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Abstract: Neuroblastoma is the most common extracranial solid malignancy in early childhood.
Optimal management of neuroblastoma depends on many factors, including histopathological
classification. Although histopathology study is considered the gold standard for classification of
neuroblastoma histological images, computers can help to extract many more features some of which
may not be recognizable by human eyes. This paper, proposes a combination of Scale Invariant
Feature Transform with feature encoding algorithm to extract highly discriminative features. Then,
distinctive image features are classified by Support Vector Machine classifier into five clinically
relevant classes. The advantage of our model is extracting features which are more robust to scale
variation compared to the Patched Completed Local Binary Pattern and Completed Local Binary
Pattern methods. We gathered a database of 1043 histologic images of neuroblastic tumours classified
into five subtypes. Our approach identified features that outperformed the state-of-the-art on both
our neuroblastoma dataset and a benchmark breast cancer dataset. Our method shows promise for
classification of neuroblastoma histological images.

Keywords: neuroblastoma; histological images; Scale Invariant Feature Transform (SIFT); feature
encoding

1. Introduction

Neuroblastoma represents 8% of all malignancies in infants [1] and is the most common
extracranial solid malignancy in childhood [2]. More than 15% of paediatric cancer deaths are the result
of neuroblastoma [3]. Optimal management of neuroblastoma depends on many factors, one of which
is the histopathological classification which is performed by pathologists using optical microscope
to classify neuroblastic tumours of stained tissue sections. Pathologists use an optical microscope
and classify neuroblastic tumours by examining thin slices of tissue on a glass slide. Pathologists
commonly use the Shimada system [4] to classify neuroblastic tumours. Neuroblastic tumours are a
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heterogeneous group with complex features. A pathologist examines all the tissue with the microscope
at low power magnification, and examines specific regions of the tissue at high power magnification.
The classification of the neuroblastoma is based on the combination of these representative regions.
However, it may be misleading for heterogeneous tumours [5]. Histopathologic classification is
currently considered as the gold standard. Computer Aided Diagnosis (CAD) systems have the
potential to augment and be complementary to human capability and may find new relationships
which humans cannot detect [6]. Mohammad et al. [7] identified chronic lymphocytic leukemia
using segmentation. They used the watershed technique to extract nucleus and cytoplasm mask.
Sharma et al. [8] segmented nuclei in histological images based on intensity and morphological
features. Zhang et al. [9] extracted features of breast cancer histological images using the combination
of curvelet transform, Gray Level Co-occurrence Matrix (GLCM), and Completed Local Binary Pattern
(CLBP) to classify them into cancer and non-cancer images. Spanhol et al. [10] extracted six different
feature vectors from histological images of breast cancer in four magnification scales and classified
them with four different classifiers. They used CLBP, LBP, Local Phase Quantization (LPQ), GLCM,
Parameter-Free Threshold Adjacency Statistics (PFTAS), Oriented Fast and Rotated Brief (ORB) as the
feature extractors. They classified the extracted features using 1-NN, Quadratic Discriminant Analysis
(QDA), SVM and Random Forests (RF). They achieved accuracy ranges from 80% to 85%.

Moreover, CAD system is a promising tool to facilitate the classification of histological images
of neuroblastic tumours with high throughput. So, there is an interest in developing approaches
for computer assisted classification of neuroblastoma histological images. Research efforts on the
classification of neuroblastoma histological images are divided into two groups: segmentation methods
and feature extraction methods. Segmentation methods rely on morphological features such as size
and shape of different cells. Kong et al. [11] classified neuroblastoma histological images by analyzing
the whole slide images. They designed a multi-resolution approach to segment the histological images
of neuroblastoma at each resolution level into cellular, neuropil and background. Finally, the system
classified histological images of neuroblastoma into undifferentiated, poorly-differentiated, and
differentiating tumour using k-nearest neighbor (k-NN) and Support Vector Machine (SVM) classifiers.
Previous work from our group [12] applied a thresholding technique to neuroblastoma histological
images to segment the regions of interest into undifferentiated and poorly-differentiated. However,
inherent diversity of the appearance and size of the different cells in neuroblastoma histological
images which belong to the same category makes their classification based on the segmentation
more challenging.

