPs
were associated with gene expression in brain tissues. To further
verify the cis regulatory effects of the identified TF
binding–disrupting SNPs, we extracted the allele-specific
expression (ASE) results of the identified TF binding–disrupting
SNPs from GTEx50. Of note, only very limited regulatory SNPs
were suitable for ASE analysis (as ASE analysis requires that the
analyzed SNP is heterozygous and expressed in the same indivi-
dual). We found that 10 TF binding–disrupting SNPs showed
significant (P < 0.001, Binomial test) allelic imbalance (i.e., allele-
specific expression) in human brain tissues (Fig. 8a–j). For
example, the C allele of SNP rs1321 was preferentially expressed
compared with the T allele (P= 2.84 × 10−4) (Fig. 8a), and G
allele of SNP rs16937 was preferentially expressed compared with
A allele (P= 8.19 × 10−5) (Fig. 8b). Of note, reporter gene assays

also showed that the G allele of rs16937 conferred a significant
higher expression activity compared with A allele in HEK293 and
SH-SY5Y cells (P < 0.01). These ASE results provide further evi-
dence that supports the regulatory effects of the identified TF
binding–disrupting SNPs.

Pathway analysis of the target genes. To explore if the target
genes (Supplementary Data 4) of the regulatory SNPs were
enriched in specific pathways, we carried out gene ontology (GO)
analysis using DAVID (Database for Annotation, Visualization
and Integrated Discovery)51. We found that two categories
(including “cell adhesion” and “nervous system development”)
were significantly enriched (P < 0.05, corrected by the
Benjamini–Hochberg procedure) among the target genes of the
regulatory SNPs (Supplementary Table 7). The over-
representation of nervous system development genes provides
further evidence that supports the neurodevelopmental hypoth-
esis of schizophrenia40.

Spatio-temporal expression pattern of target genes. We carried
out spatio-temporal expression pattern analysis using expression
data from the BrainSpan (http://www.brainspan.org/). Two
groups of target genes (i.e., genes listed in Supplementary Data 4
and Supplementary Table 5) were used for spatio-temporal
expression pattern analysis. Genes whose expression were asso-
ciated with regulatory SNPs in any eQTL dataset were listed in
Supplementary Data 4. However, genes whose expression are
associated with regulatory SNPs in at least two eQTL datasets are
listed in Supplementary Table 5. Thus, genes listed in Supple-
mentary Table 5 are a subset of genes listed in Supplementary
Data 4. Spatio-temporal expression pattern analysis was carried
out as previously described52. We found that the expression level
of the target genes in Supplementary Table 5 was significantly
higher than the background genes across all developmental stages
(P < 1.0 × 10−7, Wilcoxon rank sum test). Similarly, the expres-
sion level of the target genes in Supplementary Data 4 was also
significantly higher than the background genes across all devel-
opmental stages (P < 5.0 × 10−7) (Fig. 8k). In addition, we also
found that the expression level of the target genes was higher in
prenatal stage compared with postnatal stage (P= 0.001 for gene
set in Supplementary Table 5 and P= 0.008 for gene set in
Supplementary Data 4) (Fig. 8k), suggesting that the target genes
may play a role in brain development.

Cell type-specific expression analysis of target genes. To explore
the expression pattern of the target genes of the identified reg-
ulatory SNPs in different brain cell types, we extracted the spe-
cificity value of each target gene in 24 cell types defined by Skene
et al.53. We found that three cell types contained more than 6
target genes at the specificity cutoff of 0.1 (i.e., specificity score
>0.1), with pyramidal cells having the most number of target
genes (Fig. 8l). This result is consistent with previous findings53

and provides further support for the involvement of pyramidal
cells in schizophrenia.

