
molecules

Review

Anti-TNF-α Compounds as a Treatment for Depression

Sarit Uzzan 1 and Abed N. Azab 1,2,*

����������
�������

Citation: Uzzan, S.; Azab, A.N.

Anti-TNF-α Compounds as a

Treatment for Depression. Molecules

2021, 26, 2368. https://doi.org/

10.3390/molecules26082368

Academic Editor:

Diego Muñoz-Torrero

Received: 22 March 2021

Accepted: 17 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Clinical Biochemistry and Pharmacology, School for Community Health Professions—Faculty
of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
sarituzzan@gmail.com

2 Department of Nursing, School for Community Health Professions—Faculty of Health Sciences,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel

* Correspondence: azab@bgu.ac.il; Tel.: +972-8-6479880; Fax: +972-8-6477683

Abstract: Millions of people around the world suffer from psychiatric illnesses, causing unbearable
burden and immense distress to patients and their families. Accumulating evidence suggests
that inflammation may contribute to the pathophysiology of psychiatric disorders such as major
depression and bipolar disorder. Copious studies have consistently shown that patients with mood
disorders have increased levels of plasma tumor necrosis factor (TNF)-α. Given these findings,
selective anti-TNF-α compounds were tested as a potential therapeutic strategy for mood disorders.
This mini-review summarizes the results of studies that examined the mood-modulating effects of
anti-TNF-α drugs.
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1. Mood Disorders

Millions of people around the world suffer from psychiatric illnesses, causing unbear-
able burden and immense distress to patients and their families [1]. Moreover, psychiatric
disorders are associated with extensive financial costs to patients, the health care system
and society in general [2,3]. Patients with mood disorders such as bipolar disorder and
depressive disorders are of a higher likelihood to suffer from suicidal death and various
comorbidities, leading to increased mortality rates in comparison to matched-healthy sub-
jects [4–6]. The lifetime prevalence of bipolar disorder in the general population is between
0.7–1.5% [7,8] and that of depressive disorders is between 10–20% [1,9]. These estimations
likely depict only a fraction of the true numbers, suggesting that there are presumably
myriads of concealed and undiagnosed cases, and acknowledges that there is societal and
cultural variance in recognition and interpretation of psychiatric symptoms [1,10].

Bipolar disorder is recognized as one of the most complex and difficult-to-treat psy-
chiatric illnesses. Patients with bipolar disorder suffer alternating periods of mania and
depression [11,12]. Mania is characterized by euphoric mood, impaired judgment, hyperac-
tivity and excitement, increased erotic thoughts and engagement in sexual activity, among
other features [11,12].

Depression is a rampant and devastating mental disorder [1,9], and is more prevalent
in women than in men [1]. Melancholy is the primary feature/manifestation of depres-
sion [13–16]. Patients with depression may have alternative or accompanying symptoms
including anxiety, low self-esteem, changes in appetite, social isolation, diminished interest
in hedonic activities, insomnia or hypersomnia, and suicidal thoughts and/or attempts,
among others [13–16]. Expectedly, the severity of symptoms and duration of depressive
episodes vary significantly and, understandably, depressive episodes can impact even the
most basic aspects of patients’ lives. Occasionally, depression presents without a known
triggering cause. However, sometimes a prominent emotional stimulus, such as a death of
a close relative, precedes the inception of depression.
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The most widely used treatment strategy for bipolar disorder is pharmacother-
apy [11,12,17]. Other approaches include electroconvulsive therapy [18,19] and cognitive
behavioral therapy [20]. Similarly, pharmacotherapy, psychotherapy and electroconvulsive
therapy are the three most frequently used treatments for depressive disorders [17,18,21–24].
Among these, pharmacotherapy is the most common and it includes a wide variety of med-
ications [23,24]. The treatment of depressive disorders is dictated by a number of factors
including: (i) risk of suicide, (ii) the patient’s ability to understand and follow instruc-
tions (adherence to treatment), (iii) level of supportive resources, (iv) level of encountered
stressors, and, (v) level of functional impairment [17,24].