Feature extraction methods on the other hand can extract diagnostic clues that might not be
recognized by human eyes. A few feature extraction methods have been proposed for classification
of neuroblastoma histological images which are based on the Local Binary Pattern (LBP) [13].
Sertel et al. [5] classified whole digitized slide haematoxylin and eosin (H&E) stained neuroblastoma
tissue samples into stroma rich and stroma poor. The proposed algorithm is based on the extracted
features using co-occurrence statistics and LBP. Previously, we [14] applied Patch Completed Local
Binary Pattern (PCLBP) as a feature extractor on local patches and classified neuroblastoma histological
images into five different classes using SVM classifier. All of the aforementioned feature extraction
methods in classification of neuroblastoma histological images are based on the features which are not
robust to scale variations.

We are unaware of any work specifically for neuroblastoma histological images that extract
features which are robust to scale variations. In this study, we propose a CAD system based on Scale
Invariant Feature Transform (SIFT) feature extraction method which is invariant to scale variations.
This is useful for neuroblastoma histological images, in which size of the different cells in the same
class has large variations. A sample of high intra-class variation in the size of the neuroblast cells is
shown in Figure 1. We combine SIFT with the bag of features to refine more discriminative features
for image classification. We have constructed a new dataset of neuroblastoma histological images to
evaluate the proposed method.
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Neuroblast cells with different sizes

Figure 1. High intra-class variation in the size of the neuroblast cells.

The contributions of this paper are:

1.  We applied SIFT to extract features of neuroblastoma histological images which are robust to
scale variations.

2. We combine SIFT with the bag of features to reduce the number of features by extracting highly
discriminative features.

3. We evaluate our method by comparing with other state-of-the-art benchmarks which show the
effectiveness of our method in the classification of neuroblastoma histological images.

4.  For more evaluation, we applied our method on a benchmark breast cancer dataset, BreaKHis
dataset, and compared the results with state-of-the-art methods. Results show the effectiveness of
our method.

The rest of this paper is as follows. Section 2 presents material and method. Section 3 shows the
results. Section 4 presents the discussion, and finally Section 5 concludes the work.

2. Materials and Methods

2.1. Dataset Construction

As there is no public and available dataset in analysis of neuroblastic tumours we constructed
a dataset which consists of images from neuroblastic tumours from The Tumour Bank of the Kid’s
Research Institute at The Children’s Hospital at Westmead, Sydney, Australia. All the specific details
of patients were removed from the dataset and a de-identified dataset was used in this research.
The initial dataset was generated from cancer tissue biopsy slides and consisted of images of H&E
stained tissue microarrays (TMA) of neuroblastic tumours. We used six TMA slides and seven whole
sections representing 125 patients. Each TMA slide contains from 20 to 40 cores of neuroblastic tumour.
Samples of TMA slide containing cores of different neuroblastic tumours are shown in Figures 2 and 3,
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respectively. The diameter of TMA cores is 1.2 mm, stained with H&E and cut at 3 pm thickness.
Although most images belong to different patients, some of them are duplicates. Our constructed
dataset is much larger in terms of patients and images than the datasets used by Tafavogh et al. [12]
and Kong et al. [11].
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Figure 3. A sample of a single tumour.
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All collected tissue samples were classified as undifferentiated neuroblastoma, poorly-differentiated
neuroblastoma, differentiating neuroblastoma, ganglioneuroblastoma, or ganglioneuroma by pathologists.
Representative images in the categories are shown in Figure 4.

Neurohlast Cell Neuropil Neuroblast Cell

Schwannian Stroma

Differentiating Fully Mature
Neuroblast

Figure 4. Neuroblastic tumour categories: (a) undifferentiated neuroblastoma, (b) poorly-differentiated
neuroblastoma, (c) differentiating neuroblastoma, (d) ganglioneuroma, and (e) ganglioneuroblastoma.