In conclusion, we used two complementary approaches
(functional annotation and functional genomics) to systematically
annotate the GWAS significant schizophrenia risk loci (Supple-
mentary Fig. 7). The functional annotation prioritized 153
overlapping top functional SNPs and 66 of the 153 prioritized
functional SNPs were associated with gene expression in human
brains. Reporter gene assays were conducted for 10 prioritized
functional SNPs and 7 SNPs showed significant allelic effects on
reporter gene activity. In addition, we derived binding motifs of
30 TFs through integrating ChIP-Seq experiments from brain
tissues (or neuronal cells) and PWMs. We mapped the potential
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Fig. 8 Allele-specific expression analysis results and expression pattern of target genes. a–j Ten transcription factor (TF) binding–disrupting single-
nucleotide polymorphisms (SNPs) showed significant (Binomial P < 0.001) allele-specific expression (allelic imbalance) in human brain tissues from the
GTEx. For each SNP, the counts of the reference allele and the alternative allele are shown. Of note, reporter gene assays also support that different alleles
at rs1801311 and rs16937 conferred significant differences in luciferase activity, further supporting the regulatory effect of rs1801311 and rs16937.
k Expression pattern of target genes of the identified regulatory SNPs across different developmental stages. The target genes of the identified regulatory
SNPs showed a significant higher expression level compared with background genes (P < 1.0 × 10−7 for gene set in Supplementary Table 5, and P < 5.0 × 10
−7 for gene set in Supplementary Data 4). In addition, we also found that the expression level of the target genes was higher in prenatal stage compared
with postnatal stage (P= 0.001 for gene set in Supplementary Table 5, and P= 0.008 for gene set in Supplementary Data 4). The gray line represents the
expression level of the background genes, the pink line represents the expression level of target genes listed in Supplementary Table 5, and the light blue
line represents the expression level of target genes listed in Supplementary Data 4. l Cell type-specific expression analysis of the target genes of the
identified regulatory SNPs. Target genes with a specificity score >0.1 were extracted and the number of targets genes with a specificity score >0.1 were
plotted. Of note, the pyramidal cells have the most number of target genes, suggesting that the expression of target genes were enriched in pyramidal cells.
Source data are provided as a Source Data file
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causal risk SNPs (a total of 23,400) from three schizophrenia
GWASs to the derived binding motifs and identified 132 SNPs
(from 81 schizophrenia risk loci) that disrupted binding of 21
distinct TFs. We found that 97 out of the 132 TF
binding–disrupting SNPs were significantly associated with gene
expression in human brain tissues. Finally, regulatory effects of 9
TF binding–disrupting SNPs were validated by reporter gene
assays (Supplementary Fig. 7). Our study identified the plausible
causal variants for schizophrenia and revealed the gene regulatory
mechanisms affected by schizophrenia risk SNPs (including
widespread disruption of POLR2A and CTCF binding). In
addition, our study also identified the potential target genes of
the TF binding–disrupting risk SNPs. It is likely that the
identified TF binding–disrupting risk SNPs exert their effects
on schizophrenia through modulating the expression level of
these target genes.

Discussion
In the past decade, significant advances have been made in
understanding the genetic basis of schizophrenia. Since O’Do-
novan et al.2 reported the first genome-wide significant risk locus
(near ZNF804A) for schizophrenia in 2008, numerous novel risk
loci have been identified. Despite the fact that over 180 schizo-
phrenia risk loci have been identified by GWAS12–14, pinpointing
the causal (or functional) variants at the risk loci and elucidating
their roles in schizophrenia susceptibility remain major chal-
lenges in psychiatric genetics. In this study, we conducted sys-
tematic and deep analyses to identify the potential causal variants
and to investigate how these causal variants confer schizophrenia
risk. We first prioritized the most possible functional SNP at each
risk locus by using the well-characterized functional annotation
approaches. We then identified 132 risk SNPs that disrupted
binding of 21 distinct TFs through integrating Chip-Seq and
PWMs. We validated the regulatory effects of some identified
functional SNPs with reporter gene assays and allele-specific
expression analysis. We further identified the potential target
genes of the regulatory SNPs. Finally, we showed that nervous
system development genes were significantly enriched among the
target genes of the identified regulatory SNPs.

Our study has important implications for elucidating the
genetic mechanisms of schizophrenia. First, through integrating
the diverse data sources from functional genomics, we translated
the association findings from schizophrenia GWAS into genetic
and gene regulatory mechanisms. With the rapid increase in
sample size, novel schizophrenia risk variants have been identified
at the unprecedented rate. By contrast, identification of causal (or
functional) variants and genes lags far behind. Our post-GWAS
functional genomics analyses linked the identified risk loci with
specific variants and genes, thus providing a starting point for
further mechanistic and functional investigation. Second, we
systematically identified the causal (or functional) variants and
investigated the potential gene regulatory mechanisms at all of the
genome-wide significant risk loci. Though previous studies have
identified some causal variants (or genes) at several risk loci19,54,
large-scale identification of causal variants and characterization of
gene regulation at the reported risk loci remain major challenges.
Through analyzing the functional genomics data with bioinfor-
matic methods, for the first time, we conducted a systematic and
deep analysis to investigate the gene regulatory mechanisms at all
of the reported schizophrenia risk loci. Third, our study identified
132 TF binding–disrupting SNPs. These SNPs disrupt binding
sites of multiple TFs, thus representing the most plausible causal
SNPs. We furthermore verified the regulatory effects of some TF
binding–disrupting SNPs using reporter gene assays and allele-
specific expression analysis. Fourth, our study revealed new gene