The availability of abundant and diverse medication options available for the treat-
ment of mood disorders notwithstanding, a high proportion of patients present a poor
response to treatment [11,12,14,17,22–24]. Moreover, many patients suffer a plethora of
unpleasant side effects (some of which may be severe and irreversible) further encouraging
poor compliance to treatment [11,12,14,17,22–27]. These limitations accentuate the necessity
for new treatment strategies for mood disorders in an effort to supply hope for additional
sub-groups of patients.

2. Tumor Necrosis Factor (TNF)-α

TNF-α is a multi-functional cytokine which plays central roles in numerous physi-
ological as well as pathological processes in mammals [28–31]. It was recognized early
on for its ability to induce necrosis of tumor cells [32], but was subsequently associated
with plentiful biological functions [28–31]. TNF-α is synthetized and secreted mainly by
macrophages though several cell types (including glia cells and neurons in the brain) are
capable of producing it [28–35]. Newly synthesized TNF-α localizes in cell membrane until
it undergoes proteolytic cleavage by TNF-α-converting enzyme, which releases the soluble
form of the protein [36,37] (see Figure 1 for illustration). Both the transmembrane and the
soluble form of the protein are biologically active—binding to and activating TNF receptor
1 (TNFR1) as well as TNFR2 [30,31,38,39] (Figure 1). TNFR1 and TNFR2 share some similar
functions (e.g., advancement of immune defense mechanisms, induction of inflammation,
and promotion of cell proliferation and survival) but, they also have distinct, sometimes
opposite, biological activities [30,31,38,39]. Principally, TNFR1 is connected to pathological
processes such as inflammation, apoptosis and necrosis, while TNFR2 is mostly linked to
physiological responses such as host defense, tissue repair and regeneration [30,31,38,39].
However, delineating these receptors with distinctive pathological versus physiological
tasks would be an over-simplification of a more complex biological reality.

Thorough research has indicated TNF-α to be mostly linked to immune and inflam-
matory functions [30,31]. It has also been associated with cancer pathophysiology [29].
It is involved in various immune and inflammatory responses (usually acting as a pro-
inflammatory mediator) contributing to host defense [30,31,38,39]. Under certain condi-
tions, TNF-α facilitates apoptosis and cell death especially in cancer cells [29–31,38,39].
Nevertheless, and despite its common association with pathological conditions, TNF-α
plays a crucial role in numerous physiological processes, particularly in the central nervous
system (CNS—the brain and the spinal cord) [28,39]. For example, in the brain, TNF-α has
a direct impact on neuronal function and survival, regulating production and secretion of
neurotransmitters, controlling synaptic transmission, and contributing to myelin synthesis
and preservation [28,39–45]. TNF-α was found to increase the permeability of the blood-
brain barrier (BBB) which is accompanied by depressive behavior [46–48]. Dysfunction
of the BBB hastens the penetration of inflammatory mediators and peripheral immune
cells into the CNS leading to behavioral abnormalities and mood disorders [49,50]. Thus,
taking into account the various crucial functions of TNF-α, it is expected that disrup-
tion of its activity would cause profound biological consequences, including alteration of
neurological function.
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Figure 1. TNF-α and TNF-α Receptors. Transmembrane TNF-α (mTNF-α) undergoes proteolytic cleavage by TNF-α-
converting enzyme (TACE) which generates the soluble form of the protein (sTNF-α). Both mTNF-α and sTNF-α are
biologically active; they bind to and activate TNF receptor (TNFR) 1 and TNFR2. Arrows indicate that mTNF-α is also
capable of activating TNFR1 and TNFR2.