Due to the size of the scanned neuroblastic tumour images, up to a gigabyte each, the
computational cost is high. Therefore, they were cropped to equal-sized square regions
(300 x 300 pixels) by an expert histopathologist [AC] in which all the specification of a particular
subtype of neuroblastic tumour is present in the cropped image. This is the best size which is large
enough to capture diagnostic features of each category and small enough for the computational cost.
Table 1 shows the number of images in our dataset.

Table 1. Number of different categories of neuroblastic tumour cropped images.

Category of Neuroblastic Tumour Number of Cropped Images Number of Patients

poorly-differentiated 571 77
differentiating 187 12
undifferentiated 155 10
ganglioneuroma 84 18
ganglioneuroblastoma 46 8

Total 1043 125
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2.2. Method

The overall framework of our approach is shown in Figure 5. The Scale Invariant Feature
Transform (SIFT) extracts features from the test images and feeds them into the feature encoding block
to summarize them into new discriminative features. Here, a SVM is used to classify the test image by
comparing their extracted features with the training set images.

SIFT feature Feature ~| Features of

extractor encoding test set

!

SVM
classifier

I

Feature of

‘What is the

:> neuroblastic

tumour type?

Test Image

training set

Figure 5. The scheme of the proposed method. SIFT, Scale Invariant Feature Transform; SVM, Support
Vector Machine.

2.2.1. Scale Invariant Feature Transform

The SIFT was proposed by Lowe in 2004 [15]. In this method, distinctive image features are
extracted from the scale-invariant keypoints. SIFT features are invariant to rotation and robust to scale
and illumination variations. SIFT algorithm consists of four stages: detection of scale-space extrema,
keypoint localization, orientation assignment and descriptor representation. These are described in
detail below.

Detection of Scale-Space Extrema

The first step involves searching over multiple scales and image locations to identify keypoints
that are invariant to differences in scale. Detecting the locations that are invariant to scale changes in
an image is determined using a scale-space function [16]. Lindeberg [17] showed that the only possible
scale-space kernel is the Gaussian function, G(x, y). Scale space of an image, L(x,y, ), is calculated by
the convolution of a variable-scale Gaussian function, G(x, y, o), with an input image, I(x, y).

L(x,y,0) = G(x,y,0) x I(x,y)

and 1
_ () /207
G(x,y,0) 7702 e
where x and y are image coordinates and ¢ is width of the Gaussian function. Stable keypoint locations
are defined by Difference of Gaussian (DoG) function in the scale-space. The scale-space extrema is
located in D(x,y,0), which is calculated as the difference between two images, one with scale k and the

other one with scale ko, k is a multiplicative factor.
D(x,y,0) = (G(x,y,ko) — G(x,y,0)) x I(x,y) = L(x,y,ko) — L(x,y,0)

Points in the DoG function which are maxima or minima among the 26-neighboring pixels (eight
neighbors in the current image and nine neighbors in the above and nine neighbors in the below scales)
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are considered as extrema points which are called keypoints. The detection of keypoints is shown in
Figure 6.

Figure 6. The scheme of keypoint detecting. DoG, Difference of Gaussian.

Keypoint Localization

Some of the extracted keypoints that have low contrast or are poorly localized on edges of
the image are not stable. These keypoints are eliminated in this stage. Location of the keypoint, z,
is achieved by calculating the Laplacian.

_B2D*1 oD

z= 9x2 ox

If the value of Laplacian function is less than a threshold value, called the contrast threshold (Cc),
the point is rejected. Therefore, the extracted keypoints with low contrast are eliminated. Some of the
extracted keypoints have a strong response along edges. Therefore, we need to eliminate these points
to increase the stability. Lowe et al. [15] used a 2 x 2 Hessian matrix, a square matrix of second-order
partial derivatives of a scalar-valued function which describes the local curvature of a function of
variables, to compute two eigenvalues in edges. If the ratio between the larger and smaller eigenvalue
is greater than the edge threshold (Cg), that keypoint is discarded. Therefore, we have more stable
keypoints after eliminating the low contrast and edge keypoints. The values of C¢ and Cr are set in
the experimental setup subsection.