regulatory mechanisms affected by schizophrenia risk SNPs,
including widespread disruption of POLR2A and CTCF binding.
Fifth, we identified the potential target genes of the TF
binding–disrupting SNPs through eQTL annotation (boxplots of
brain eQTLs results (only SNPs listed in Supplementary Table 5
were plotted) are shown in Supplementary Data 6). It is likely that
the TF binding–disrupting SNPs confer schizophrenia risk
through modulating the expression of these target genes. Finally,
this study provides an example to illuminate the gene regulatory
mechanisms underpinning other psychiatric disorders (such as
major depressive disorder and bipolar disorder). Most of risk
variants identified by GWAS are located in non-coding regions,
suggesting the identified risk variants confer schizophrenia risk
through modulating gene expression. Currently, pinpointing the
causal variant remains a daunting task as each risk locus usually
contains multiple variants that show similar association sig-
nificance (due to LD). By annotating all of the variants at each
locus with functional genomics data, our study provides an
example for identifying potential causal variants. This method
can be applied to other psychiatric disorders.

Of note, we used two complementary methods (i.e., functional
annotation and functional genomics, see Fig. 1) to prioritize or
identify the potential functional (or causal) variants at the
reported schizophrenia risk loci. We compared the potential
functional SNPs identified by these two approaches (i.e., func-
tional annotation and functional genomics) and found 6 over-
lapping functional SNPs (Supplementary Table 8 and
Supplementary Fig. 8). The reasons why only 6 overlapping
functional SNPs were identified by these two approaches are
discussed in the Supplementary Discussion.

We compared the target genes of the identified TF
binding–disrupting SNPs with previous findings from Gusev
et al.55 and found 44 overlapping genes (Supplementary Table 9
and Supplementary Fig. 9). These overlapping genes may repre-
sent promising candidates for schizophrenia as these genes were
prioritized by two different methods. In addition, the significant
enrichment of nervous system development-related genes among
the target genes of the TF binding–disrupting SNPs provides
further support for the neurodevelopmental hypothesis of
schizophrenia39,40,56. More detailed discussion about the neuro-
developmental hypothesis of schizophrenia is provided in the
Supplementary Discussion.

We noticed that CTCF binding was frequently disrupted by the
schizophrenia risk SNPs, suggesting that disruption of CTCF
binding may represent a common mechanism that schizophrenia
risk SNPs exert their effect on schizophrenia. Interestingly, pre-
vious genetic studies also suggested that CTCF may have a role in
schizophrenia57,58. More detailed information about the potential
role of CTCF in SCZ is provided in Supplementary Discussion.

Binding of CTCF and POLR2A were frequently disrupted by
schizophrenia risk SNPs. This may be due to the possibility that
CTCF and POLR2A have more binding sites (on the genome)
than other TFs. To test if disruption of CTCF and POLR2A were
random, we conducted additional analyses. We found that the
number of POLR2A binding–disrupting SNPs observed in this
study were significantly higher than random SNPs (P= 0.013,
1000 simulations, Supplementary Fig. 10a), suggesting that the
frequent disruption of POLR2A binding by schizophrenia risk
SNPs may not be due to random effect. However, the number of
CTCF binding–disrupting SNPs (observed in this study) were not
significantly different from random SNPs (P > 0.05, 1000 simula-
tions, Supplementary Fig. 10b), implying that the frequent dis-
ruption of CTCF by schizophrenia risk SNPs may be due to
random effect.

There are several limitations in this study. First, we only used
ChIP-Seq experiments from brain tissues (or neuronal cells) in
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this study. Considering the fact that most ChIP-Seq experiments
in ENCODE were performed in non-brain tissues, only limited
TFs (i.e., 34) were included in this study. Therefore, risk SNPs
that disrupt binding of other TFs could not be identified in this
study. Second, potential target genes of 97 TF binding–disrupting
SNPs were identified using eQTL annotation. Nevertheless, in
most cases, the identified TF binding–disrupting SNP is asso-
ciated with the expression of several genes. It remains largely
unknown if all of the target genes or only a specific target gene
have a role in schizophrenia. Third, considering that the reporter
gene assays are relatively labor consuming and time costing, we
only tested 19 identified functional SNPs (10 SNPs from func-
tional annotation and 9 SNPs from functional genomics). Thus,
only a small proportion of the 132 TF binding–disrupting SNPs
were verified with reporter gene assays. Fourth, though we
identified several potential causal risk variants in this study, we
still do not know how this kind of genetic controls of gene
expression confer schizophrenia risk. It is likely these identified
risk variants confer schizophrenia risk through affecting gene
expression (i.e., these identified SNPs affect the expression level of
target genes, and the change of target gene expression may play a
pivotal role in schizophrenia pathogenesis). However, more work
is needed to further demonstrate how this kind of genetic controls
of gene expression confer schizophrenia risk.