3. Brain Inflammation, TNF-α and Mood Disorders

The CNS consists of two main types of cells: neurons and glia cells [33,34]. There
are three types of glia cells: astrocytes, microglia, and oligodendrocytes [33,34]. The role
of microglia cells in the CNS is comparable to that of macrophages in peripheral tissues.
Astrocytes have important immune-inflammatory roles, and support the function and
survival of neurons [33,34,51]. Oligodendrocytes produce myelin, the insulating substance
that surrounds nerve cell axons. Microglia and astrocytes are involved in various neuro-
inflammatory processes and are associated with numerous CNS pathologies [28,34,35,51–54].
Despite the presence of the BBB, the activity of the “peripheral” immune system still man-
ages to impact the CNS. It has been consistently recognized that illnesses associated with
systemic inflammation (e.g., rheumatoid arthritis and coronary artery disease) frequently
present with behavioral abnormalities and symptoms of depression. Systemic inflamma-
tory responses to infectious agents affect brain function and, in turn, evoke significant
changes in behavior [54]. This association has revealed itself to be more than just a specula-
tion, as even early studies suggested that dysregulation of the immune system may lead
to depression [55,56]. Subsequently, many studies reported that immune-dysregulation
and inflammation contribute to the pathophysiology of mood disorders. It was found that
patients with depression had elevated levels of pro-inflammatory markers [57–70], while
levels of anti-inflammatory mediators were either comparable [71,72] or lower [73] than
those in control subjects. Bipolar patients were also reported to have abnormal levels of
various inflammatory mediators [59,72,74–85]. In particular, numerous studies reported
that TNF-α levels are elevated in patients with major depression [56,59–62,69,70,86] and
bipolar disorder [59,72,74–76,78–85]. Abnormalities in TNF-α levels have been shown to
influence the severity of psychiatric symptoms and response to treatment. For example, a
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recent study showed that elevated baseline plasma TNF-α levels in patients with major
depression may predict a better improvement in intensity of suicidal thoughts [86]. Pa-
tients with bipolar disorder [87] and depression [88] were reported to have altered levels
of TNFR1 and TNFR2, respectively. Interestingly, the latter two studies [87,88] did not
demonstrate abnormal TNF-α levels among their population. However, despite the large
body of data attesting for alterations in inflammatory mediator levels among patients with
mood disorders, some studies reported opposite findings [80,85].

Furthermore, the “inflammation hypothesis” of mood disorders was strengthened by
data that showed that psychotropic drugs possess anti-inflammatory effects. Antidepres-
sants, mood stabilizers and antipsychotic drugs were reported to have anti-inflammatory
effects which may contribute to their therapeutic efficacy [67,70,89–107]. For example, Li
et al. [98] reported that the mood stabilizer lithium reduced levels of TNF-α in patients
with acute manic episodes. Valproate, another mood stabilizer, reduced the secretion of
interleukin (IL)-6 and TNF-α production in vitro [108]. Similarly, various antidepressants
were found to have potent anti-inflammatory effects [68,70,99,109,110]. This outcome is
exemplified by the selective serotonin reuptake inhibitor fluoxetine which significantly
decreased plasma IL-6 levels in patients with acute depression [111]. Antipsychotic drugs
also exhibited anti-inflammatory effects [89,93,94,102,104,106]. This response can be seen
in second generation antipsychotic drugs that decreased lipopolysaccharide-induced syn-
thesis of IL-6 and TNF-α and increased the levels of the anti-inflammatory cytokine IL-10
in mice [102]. In contrast to these findings, some studies showed that psychotropic drugs
exhibit pro-inflammatory effects in certain circumstances [64,89,104,107,112–116].

Additional support for the inflammation hypothesis of mood disorders came from
studies that showed that treatment with various anti-inflammatory/immune-modulating
drugs reduced symptom severity and improved conditions of patients with mood dis-
orders [58,117–123]. Mainly, selective cyclooxygenase-2 inhibitors (e.g., celecoxib) were
found beneficial as add-on therapy to psychotropic drugs in patients with mood disor-
ders [58,120]. Nevertheless, here too, studies published negative findings regarding the
effectiveness of anti-inflammatory/immune-modulating medications as a treatment for
mood disorders [124,125]. Among the various anti-inflammatory drugs that have been
explored as a potential treatment for mood disorders, selective TNF-α antagonists were
given special attention. The following section summarizes the mood-modulating effects of
clinically used anti-TNF-α compounds.