Orientation Assignment

Before extraction of a descriptor for the keypoint, the keypoint is assigned an orientation to make
it invariant to rotation. The orientation of the keypoint is calculated from the orientation histogram of
local gradients from the closest smoothed image L(x, y,0) which means there is a potential keypoint at
(x,y) with scale 0. The gradient magnitude and the orientation are calculated as follow.

m(x,y) = \/(L(x +1y) —Llx = Ly)* + (Lxy +1) — L(x,y — 1))?

1 Lx,y+1)—L(x,y—1)
L(x+1,y)—L(x—1,y)

6(x,y) = tan
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An orientation histogram is created from the gradient orientations of sample points within a
region around the keypoint. It consists of 36 bins covering the 360 degrees of orientation [15]. Each
sample added to the histogram is weighted by the gradient magnitude, m(x,y), and by a circular
gaussian with o equal to 1.5 times the scale of the keypoint [15]. Any peaks above 80% of the maximum
peak height are considered to calculate the orientation, it creates keypoints with same location and
scale, but different directions. An accurate orientation is calculated using the interpolation of dominant
peaks in the histogram. The orientation calculation is illustrated in Figure 7.
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MAA | x x| #]4 ]y 520
SRR *
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6=0 6=360
(a) keypoint (b)

Figure 7. Orientation calculation: (a) gradient orientations of sample points within a region around the
keypoint (b) orientation histogram.

Descriptor Representation

In this stage, a SIFT descriptor is calculated for each keypoint as a histogram of orientation in eight
directions (as shown in Figure 8). According to [15,18,19], it is common that a 16 x 16 neighborhood
region around each keypoint is divided into 4 x 4 sub-regions. The gradient vectors are aggregated
into 8-bin histogram over the 4 x 4 matrix of subregions. Then, SIFT extracts 4 x 4 x 8 = 128 element
feature vector for each keypoint.

:;C):-p: :+$\\§ ﬁk‘%‘w'%
i%"f))l}\i , KK RR
¥\
i\ B t -3k 3K e
\” >y \/I
1IN | A | %ﬁ{ ‘*';Ié
Image gradients Keypoint descriptor

Figure 8. Keypoint descriptor: (left) gradient magnitude and orientation are calculated in a region
around the keypoint (right) a 16 x 16 neighborhood around the keypoint is divided to 4 x 4 subregions.
In each subregion the gradient vectors are accumulated into 8-bins orientation histograms.
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SIFT has three free parameters which must be set. The first one is o, the width of the Gaussian.
Increasing ¢ reduces the number of features generated from an image [20]. The second free
parameter is the contrast threshold (C¢) which eliminates keypoints with low contrast. The third free
parameter is the edge threshold (Cr) which eliminates the unstable keypoints that are near the edges.
These parameters are set in Section 5.

2.2.2. Feature Encoding

The SIFT-descriptor extracts a feature vector with 128 elements for each keypoint. Using all of
the extracted features in the classification of neuroblastoma histological images is time-consuming
and have a high computational complexity. So, we use a bag of features [21] as a feature encoding
to compute more discriminative representations. The scheme of the bag of features is shown in
Figure 9. It starts by selecting keypoints, step (b), and then describes keypoints from the input image
step (c). In the next step (d), the extracted features are clustered and the codebook which consists of
the codewords is constructed in step (e), codewords are the extracted features by SIFT. Then, a bag of
features histogram counts the occurrences of each feature in step (f).

a) Inputimage b) Keypoint ¢) Feature description d) Clustering

selection by SIFT

!

v

f) Histogram computation e) Codebook construction

Figure 9. Scheme of the feature encoding block. Different colours indicate different clusters and
different codewords. BOF, Bag of Features.

We use clustering to construct a codebook. All the extracted keypoints are clustered to find a
set of centroids. In this work, we use k-means algorithm [22] for clustering. An important factor
in construction of the codebook is selection of the number of codewords. We evaluate different
codebook sizes and select the best one; experimental results are shown in Section 5. The input image
is represented by a histogram of codewords using the feature encoding block. In the final stage,
histological images are classified by training a classifier which classifies the histograms of the feature
encoding block. We use SVM classifier which can efficiently perform a non-linear classification using
an optimal hyperplane in a high-dimensional space.