In summary, we generated the landscape of the plausible causal
variants in schizophrenia for the first time and revealed the gene
regulatory mechanisms affected by schizophrenia risk SNPs. Our
study provides new insights into the genetic mechanisms of
schizophrenia. Further mechanistic investigation and functional
characterization of the identified causal variants and genes will
help us understand the pathogenesis of schizophrenia.

Methods
Schizophrenia GWAS and potential causal SNPs. Genetic associations from
three large-scale GWASs12–14 were used in this study. The first GWAS was from
PGC. PGC performed a large-scale GWAS of schizophrenia (PGC2 release) and
identified 128 genome-wide significant (GWS) regions (spanning 108 independent
loci)12. For each of the GWS regions, an index SNP was defined (usually the most
significant SNP) and a potential causal set of SNPs were identified. There is a 99%
possibility that the causal variants were included in the defined potential causal set
of SNPs. In addition to the 128 genome-wide significant regions, PGC2 also
identified 141 genomic regions that showed suggestive associations (P < 1.0 × 10−6)
with schizophrenia. Potential causal SNPs were also identified for these 141 sug-
gestive regions. A total of 20,374 potential causal variants (including SNPs,
insertions and deletions) from 125 GWS regions (three GWS regions on X chro-
mosome were not included in this study, as potential causal SNPs were not defined
by PGC2 for these three regions) and 141 suggestive risk regions were identified by
PGC2. As we focused on SNPs, we excluded insertions and deletions. A total of
18,707 potential causal SNPs from PGC2 were retained for further analysis. More
detailed information about the definition and identification of potential causal
SNPs can be found in the original paper12. The second GWAS was from a recent
study of Li et al.13 Li et al.13 first conducted a GWAS in Chinese population (7699
cases and 18,327 controls). They then carried out a meta-analysis (43,175 cases and
65,166 controls) through combining the associations from Chinese population and
PGC2. Finally, they performed replication study using an independent Chinese
sample (4384 cases and 5770 controls). Through integrating the results from above
three stages, they identified 30 novel schizophrenia risk loci. We extracted the SNPs
that were in LD with the index SNPs (r2 > 0.3) using genotype data (379 European
individuals) from the 1000 Genomes Project (Phase I data, phase1_v3.20101123).
PLINK32 was used to calculate the LD values (r2) between the index SNPs and
nearby SNPs with following parameters: –ld-window-kb 1000, –ld-window 100000,
–ld-window-r2 0.3. A total of 4794 SNPs (in LD with the 31 index SNPs) were
identified. The third GWAS was from the study of Pardinas et al.14 who identified
50 novel schizophrenia risk loci through using 40,675 cases and 64,643 controls.
Pardinas et al.14 used FINEMAP26 to identify the potential causal SNPs and they
identified 1799 potential causal SNPs for the 50 newly identified risk loci. As some
of the potential causal SNPs from above three GWASs were overlapping, we
removed the overlapping SNPs (Supplementary Fig. 11). A total of 23,400 non-
overlapping SNPs were included in this study. To identify the most possible causal
(or functional) SNPs at each of the GWAS risk loci, the potential causal SNPs from
above three GWASs were subjected to deep bioinformatic and functional genomics
analyses in this study.

Prioritization of functional SNPs using different annotation approaches. To
prioritize the most possible functional SNPs at each of the risk loci, we used five
well-characterized functional annotation tools, including CADD27, Eigen29,
GWAVA28, LINSIGHT31 and RegulomeDB30. CADD uses evolutionary con-
servation information and data from ENCODE44 to annotate and identify the
possible causal or pathogenic variants. The scores of CADD range from 0 to 99.
Eigen utilizes an unsupervised spectral approach to score the potential functional
variants. The scores of Eigen range from −4.2 to 175.4. GWAVA annotates
functional variants through using a wide range of data from genomic and epige-
nomic annotations, including open chromatin, TF binding, histone modification,
conservation CpG islands and so on. The scores of GWAVA range from 0 to 1.
LINSIGHT predicts the functional variants through combining functional genomic
data with molecular evolution model. The scores of LINSIGHT range from 0 to 1.
RegulomeDB annotates functional variants using a variety data from ENCODE,
including ChIP-Seq, FAIRE, DNase I hypersensitive sites and eQTL data. The
ratings of RegulomeDB range from 1 to 6. For CADD, Eigen, GWAVA and
LINSIGHT, the larger the score, the higher probability that the SNP is functional.
Therefore, the SNP with the highest score was defined as top functional SNP. For
RegulomeDB, smaller rating suggests higher probability that the SNP is functional.
Thus, the SNP with the smallest rating was defined as top functional SNP. As two
prioritization strategies (CADD, Eigen, GWAVA and LINSIGHT use scores and
RegulomeDB uses rating) were used by the functional annotation approaches, we
defined the overlapping top functional SNPs as follows: (1) if a SNP has the highest
score in at least two scoring annotation methods (CADD, Eigen, GWAVA and
LINSIGHT), this SNP was defined as the top functional SNP; (2) assuming a SNP
(e.g., SNP X) has the highest score in at least one scoring annotation method
(CADD, Eigen, GWAVA and LINSIGHT), if this SNP also has the smallest rating
in RegulomeDB, this SNP was defined as overlapping top functional SNP. Of note,
as our goal is to identify the most possible functional SNP at each risk locus, we did
not compare the scores of the top functional SNPs from different loci. More
detailed information about these annotation approaches can be found in previous
publications27–31.