4. Anti-TNF-α as a Treatment for Mood Disorders

As summarized above, a large body of data suggested that out of the inflammatory
mediators that have been linked to the pathophysiology of mood disorders, TNF-α in
particular exhibited a seemingly significant role [56–59,69–71,78,80,84,86,90,126]. This was
the basis for investigating the mood-modulating effects of selective anti-TNF-α compounds.
Several selective anti-TNF-α compounds were developed and introduced for clinical use,
typically for the treatment of immune-inflammation-related disorders such as rheumatoid
arthritis, ankylosing spondylitis, psoriasis, inflammatory bowel diseases (e.g., Crohn’s dis-
ease), and hidradenitis suppurativa, among others [30,127–140]. The following paragraphs
summarize the results of studies that tested the mood-modulating effects of anti-TNF-α
compounds.

4.1. Search Strategy

The search strategy was based on surveying the following electronic databases for
inclusive criteria: PubMed, Web of Science, and Google Scholar, for English language
papers published in peer-reviewed journals reporting on the use of anti-TNF-a compounds
in subjects with mood disorders. The customized search was restricted to the years 1990
(the year when the first report on the anti-TNF-a activity and beneficial therapeutic ef-
fects of infliximab was published [141]) to 2020. The search field contained the name of
each compound, including: infliximab, etanercept, onercept, adalimumab, golimumab,
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humicade, certolizumab pegol, and pentoxifylline; together with each of the following
keywords: depression, melancholia, depressive disorder, mania, bipolar disorder, manic-
depressive illness. The search strategy resulted in many hits that were irrelevant to the
purpose of the article. On the other hand, no relevant papers reporting on the effects of
onercept, golimumab, humicade and certolizumab pegol in subjects with mood disorders
were found. We included most relevant papers reporting on animal studies and almost all
papers reporting on studies conducted in human subjects, because the latter were the main
focus of the manuscript.

4.2. Infliximab

Infliximab is a chimeric TNF-α-specific neutralizing monoclonal antibody consisting
of a human IgG Fc region and a murine Fv region (see Figure 2 for illustration). It is recog-
nized as a potent selective TNF-α antagonist with powerful neutralizing effects against
soluble TNF-α and, to a lesser extent, on transmembrane TNF-α [133,142–144]. Infliximab
is capable of binding to both monomeric and trimeric forms of soluble TNF-α. Each in-
fliximab molecule can bind to two TNF-α molecules, while a single TNF-α homotrimer
can bind to up to three infliximab molecules [133,142–144]. Infliximab is administered
intravenously and thus has a maximized (100%) bioavailability; it has a low clearance rate
(~11 mL/hour) and a plasma half-life of nearly 8–10 days [133,143]. Infliximab has been
used for the treatment of various rheumatoid and inflammatory-associated diseases such
as rheumatoid arthritis, psoriasis, ankylosing spondylitis, and Crohn’s disease, among
others [30,133]. Several studies examined the effects of infliximab on depressive symptoms
among patients with Crohn’s disease [134,135] and ankylosing spondylitis [136,145,146]
revealing encouraging results. Animal studies also demonstrated an antidepressant-like
effect for infliximab [147,148]. Raison et al. [149] evaluated the antidepressant effect of
infliximab in patients with treatment-resistant depression. Sixty patients were randomly
allocated to receive either infliximab (n = 30) or a placebo (n = 30). Infliximab showed
a significant therapeutic effect—mitigated depressive symptoms—but only in patients
who had increased levels of inflammatory markers [149]. Consistent with these results,
a recent meta-analysis study which evaluated the antidepressant efficacy of infliximab
revealed that it was effective exclusively in patients with elevated levels of inflammatory
markers such TNF-α and C-reactive protein [150]. The efficacy of infliximab was also
tested in patients with bipolar depression [151–154]. McIntyre et al. [151] conducted a
randomized, double-blind, placebo-controlled trial in which 29 patients were treated with
infliximab and 31 patients with a placebo. Twelve weeks of infliximab treatment did not
cause a significant reduction in severity of depressive symptoms. Only in a sub-group of
patients with a history of childhood physical abuse infliximab (as compared to the placebo)
led to a significant depletion in depressive symptoms [151]. Lee et al. [152] conducted
a randomized, double-blind trial of adjunctive treatment with infliximab (together with
standard pharmacotherapy) and a placebo for 12 weeks in patients with bipolar depression.
They reported a significant improvement in a measure of anhedonia in infliximab-treated
patients; however, the positive effect was short-lived and did not show sustainable positive
results, dissipating within six weeks after the final infusion of the drug. Mansur et al. also
reported positive therapeutic effects of infliximab on depressive symptoms [153] and cog-
nitive function [154] in patients with bipolar depression. A recent study by the same group
of investigators also demonstrated beneficial effects of infliximab on bipolar patients [155].
In a 12-week, randomized, double-blind trial, infliximab treatment was associated with a
significant decrease in prefrontal levels of glutamate and a cognitive improvement in pa-
tients with bipolar depression [155]. Together, these findings (see summary of the findings
in Table 1) suggest that infliximab produces antidepressant effects in particular sub-groups
of depressive patients.
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Figure 2. TNF-α Antagonists. Clinically used selective TNF-α antagonists include recombinant TNF-α-specific monoclonal
antibodies such as infliximab and adalimumab, and recombinant fusion proteins of TNFR such as etanercept which is a
TNFR2 fusion protein. Pentoxifylline is a methylxanthine drug which exerts several pharmacological effects including
potent inhibition of TNF-α activity (i.e., it is not a selective TNF-α antagonist). Abbreviations: ECD—extracellular domain,
Fc—fragment crystallizable region, Fv—variable fragment, IgG—immunoglobulin G, TNFR2 – TNF-α receptor 2.