3. Results

In this section, we evaluate the performance of the proposed approach on the constructed dataset
of histological images of neuroblastoma. The database is divided randomly into three subsets: the first
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part for training (623 images), the second part for validation (211 images) and the third part for testing
(209 images). We use the validation set to select the optimum values for free parameters of the proposed
approach. Finally, the system is evaluated using testing and training sets.

3.1. Experimental Setup

SIFT has three parameters to be selected: Gaussian ¢, contrast threshold (Cc¢), and edge threshold
(Cg). We randomly divide the validation set into two subsets including 150 and 61 images. We train
the algorithm using 150 images and compute the accuracy of the algorithm using 61 images to tune
the free parameters of the algorithm. We repeat the above procedure multiple times (10 times) and
compute the average over all experiments to have an accurate result. We tested SIFT with o =0.1, as Cc
and Cg are 0.02 and 5, respectively. We increased the o by step size 0.4 and found the best accuracy for
the proposed system. According to Table 2, the best accuracy found when ¢ was 1.7. So, we consider ¢
1.7 in the next experiments.

Table 2. Average classification accuracy of the SIFT over neuroblastic tumour dataset using different
values for ¢. Bold value indicates the highest classification accuracy.

o Classification Accuracy (%)
0.1 73.02
0.5 73.25
0.9 75.24
1.3 76.52
1.7 78.96
2.1 76.24

We completed another experiment to find the optimum value for Cc while the Cr is 5. According
to Table 3, the best accuracy was found when the C¢ is 0.04. Also, we chose the optimum value for Cg.
We tested five different values for Cg and according to the Table 4 found the best accuracy when C is
11. Furthermore, we tested the proposed system for five different codebook sizes, starting with 300
and following with 400, 500, 600 and 700. Table 5 shows the average classification accuracy versus size
of the codebook. The best accuracy was found when the codebook size was 500. This value was set for
the next experiments.

Table 3. Average classification accuracy of the SIFT over neuroblastic tumour dataset using different
values for contrast threshold (C¢). Bold value indicates the highest classification accuracy.

Contrast Threshold  Classification Accuracy (%)

0.02 73.19
0.03 76.21
0.04 76.58
0.05 75.68
0.06 74.25

Table 4. Average classification accuracy of the SIFT over neuroblastic tumour dataset using different
values for edge threshold (Cg). Bold value indicates the highest classification accuracy.

Edge Threshold Classification Accuracy (%)

5 78.25
11 81.76
17 77.24
23 76.15

29 74.18
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Table 5. Average classification accuracy of the SIFT over neuroblastic tumour dataset using different
codebook sizes. Bold value indicates the highest classification accuracy.

Size of the Codebook Classification Accuracy (%)
300 78.2
400 80.31
500 82.25
600 79.77
700 81.62

For SVM, we tried different kernels: linear, polynomial, Radial Basis Function (RBF), and sigmoid.
We retained the RBF kernel which produced the best results. The kernel parameter v was empirically
defined through experiments with the best value of 0.004.

3.2. System Evaluation

To evaluate the proposed method, we use the remaining 80% of the dataset which is not seen
in the experimental setup. They are divided randomly into the training set (623 images) and testing
set (209 images). We train the final model using the training set and test it using the testing set.
We repeat this procedure multiple times (10 times) and report the average accuracy. We use the
standard bag of features and the pyramid bag of features [21] algorithms to evaluate the proposed
method. In each case, we used RBF kernel type and histogram intersection kernel [23]. We measured
the performance of our algorithm by the weighted average (weighted by the number of samples in
each class) F-measure, recall and precision. The results are shown in Table 6. We compared our method
with Patched Completed Local Binary Pattern (PCLBP) and Completed Local Binary Pattern (CLBP) as
benchmarks. Distribution of the computed F-measures for different approaches over the ten trials is
presented in Figure 10. It shows that combination of SIFT with the bag of feature works better than
CLBP and PCLBP.