Regulatory SNP annotation using functional genomics. We downloaded ChIP-
Seq data of 34 TFs from the ENCODE44 (http://www.encodeproject.org). As
schizophrenia is a mental disorder that mainly originates from dysfunction of
brain, only ChIP-Seq experiments performed in human brain tissues or neuronal
cells (including neuronal cell lines) were included. The detailed information about
the TFs and ChIP-Seq experiments can be found in the Supplementary Table 4. We
annotated regulatory SNPs as previously described38. Briefly, FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc) was used to check the quality of the
raw and processed reads. Btrim59 was used for quality control and filtering of the
raw reads (with parameters “-a 20 -l 20”). We used cutadapt60 to filter the over-
represented sequences (including adaptors, primers and other sequences). The
processed ChIP-Seq reads were then mapped to the human reference genome
(GRCh37/hg19, which was used throughout all analyses) and bowtie61 was used to
perform alignment (with the parameters “-n 2 -e 70 -m 2 -k 2”). Peak calling was
performed using MACS62, with following parameters: “–keep-dup=1 -f BAM -w -S
–call-subpeaks -g hs”. For control experiments, if there were biological replicates,
we chose the control experiment with the largest size of bam file. For ChIP-Seq
experiments, if there were biological replicates, we combined the bam files and
conducted peaks calling. The called peaks were then used for PWM identification.

To obtain DNA binding motifs (PWMs) enriched in the genomic sequences
surrounding ChIP-Seq peaks, we utilized MEME45 to run motif discovery on the
sequences ±20 bp from the top 500 peaks (ranked by peak height), with parameters
“-nmotifs 5 -minw 6 -maxw 20”, and the background model was a 0-order Markov
model. We compared the peaks with the corresponding control sample and filtered
peaks with FDR > 5%. As a result, 30 TFs have peaks with FDR ≤ 5% (CHD2, IRF3,
RCOR1 and USF2 were excluded due to limited or no peaks). To model the
binding specificity of TFs, Whitington et al.38 compiled a PWMs database that
contains 7699 PWMs, including PWMs from the JASPAR, Uniprobe, Hi-SELEX
and ChIP-Seq data. We compared the identified DNA binding motifs (PWMs)
(derived from the ChIP-Seq experiments) with the PWMs in PWM database38, and
the matched PWMs (usually, the MOTIF1) (the most statistically significant, E-
value of which is the smallest, motifs with small E-values are very unlikely to be
random sequence artifacts) were used to annotate if the potential causal SNPs
disrupted binding of TFs.

Potential causal SNPs that resided within ±50 bp of all ChIP-Seq peak summits
(with a FDR ≤ 0.05) were identified and FIMO46 was used to scan the occurrences
of a given PWM within the genomic sequence overlapping a given SNP (with the
parameter “–thresh 0.001”). We extracted the sequence ±20 bp from each potential
causal SNP (both or more alleles) and scored every genomic position in which the
SNP position overlapped the PWM by at least one base-pair. Both strands (with the
reference allele and alternative allele) were considered. If one or more alleles of a
SNP had a FIMO LLR (log-likelihood ratio) P < 1 × 10−3, the SNP was defined to
disrupt the PWM. More information about FIMO can be found in the original
paper46 and FIMO website (http://mccb.umassmed.edu/meme/doc/fimo.html).

DNase-Seq and histone modification data. The DNase-Seq data were down-
loaded from the UCSC genome browser (http://hgdownload.cse.ucsc.edu/
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goldenPath/hg19/encodeDCC/wgEncodeUwDnase/). Neuronal cells used for
DNase-Seq were BE2C, HAc, SK-N-MC and SK-N-SH. Histone modification data
were downloaded from ENCODE. Histone modifications, including H3K4me1,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3 and H3K36me3 were from
the middle frontal area 46.