4.3. Etanercept

Etanercept is a human recombinant fusion protein of TNFR2 that neutralizes/inhibits
TNF-α activity [30] (Figure 2). It is regarded as a less powerful TNF-α antagonist when
compared to infliximab, but similarly to infliximab, it has a much stronger antagonizing
effect against soluble TNF-α than transmembrane TNF-α [133,142–144]. Etanercept binds
only to the trimeric form of soluble TNF-α and each etanercept molecule is capable of
binding to one TNF-α molecule [133,142–144]. Etanercept is administered subcutaneously
and has a bioavailability of nearly 75%; it has a relatively high but varying clearance
rate (80–240 mL/hour) and a plasma half-life of 3–5.5 days [133,143]. Early pre-clinical
studies showed that etanercept reduced depressive-like behavior in rats [156,157]. More
recently, a study in rats showed that etanercept significantly decreased depressive-like
behavior and improved cognitive function [158]. Similarly, a study in mice showed that
etanercept exerted a potent antidepressant-like effect and an anxiolytic-like effect [159].
In line with these pre-clinical results, etanercept was found to significantly decrease the
severity of fatigue, depression and anxiety symptoms among patients with psoriasis
(Table 1) [137,138,160,161]. Moreover, non-randomized trials showed that addition of
etanercept to standard therapy significantly reduced depressive and anxiety symptoms
among patients with psoriasis [162–164] and rheumatoid arthritis [165,166]. For example,
a prospective cohort study by Yang et al. [167] demonstrated that addition of etanercept to
standard treatment was associated with a sustained significant reduction in depression and
anxiety symptoms in psoriasis patients. In contrast to these findings, a study in patients
with rheumatoid arthritis found that addition of etanercept to methotrexate (an immune-
modulating drug) did not significantly improve depressive and anxiety symptoms [139].
Collectively, these results suggest that etanercept exhibits antidepressant and anxiolytic
effects at least in some sub-groups of patients.
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4.4. Adalimumab

Adalimumab is another human TNF-α-specific neutralizing monoclonal antibody
(Figure 2). It has similar pharmacokinetic properties to infliximab. Each adalimumab
molecule can bind to two TNF-α molecules, while a single TNF-α homotrimer can bind to
up to three adalimumab molecules [133,142–144]. Adalimumab is administered subcuta-
neously and has a bioavailability of nearly 65%; it has a low clearance rate (~12 mL/hour)
and a long but variable plasma half-life ranging from 10 to 20 days [133,143]. Random-
ized and non-randomized clinical trials showed that adalimumab exerts antidepressant
and anxiolytic effects when administered to patients with chronic physical illnesses such
as Crohn’s disease [140], psoriasis [128,129,168–170] and hidradenitis suppurativa [130]
(Table 1). To the best of our knowledge, the mood-modulating effects of adalimumab have
not been directly tested in psychiatric patients with mood disorders.