We completed a t-test (with significance level of 5%) giving p-values of 15 x 1077 and 12 x 107>
for CLBP and PCLBP with histogram intersection kernel SVM, respectively. The results showed that
the combination of SIFT with bag of features and histogram intersection kernel SVM statistically
significantly improved the classification accuracy in comparison with CLBP and PCLBP with RBF
kernel SVM. The F-measure accuracy of our proposed method in the best case is 10.04% and 9.23%
higher than CLBP and PCLBP, respectively. The weighted average of precision, recall, and F-measure
of our algorithm is better than PCLBP and CLBP. Table 7 shows the representative confusion matrix.
Interestingly, the poorest computer performance was in discriminating between poorly-differentiated
and differentiating neuroblastoma, a distinction that human pathologists also find difficult in limited
fields of view.

Table 6. Weighted average precision, recall and F-measure of the proposed method and benchmarks.
Bold value indicates the highest F-measure. CLBP, Completed Local Binary Pattern; SVM, Support
Vector Machine; RBF, Radial Basis Function; PCLBP, Patched Completed Local Binary Pattern; SIFT,
Scale Invariant Feature Transform.

Method Precision (%) Recall (%) F-measure (%)
CLBP + SVM (RBF) 74.1+£2.35 76.25 + 2.23 75.15 4+ 2.28
PCLBP + SVM (RBF) 75.59 + 3.15 76.35 & 3.41 75.96 & 3.27
SIFT + bag of features + SVM (RBF) 81.62 +3.72 84.54 & 1.66 83.03 +2.63
SIFT + pyramid bag of features + SVM (RBF) 80.63 £ 3.55 83.57 £1.81 82.08 £ 2.65
SIFT + bag of features + SVM (histogram intersection) 83.81 +3.33 86.61 + 1.87 85.19 +2.42

SIFT + pyramid bag of features + SVM (histogram intersection) 83.5 £+ 3.64 86.41 +1.22 84.93 +£2.35
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Figure 10. Comparison between our algorithm (SIFT + bag of feature) with the benchmarks (CLBP)
and (PCLBP).

Table 7. A representative confusion matrix for dataset from Children’s Hospital at Westmead.

‘ Predicted
Differentiating ~ Ganglio- Ganglio- Poorly-
differentiated  Undifferentiated
neuroblastoma neuroma neuroblastoma neuroblastoma neuroblastoma
Differentiating
neuroblastoma 6 1 4 12 0
Ganglioneuroma | 0 14 5 0 0
Actual Ganglio-
neuroblastoma 1 0 34 0 0
Poorly-
differentiated
neuroblastoma 8 1 0 119 0
Undifferentiated
neuroblastoma 0 0 0 2 1

3.3. Comparison to Other Datasets

We tested our algorithm on the collected dataset which consisted of 1043 (300 x 300 pixels)
neuroblastoma histological images. As there was no public and available dataset in this field,
we evaluated the proposed algorithm on a second dataset provided by the University of Bristol.
The dataset consists of five whole tissue sections, one ganglioneuroblastoma, three poorly-
differentiated neuroblastoma and one ganglioneuroma. To evaluate the proposed method, we use
623 sub-images cropped from Children’s Hospital at Westmead dataset as training set and five
whole tissue sections from the university of Bristol as the testing set. Here, we randomly select
ten sub-images (300 x 300 pixels) from each whole tissue section. First, the algorithm assigns a label
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to each sub-images. Then, each tissue section is classified using the majority vote among ten labels
corresponding to ten sub-images. The whole tissue section predicted labels and result of majority vote
are shown in Table 8.

Table 8. The actual and predicted labels for dataset from University of Bristol.

Tissue Section Number Actual Label Predicted Label Majority Vote
4905 ganglioneuroma ganglioneuroma 10 out of 10
4906 poorly-differentiated differentiating 4 out of 10
4907 poorly-differentiated ~ poorly-differentiated 8 out of 10
4908 poorly-differentiated ~ poorly-differentiated 9 out of 10
4909 ganglioneuroblastoma differentiating 2 out of 10

As can be seen, our algorithm correctly classified three out of five whole tissue sections and the
other two were misclassified as differentiating type while their actual types are poorly-differentiated
and ganglioneuroblastoma. Figures 11 and 12 show the sub-images for whole tissue section 4906
and 4909.