Brain eQTL annotation. To identify the potential target genes regulated by the
identified regulatory SNPs, we examined three brain eQTL databases, including
CMC35, LIBD brain eQTL browser (http://eqtl.brainseq.org/phase1/eqtl/)33 and
GTEx34. To identify the genes that were differentially expressed in schizophrenia
cases and controls, CMC collected brain tissues (dorsolateral prefrontal cortex
(DLPFC)) of 258 schizophrenia cases and 279 controls35. Gene expression was
determined using RNA sequencing and genotyping was performed with the Illu-
mina Infinium HumanOmniExpressExome array. After stringent quality control,
expression and genotype data from 467 subjects were used to perform eQTL
analysis (utilizing an additive linear model implemented in MatrixEQTL). We used
the eQTL data from these 467 individuals to explore if the regulatory SNPs were
associated with gene expression in human brain. More detailed information about
the sample collection, DNA and RNA extraction, gene expression quantification,
genotyping, quality control and statistical analyses can be found in previous
study35. The GTEx (Genotype-Tissue Expression) collected multiple tissues from
healthy subjects. A total of 13 brain tissues (sample size ranges from 80 to 154)
were included in the GTEx (Supplementary Table 3). Gene expression was
quantified with RNA sequencing and genotyping was performed using Illumina
OMNI 5M SNP Array. FastQTL was used to perform the eQTL analysis with
following covariates, top 3 genotyping principal components, Genotyping array
platform and sex. In addition, covariates identified by the probabilistic estimation
of expression residuals (PEER) method were also included. We used brain eQTL
data in this study. More information about the GTEx can be found in previous
studies34,50 and the GTEx website (https://gtexportal.org/home/). The LIBD eQTL
browser (http://eqtl.brainseq.org/phase1/eqtl/)33 contains brain expression data
(from the DLPFC, quantified with RNA sequencing) and genotype data of
412 subjects (including 175 schizophrenia cases and 237 controls). Five levels of
expression (including gene, exon, junction, transcript and expressed region) were
quantified and only gene-level eQTLs were used in this study. The additive genetic
effect model was used to test if a SNP was associated with the expression level of a
gene, with adjusting for sex, ancestry, and expression heterogeneity.

Distribution of random SNPs. We first downloaded the PGC2 GWAS SNPs (a
total of 8,624,491 SNPs with rs ID) from PGC2 website (https://www.med.unc.edu/
pgc/results-and-downloads/). We then randomly sampled 186 SNPs from the
PGC2 GWAS SNPs each time. We sampled 1000 times in total and SNPs sampled
from these 1000 times were used for genomic location annotation. We used
ANNOVAR47 to annotate the genomic location of the sampled SNPs.

Simulations. We performed simulations to test if the 132 TF binding–disrupting
SNPs were significantly associated with gene expression in human brain compared
with random SNPs. Briefly, we randomly selected 132 SNPs (the number of SNPs
equals to the identified TF binding–disrupting SNPs, and the minor allele fre-
quencies of the random SNPs were matched to the 132 TF binding–disrupting
SNPs) from PGC2 SNP list (9,444,230 SNPs in total) and calculated the number of
the SNPs that showed significant association with gene expression in CMC eQTL
results (FDR < 0.05). We conducted 10,000 simulations and calculated the mean
and standard deviation of the 10,000 simulations. The significance level of our
observation (i.e., 87 out of 132 SNPs were significantly associated with gene
expression in CMC (FDR < 0.05)) were measured by Z value as follow: Z=
(87–mean of the 10,000 simulations)/standard deviation of the 10,000 simulations.
Z value were converted into P value with R command pnorm (-abs(Z)).

LD analysis between the 132 TF binding–disrupting SNPs. LD analysis between
the 132 TF binding–disrupting SNPs was performed using SNiPA49. We used
default settings of SNiPA (i.e., Genome assembly:GRCh37; variant set:1000 Gen-
ome, Phase 3 v5; population: Europeans) to calculate the LD values between the
132 TF binding–disrupting SNPs. More detailed information about SNiPA can be
found in the original paper49 and the SNiPA website (http://snipa.helmholtz-
muenchen.de/snipa3/).