4.5. Pentoxifylline

Pentoxifylline is a methylxanthine drug (Figure 2) that for many years has been used
for the treatment of different clinical conditions such as peripheral vascular disease [171,172],
idiopathic and ischemic cardiomyopathy [173–175], coronary artery disease [176], chronic
kidney disease [177], alcoholic hepatitis [178], among other illnesses [171,179,180]. Pentoxi-
fylline is administered orally and has a relatively high bioavailability, depending on the used
formulation [160]. It has a low binding rate to plasma proteins (minimizing the chance for
drug-drug interactions) and distributes vastly throughout body tissues, extending to the brain.
Pentoxifylline undergoes extensive metabolism (mainly through reduction and oxidation)
and has a short plasma half-life ranging between 1 to 4 h, again, depending on the used
formulation [160]. The therapeutic efficacy of pentoxifylline in the treatment of peripheral
vascular disease seems to be derived from its ability to improve the deformability of red
blood cells, decrease blood fibrinogen levels and inhibit platelet aggregation [172]. Moreover,
pentoxifylline inhibits the enzyme phosphodiesterase [181]. In the context of the present
article, pentoxifylline is recognized as a potent inhibitor of TNF-α [173–177,179,181–186].
Numerous studies showed that pentoxifylline inhibits the production of TNF-α in vitro and
in vivo (in animals and humans) [173–177,179,181–186]. Thus, pentoxifylline is regarded as a
strong non-selective TNF-α inhibitor (as it exerts other pharmacological properties).

Owing to the large body of data which linked TNF-α to the pathophysiology of de-
pression, many pre-clinical studies have investigated the antidepressant potential of pentoxi-
fylline [182,183,187]. Bah et al. [187] demonstrated that pentoxifylline exerted antidepressant-
like effects in rats that were subjected to an experimental model of myocardial infarction.
Pentoxifylline significantly increased sucrose preference and significantly decreased immobility
time (both indicative of an antidepressant-like effect) in the forced swim test in post-infarction
rats [187]. Mohamed et al. [182] observed that treatment with pentoxifylline for three weeks
significantly increased sucrose preference in rats that were subjected to a chronic mild stress
protocol. The chronic mild stress paradigm is used to induce depressive-like phenotypes in
animals. Another study showed that pentoxifylline significantly decreased immobility time
in rats that were exposed both to an inflammatory stimulus (lipopolysaccharide) and chronic
mild stress [183]. Collectively, these studies [182,183,187] (among others) demonstrated that
pentoxifylline has strong antidepressant-like effects in various behavioral models including
the sucrose preference test and the forced swim test [182,183,187]. Consistent with these posi-
tive pre-clinical results, a randomized, double-blind, placebo-controlled clinical trial showed
that adjunctive pentoxifylline treatment was associated with a significant anti-depressive ef-
fect [188]. Addition of pentoxifylline (400 mg/day) to escitalopram (20 mg/day) for 12 weeks
significantly reduced depressive symptoms in patients with major depression [188]. Moreover,
pentoxifylline caused a significant decrease in plasma TNF-α and IL-6 levels (suggestive of a po-
tent anti-inflammatory effect) and a significant increase in plasma serotonin and brain-derived
neurotrophic factor levels (suggestive of favorable behavioral/neuroprotective biochemical
effects) [188]. These encouraging findings underscore the need for more randomized trials of
pentoxifylline in patients with mood disorders.
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Table 1. Summary of clinical trials reporting on the mood-modulating effects of anti-TNF-α compounds in patients with various disease conditions.