Figure 11. (a) Whole tissue section 4906 with actual label PD (b) Predicted labels for ten randomly
cropped images from whole tissue section. D, differentiating neuroblastoma; PD, poorly-differentiated
neuroblastoma.
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The actual label of whole tissue section 4906 is poorly-differentiated. The four out of ten
sub-images extracted from 4906 were predicted as poorly-differentiated neuroblastoma and the other
six images were predicted as differentiating neuroblastoma. The proposed algorithm assigns label
differentiating to the whole tissue section 4906 based on the majority vote. Moreover, two out
of ten extracted sub-images from 4909 with actual label ganglioneuroblastoma were predicted as
ganglioneuroblastoma and the others predicted as differentiating. Therefore, according to the majority
vote, the whole tissue section 4909 was predicted as differentiating.

b)

Figure 12. (a) Whole tissue section 4909 with actual label GNB (b) Predicted labels for
ten randomly cropped images from whole tissue section. D, differentiating neuroblastoma;
GNB = ganglioneuroblastoma.

For more evaluation, we applied the proposed algorithm on the BreaKHis breast cancer
dataset [10]. It consists of 7909 breast cancer histopathology images divided into benign and malignant
tumours. The images are in five different levels of magnification with dimension of 700 x 460 pixels.
The image distribution is shown in Table 9.

Spanhol et al. [10] applied combination of six feature extractors (i.e., CLBP, LBP, Gray Level
Co-occurrence Matrices (GLCM), Local Phase Quantization (LPQ), Oriented Fast Rotated Brief
(ORB) and Parameter-Free Threshold Adjacency Statistics (PFTAS)) with 1-Nearest Neighbor (1-NN),
Quadratic Discriminant Analysis (QDA), Random Forest (RF) and SVM classifiers to classify breast
cancer histopathology images. They calculated average recognition rates of five trials for magnification
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factors of 40x, 100x, 200x and 400x. They achieved the best average recognition rates using the
PFTAS as a descriptor. Table 10 shows the best average recognition rates of the classifiers trained with
PFTAS descriptor.

Table 9. Image distribution of BreaKHis dataset by magnification factor and class.

Magnification Benign Malignant Total

40 x 625 1370 1995
100 644 1437 2081
200 x 623 1390 2013
400 588 1232 1820
Total 2480 5429 7909

No of Patients 24 58 82

Table 10. Best average recognition rates (%) of the classifiers trained with different descriptors tested
by Spanhol et al. [10] on BreaKHis dataset. Bold values indicate the highest recognition rate in each
magnification. PFTAS, Parameter-Free Threshold Adjacency Statistics; 1-NN, 1-Nearest-Neighbor;
QDA, Quadratic Discriminant Analysis; RF, Random Forest; SVM, Support Vector Machine.

Descriptor  Classifier 40X 100X 200 400X
PFTAS 1-NN 809+20 807+24 815+27 794+39
PFTAS QDA 83.8+41 821+49 842+41 782+59
PFTAS RF 81.8+2 813+28 835+23 81.0+£38
PFTAS SVM 816+30 799+54 851+3.1 823+3.8

For comparison, we follow the same testing protocol in their paper. The BreaKHis dataset is
randomly divided into a training set (70%) and a testing set (30%). We train the model using the
training set and test using the testing set and compute the recognition rates. We repeat this procedure
five times and report the average recognition rates for all magnification factors. The results are shown
in Table 11. According to Spanhol et al. [10] the recognition rate is calculated as follow

Y Patient Score
Total number of patients

Recognition Rate =

Nrec
P

Patient Score =

where Ny, is the number of images for each patient which are correctly classified and Np is the number
of images for patient P existing in the dataset. The results are shown in Table 11. Results show that the
combination of SIFT with bag of features works better than the methods that Spanhol et al. [10] tested.

Table 11. Average recognition rate (%) of our proposed method and Spanhol’s method in different
magnifications. Bold values indicate the highest average recognition rate in different magnifications.
SIFT, Scale Invariant Feature Transform; SVM, Support Vector Machine; RBF, Radial Basis Function.