Validation of the eQTL results with allele-specific expression analysis. We
verified the eQTL associations using ASE data from the GTEx (phs000424.v7.p2)50.
The GTEx contains genotypes data and expression data (quantified with RNA
sequencing) from 714 subjects and 53 tissues. As we focused on brain tissues, we
only extracted the ASE results from brain tissues. Binomial tests were used to
determine if the ratio of the two alleles was significantly different from the
expectation50 and regulatory SNPs with a binomial P < 0.001 were extracted
(regulatory SNPs that showed allele-specific expression (or allelic imbalance) were
defined at binomial P < 0.001 threshold). More information on ASE analysis can be
found in the original paper50 and GTEx website (https://gtexportal.org/home/).

Cell culture. All of the cell lines used in this study were purchased from the
Kunming Cell Bank, Chinese Academy of Sciences (these cell lines were originally
obtained from the ATCC). HEK293 cells were cultured in high-glucose Dulbecco's
Modified Eagle's medium (DMEM; C11995500BT, Gibco) containing 10% fetal
bovine serum (FBS; 10091148, Gibco), penicillin and streptomycin (100 U/ml))
(10378016, Gibco). SK-N-SH and SH-SY5Y cells were cultured in high-glucose
DMEM (C12430500BT, Gibco) supplemented with 10% FBS, 10 mM sodium
pyruvate solution (11360070, Gibco), 1× Minimum Essential Medium non-
essential amino acid solution (11140050, Gibco), penicillin and streptomycin (100
U/ml). The antibiotics were withdrawn 48 h before performing assays and all cells
were cultured at 37 °C with 5% CO2 and 95% air. No mycoplasma contamination
was found for the cell lines used in this study.

Vector construction. The DNA sequence (length ranges from ~300 to 700 bp)
containing the test SNP was amplified using primers (Supplementary Table 10)
linked with homologous arms (which were identical with the sequence (located at
the multiple clone sites) of pGL3-promoter vectors) (Supplementary Fig. 12) and
PCR products were purified with DNA Purification Kit (DP209, TIANGEN). We
digested pGL3-Promoter vector (E1761, Promega) and pGL4.11 vector (E6661,
Promega) with KpnI (FD0524, FastDigest) and XhoI (FD0694, FastDigest), and the
digestion products were purified with DNA Purification Kit. Then the purified
DNA fragments containing the test SNP were inserted into the pGL3-Promoter
vector using the TreliefTM SoSoo Cloning Kit (TSV-S1, TSINGKE). As SNP
rs2270363 is located in promoter region, we inserted the DNA fragments con-
taining rs2270363 into the pGL4.11, which is a basic vector with no promoter. The
ligated vectors were then used to transform DH5α competent cells (Takara). LB
plates (with the selectable marker, ampicillin) were used to select the transformed
cells and recombinant plasmids were extracted from the transformed cells grown
from single colony. PCR-mediated point mutation technique was used to generate
the DNA fragments containing the alternative allele of this test SNP. All sequences
of the inserted DNA fragments were verified using Sanger sequencing.

Cell transfection and dual-luciferase reporter gene assays. The constructed
vector (contained the test SNP) (150 ng for 96-well plate and 500 ng for 24-well
plate) and internal control plasmid pRL-TK (E2241, Promega) (30 ng for 96-well
plate and 50 ng for 24-well plate) were co-transfected into the tested cell lines.
HEK293 cells were transfected with the PEI method63, and SK-N-SH and SH-SY5Y
cells were transfected using the Lipofectamine 3000 (L3000-015, Invitrogen),
according to the manufacturer’s instructions. For SK-N-SH and SH-SY5Y cells,
dual-Luciferase reporter gene assays were performed in a 96-well white plate
containing 150 µl medium at 2 × 105 cells/ml. For HEK293 cells, reporter gene
assays were performed in a 24-well white plate containing 500 µl medium at 5 ×
105 cells/ml. After 48 h post transfection, Luminoskan Ascent instrument (Thermo
Scientific) was used to measure the luciferase activity with the Dual-Luciferase
Reporter Assay System (E1960, Promega). All of the experiments were performed
according to the instructions recommended by the manufacturer. The luciferase
activity data were obtained from at least eight replicate wells. Two-tailed Student’s
t-test was used to compare if the difference was significant and the significance
threshold was set at P < 0.05.

Gene Ontology analysis. GO analysis was performed using DAVID (v6.8)51.
Three GO terms (including biological process (GOTERM_BP_DIRECT), molecular
function (GOTERM_MF_DIRECT) and cellular component (GOTERM_CC_-
DIRECT)) were used to test if specific categories or pathways were enriched among
the target genes of the identified regulatory SNPs. The significance (P value) of the
overrepresented GO terms was corrected by the Benjamini–Hochberg procedure.