Compound Study Design Sample Size (Total) Disease Condition Type of Comparison
(Follow-Up Duration) * Effect of Treatment Ref.

Infliximab

Prospective,
non-randomized trial n = 100

Crohn’s disease

All patients were treated with
infliximab + standard therapy

(4 weeks)

Significant decrease in the
proportion of depressed patients [134]

Prospective,
non-randomized trial n = 14

All patients were treated with
infliximab + standard therapy

(4 weeks)

Significant reduction in
depressive symptoms [135]

Prospective,
non-randomized trial n = 29

Ankylosing spondylitis

All patients were treated with
three doses of infliximab +
standard therapy (6 weeks)

Significant reduction in
depressive symptoms [136]

Randomized,
placebo-controlled trial n = 23

Standard therapy + placebo vs.
standard therapy + infliximab,

followed by infliximab-only
treatment (54 weeks)

Significant reduction in
depressive symptoms [146]

Randomized, double-blind,
placebo-controlled trial n = 60

Major depressive disorder
(treatment-resistant)

Antidepressant(s) or medication
free + placebo vs.

antidepressant(s) or medication
free + infliximab (12 weeks)

Overall, no significant difference
between groups. Infliximab

significantly decreased depressive
symptoms in a sub-group of
patients with high baseline

CRP levels

[149]

Systematic review
and meta-analysis of four

randomized controlled trials
n = 152 Standard therapy + placebo vs.

standard therapy + infliximab

Adjunctive infliximab treatment
did not have a significant effect on

depressive symptoms
[150]

Randomized, double-blind,
placebo-controlled trial n = 60

Bipolar depression with
higher inflammatory activity

Standard therapy + placebo vs.
standard therapy + infliximab

(12 weeks)

No significant difference between
groups. Infliximab significantly
decreased depressive symptoms
in a sub-group of patients with a

history of childhood
physical abuse

[151]

Randomized, double-blind,
placebo-controlled trial n = 60

Standard therapy + placebo vs.
standard therapy + infliximab

(12 weeks)

Adjunctive infliximab treatment
led to a significant although

transient anti-anhedonic effect
[152]
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Table 1. Cont.

Compound Study Design Sample Size (Total) Disease Condition Type of Comparison
(Follow-Up Duration) * Effect of Treatment Ref.

Infliximab

Randomized, double-blind,
placebo-controlled trial n = 55

Bipolar depression

Standard therapy + placebo vs.
standard therapy + infliximab

(12 weeks)

Significant reduction in
depressive symptoms [153]

Randomized, double-blind,
placebo-controlled trial n = 60

Standard therapy + placebo vs.
standard therapy + infliximab

(12 weeks)

Significant improvement in
cognitive function
(verbal memory)

[154]

Randomized, double-blind,
placebo-controlled trial n = 33

Standard therapy + placebo vs.
standard therapy + infliximab

(12 weeks)

Significant improvement in
cognitive function but no

significant effect on
depressive symptoms

[155]

Etanercept

Randomized, double-blind,
placebo-controlled trial

(phase 3)
n = 618

Psoriasis

Standard therapy + placebo vs.
standard therapy + etanercept

(12 weeks)

Significant decrease in depressive
symptoms [137]

Prospective open-labeled
trial (open-phase continuum

of the study reported in
reference # 137)

n = 591 Standard therapy + etanercept
(84 weeks)

A sustained significant decrease
in depressive symptoms

[138]

Randomized, double-blind,
placebo-controlled trial n = 121

Standard therapy + placebo vs.
standard therapy + etanercept

(24 weeks)

Significant decrease in depressive
symptoms [160]

Prospective,
non-randomized trial n = 85 Standard therapy + etanercept

(24 weeks)
Significant reduction in

depression and anxiety symptoms [161]

Prospective,
non-randomized

(open-labeled) trial
n = 2546

Standard therapy + etanercept
given in two regimens—continues

vs. interrupted (24 weeks)

Etanercept treatment (both
regiments) led to a significant

decrease in depressive symptoms
[162]

Prospective,
non-randomized

(open-labeled) trial
n = 711

Standard therapy + etanercept
given in two regimens—continues

vs. interrupted (54 weeks)

Etanercept treatment (both
regiments) led to a significant
improvement in depressive

symptoms

[163]

Part 1: A randomized,
double-blind, dose-adjusted

trial; Part 2:
Open-labeled trial

n = 752
Standard therapy + etanercept

given in various regimens
(24 weeks)

Significant reduction in
depression and anxiety symptoms [164]
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Table 1. Cont.