Method 40x 100 200% 400x
Spanhol et al. [10] 83.8+4.1 821449 85.1 £3.1 823 £38
SIFT + bag of features + SVM (RBF) 8286 +1.51 85.11+0.87 81.554+0.78 84.15+0.69
SIFT + pyramid bag of features + SVM (RBF) 80.07 £ 156 80.75+391 76.31+0.99 79.21 £2.85
SIFT + bag of features + SVM (histogram intersection) 854+ 139 87254251 85.6+0.76 86.04 + 1.56

SIFT + pyramid bag of features + SVM (histogram intersection)  83.06 £1.4  85.6+043 81.29+1.64 84.65+0.25
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4. Discussion

We used SIFT as a feature extractor and combined it with bag of features. It is a new approach
to classify neuroblastoma histological images into five groups. Although several methods have been
proposed in the literature, our system has multiple advantages over those systems:

1. Itis the first time that neuroblastoma histological images with a complex texture are classified
into five classes using features that are robust to scale variations.
2. We apply the bag of features algorithm to refine the extracted features by SIFT and improve the

classification accuracy.

3. The poorest performance of our algorithm is in discriminating between poorly differentiated and
differentiating neuroblastoma, a distinction that human pathologists also find difficult in limited
fields of view. This is the reflection of why our model does same as the pathologists.

4. As there is no public and available dataset of neuroblastoma histological images, we have
evaluated our algorithm under the BreaKHis dataset which is a public and available breast cancer
dataset. Moreover, we evaluated our algorithm on the second dataset of neuroblastoma tumour
provided by the University of Bristol.

5. Pathologists scan slides, naturally pick out local regions and decide about type of the tumour
based on these regions. Our experimental design sought to emulate that process through
evaluation of cropped images. Ten sub-images are extracted randomly from each whole tissue
section which was provided by the University of Bristol. Then, the whole tissue section is
classified using the majority vote among the ten labels assigned to the ten sub-images. As shown
in Figures 11 and 12, the identification of visual features that distinguish our cropped images
is not immediately apparent. However, the extracted features by SIFT are the vectors with 128
elements, they are mathematical features not visual features. It still remains to be determined
whether these mathematical features represent biological distinctions within the tumours that
have a clinical sequelae.

6. Our ‘gold standard’ is the human eye and pathologist assessment. But we also know that
the human eye is gilded by subjectivity and that if we had multiple pathologist look over the
cropped images our specificity would likely not be 100%. For example distinction between
poorly-differentiated and differentiating tumour types is known to be difficult for pathologists
to distinguish, which is reflected within our analysis (Table 7). That said, SIFT has not given
us 100% specificity either. Perhaps that is a reflection of fidelity of the algorithm to find really
minor variations, possibly unobservable to the naked eye. Perhaps it is that SIFT is not as good as
the naked eye? This distinction has not been tested in this paper and is beyond the scope of the
immediate study. However, it does highlight that SIFT may have the potential to delve deeper
into the images of neuroblastoma tumours and identify new characteristics that relate to tumour
growth and treatment response. As the future direction of this study, we would give 1043 cropped
images to be classified by completely different pathologists and see the classification differences
between them and would compare to the results from the SIFT algorithm.

7. Our experimental results show that combination of SIFT with the bag of features is a promising
tool for classification of neuroblastoma histological images but at this stage the specificity of SIFT
has not been shown to improve on the specificity of visual analysis by a pathologist. Consequently,
further testing of human-computer differences needs to be undertaken.

5. Conclusions

We proposed combination of Scale Invariant Feature Transform (SIFT) and bag of features to
classify histological images of neuroblastic tumours into five categories using the SVM classifier.
The algorithm built the feature vectors by extraction of 128 element vectors. The advantage of the
proposed method is the extraction of features which are robust to scale variations and combine
them with the bag of features to yield more discriminative features which increased the classification
accuracy. We evaluated the proposed algorithm on the constructed dataset with 1043 cropped images
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of neuroblastoma from samples of five categories. As there is no public and available dataset of
neuroblastoma histological images, we tested our proposed method under the BreaKHis breast cancer
dataset for more evaluation. Results indicate that a CAD system based on combination of SIFT with bag
of features outperforms the state-of-the-art methods on both neuroblastoma and breast cancer datasets.
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