Spatio-temporal expression pattern analysis. Spatio-temporal expression pat-
tern analysis was conducted as previously described52,64. Briefly, expression data
from different developmental stages of human brain were downloaded from the
BrainSpan (http://www.brainspan.org/). The expression level of each gene was
quantified (expressed as RPKM (read per kilobase per million)) with RNA
sequencing. For a specific development stage, the median expression level of all
genes in a gene set (target genes was treat as a gene set in this study) was used to
represent the expression level of the gene set at this stage. Three gene sets (genes in
Supplementary Table 5, Supplementary Data 4, and background genes) were used
in this study. Background genes were extracted from a previous study65. Wilcoxon
rank sum test (implemented in R software (v3.5.0)) was used to compare if the
expression level of target genes and background genes was statistically significantly
different.

Cell type-specific expression analysis of target genes. Cell type-specific
expression data were extracted from the study of Skene et al.53. Skene et al.53

performed cell type-specific expression analysis using single cell sequencing from
mouse brain (a total of 9790 cells from different brain regions, including neocortex,
striatum, midbrain, hippocampus, etc) and they calculated the specificity (higher
specificity of a gene suggests the expression of this gene is enriched in a specific cell
type, i.e., this gene is specifically expressed) value of each gene in each cell type. We
extracted the specificity value of the target genes of the identified regulatory SNPs
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and counted the genes with a specificity value >0.10. Detailed information about
the single cell sequencing and calculation of the specificity can be found in the
study of Skene et al.53.

Comparison of the number of binding sites of TFs. Frequent disruption of CTCF
and POLR2A binding (by schizophrenia risk SNPs) was observed in our study. A
possible explanation for this observation is that CTCF and POLR2A have more
binding sites on the genome than other TFs. Thus, the number of SNPs that disrupt
CTCF and POLR2A binding were accordingly larger compared to other TFs. To
test if POLR2A and CTCF have more binding sites on the genome, we performed
additional analyses. We first identified ChIP-Seq peaks of each TF (as described in
previous section). We identified 8447 SNPs that disrupted binding of 30 TFs (these
30 TFs were used in this study) through mapping a total of 968,903 SNPs (from the
Illumina HumanOmni1-Quad, only SNPs with rs id were retained) to the identified
ChIP-Seq peaks (the identification of TF binding–disrupting SNPs was described in
more detail above). We then randomly sampled 132 SNPs (the number of SNPs
equals to the identified TF binding–disrupting SNPs in this study) from the 8447
TF binding–disrupting SNPs and counted the number of SNPs that disrupted the
binding of each TF. We conducted 1000 simulations and calculated the mean and
standard deviation of the 1000 simulations. We plotted the distribution of the
number of TF binding–disrupting SNP using ggplot2 package (implemented in R
Software). In addition, we also compared the number of motifs (appear on the
genome) of the 30 TFs through counting the identified ChIP-Seq peaks of each TF.

URLs. For SZDB, see http://www.szdb.org/; for PGC2, see http://www.med.unc.
edu/pgc/; for CADD, see http://cadd.gs.washington.edu/; for GWAVA, see https://
www.sanger.ac.uk/sanger/StatGen_Gwava; for Eigen, see http://www.columbia.
edu/~ii2135/eigen.html; for LINSIGHT, see https://github.com/CshlSiepelLab/
LINSIGHT; for RegulomeDB, see http://www.regulomedb.org/; for CMC, see
http://www.synapse.org/CMC; for GTEx, see https://gtexportal.org/home/; for
LIBD brain eQTL browser, see http://eqtl.brainseq.org/phase1/eqtl/; for ENCODE,
see https://www.encodeproject.org/; for BrainSpan, see http://www.brainspan.org/;
for MEME, see http://meme-suite.org/tools/meme; for FIMO, see http://meme-
suite.org/tools/fimo; for MACS, see http://liulab.dfci.harvard.edu/MACS/; for
Bowtie, see http://bowtie-bio.sourceforge.net/index.shtml; for FastQC, see http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/; for Cutadapt, see https://
cutadapt.readthedocs.io/en/stable/index.html; for The 1000 Genomes Project, see
http://www.1000genomes.org/; for PLINK, see http://zzz.bwh.harvard.edu/plink/;
for SNiPA, see http://snipa.helmholtz-muenchen.de/snipa3/.

Data availability
The PWM, ChIP-Seq, DNase-Seq and histone modification data of the 132 TF
binding–disrupting SNPs can be accessed and visualized at SZDB database25 (http://
www.szdb.org/). The source data underlying Figs. 2b, 4c–e, 5b–d, f–h, 6b–d, f–h, 7b, c, e,
f and 8a–j and Supplementary Figs. 4b–d and 5b–d are provided as a Source Data file.
The rest of the data (including custom code and plasmids) are available from the
corresponding author upon request.
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