Compound Study Design Sample Size (Total) Disease Condition Type of Comparison
(Follow-Up Duration) * Effect of Treatment Ref.

Adalimumab

Randomized, double-blind,
placebo-controlled trial

(phase 3)
n = 499 Crohn’s disease

Standard therapy + adalimumab
given in various regimens

(56 weeks)

Significant decrease in
depressive symptoms [140]

Randomized, double-blind,
placebo-controlled trial n = 96

Psoriasis

Standard therapy + placebo vs.
standard therapy + adalimumab

(12 weeks)

Significant decrease in
depressive symptoms [128]

Prospective,
non-randomized trial n = 143 Standard therapy + adalimumab

(24 weeks)
Significant reduction in

depression and anxiety symptoms [129]

Randomized, double-blind,
placebo-controlled trial n = 828

Standard therapy + placebo vs.
standard therapy + adalimumab

(16 weeks)

Significant decrease in
depressive symptoms [168]

Prospective,
non-randomized trial n = 32 Standard therapy + adalimumab

(24 weeks)
Significant decrease in
depressive symptoms [169]

Randomized, double-blind,
placebo-controlled trial

(phase 3)
n = 992

Standard therapy + placebo vs.
standard therapy + adalimumab

(and vs. standard therapy +
guselkumab) (24 weeks)

Adalimumab significantly
decreased depression and

anxiety symptoms
[170]

Randomized, double-blind,
placebo-controlled trial

(phase 2)
n = 154 Hidradenitis suppurativa

Standard therapy + placebo vs.
standard therapy + adalimumab

(16 weeks)

Adalimumab significantly
decreased depressive symptoms

in patients with high baseline
pain score

[130]

Pentoxifylline Randomized, double-blind,
placebo-controlled trial n = 100 Major depressive disorder

Escitalopram + placebo vs.
escitalopram + pentoxifylline

(12 weeks)

Significant decrease in
depressive symptoms [188]

* Type of comparison and follow-up duration are indicated in the table only if they were clearly mentioned in the reporting article. CRP denotes C-reactive protein.
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5. Summary

Several clinical trials attested for the antidepressant efficacy of anti-TNF-α compounds
(in patients with medical illnesses, major depression, or bipolar depression) [70]. Selec-
tive TNF-α antagonists such as infliximab and etanercept showed favorable neurologi-
cal/antidepressant effects in specific sub-groups of patients. However, it is important to
emphasize that most of the available data regarding the antidepressant effects of selective
TNF-α antagonists is derived from studies in non-psychiatric patients (i.e., patients with
inflammatory-associated diseases who presented depressive symptoms). Moreover, some
evidence suggests that there is no connection between anti-TNF-α therapy and improve-
ment in mood symptoms [139,150,151]. Therefore, new randomized, placebo-controlled
clinical trials are necessary for direct examination of the mood-modulating effects of TNF-α
antagonists in patients with mood disorders. In this regard, recently, concerns have been
raised regarding the efficacy of selective TNF-α antagonists as a therapeutic strategy for
mood disorders [139,151,189,190]. It is important to mention that most clinically available
anti-TNF-α compounds possess low-to-null ability to cross the BBB, mainly due to their
large molecular weight [191–193]. This suggests that the reported beneficial behavioral
(antidepressant) effects of these compounds are derived from peripheral inhibition of TNF-
α activity rather than a direct effect on the brain. Potent peripheral inhibition of TNF-α
activity may be sufficient for diminishing brain inflammation. Therefore, it is important
to continue studying the therapeutic mechanism of action and effectiveness of selective
TNF-α antagonists as a treatment for mood disorders.
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