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abstract

PURPOSE Allele-specific copy number alteration (CNA) analysis is essential to study the functional impact of
single-nucleotide variants (SNVs) and the process of tumorigenesis. However, controversy over whether it can
be performed with sufficient accuracy in data without matched normal profiles and a lack of open-source
implementations have limited its application in clinical research and diagnosis.

METHODS We benchmark allele-specific CNA analysis performance of whole-exome sequencing (WES) data
against gold standard whole-genome SNP6 microarray data and against WES data sets with matched normal
samples. We provide a workflow based on the open-source PureCN R/Bioconductor package in conjunction
with widely used variant-calling and copy number segmentation algorithms for allele-specific CNA analysis from
WES without matched normals. This workflow further classifies SNVs by somatic status and then uses this
information to infer somatic mutational signatures and tumor mutational burden (TMB).

RESULTS Application of our workflow to tumor-only WES data produces tumor purity and ploidy estimates that
are highly concordant with estimates from SNP6 microarray data and matched normal WES data. The presence
of cancer type–specific somatic mutational signatures was inferred with high accuracy. We also demonstrate
high concordance of TMB between our tumor-only workflow and matched normal pipelines.

CONCLUSION The proposed workflow provides, to our knowledge, the only open-source option with demon-
strated high accuracy for comprehensive allele-specific CNA analysis and SNV classification of tumor-only
WES. An implementation of the workflow is available on the Terra Cloud platform of the Broad Institute
(Cambridge, MA).
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INTRODUCTION

Copy number alterations (CNAs) are typically measured
by the ratio of tumor to normal DNA abundance.
However, tumor purity and ploidy affect this ratio and
must be incorporated to infer absolute copy numbers.1,2

Information from germline single-nucleotide poly-
morphisms (SNPs) further allows deconvolution of
absolute copy number into the 2 parental copy numbers.
This parental or allele-specific copy number provides
a direct readout of loss of heterozygosity (LOH; when
either the maternal or paternal copy is lost), which can
indicate the complete loss of wild-type function when
a somatic mutation in a putative tumor suppressor is
identified.3 Inferring allele-specific copy number is
further crucial to understanding mutagenesis, allowing
determination of clonality and timing of copy number
changes at the same locus.2,4,5

Whole-exome sequencing (WES) and targeted panel
sequencing have become routine applications in the

clinic, providing comprehensive data while saving cost
and scarce tumor tissue by eliminating the need for
multiple single-analyte assays. Therefore, such com-
prehensive tests may aid treatment decision making
by increasing the detection of actionable alterations,
which includes point mutations and amplifications of
oncogenes in targeted therapies, microsatellite in-
stability (MSI), and tumor mutational burden (TMB) in
immunotherapy.6,7

Sequencing both tumor andmatched normal specimens
provides certain benefits over tumor-only sequencing,
even in diagnostic settings where alterations of un-
certain significance are usually ignored. For example,
high-depth sequencing of blood samples can more
reliably identify clonal hematopoiesis, hotspot muta-
tions that arose in heme rather than in tumor cells.8-10

Matched normal samples are also commonly required
for existing algorithms to detect complex biomarkers
such as MSI, TMB, or LOH. Obtaining comprehensive
information from clinical tumor-only sequencing data
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could reduce time and cost, while enabling analyses of the
large number of archived specimens for which blood
samples are unavailable. However, the reliability of tumor-
only sequencing is not well assessed,11,12 and validated
open-source analysis tools are lacking.

Without matched normal samples, it is necessary to distin-
guish algorithmically between somatic mutations and germ-
line variants. Existing approaches commonly involve machine
learning using public germline and somatic databases,
in silico predictions of the functional impact of mutations,
and allelic fractions (the ratios of nonreference to total
sequencing reads) of mutations and their neighboring
SNPs.13,14 Recently developed tools additionally use allele-
specific copy number, allowing the calculation of accurate
posterior probabilities for all possible somatic and germline
genotypes.15-17 However, in the absence of complete work-
flows and thorough benchmarking, controversy has per-
sisted over the reliability of tumor-only sequencing.12

We present a complete workflow, along with a Cloud-based
implementation, for tumor-only hybrid-capture data. The
workflow is based on our previously published tool PureCN.15

We benchmark an improved version against gold standard
data sets of matched normal WES and Affymetrix SNP6
microarrays (Affymetrix, Santa Clara, CA) and compare it
to alternative recently published methods.17,18 Using the
ovarian carcinoma (OV) and lung adenocarcinoma (LUAD)
data sets of The Cancer Genome Atlas (TCGA), which
represent opposing extremes with respect to tumor purity,
copy number heterogeneity, and TMB, we demonstrate
high reliability of tumor-only analyses for inference of allele-
specific copy number, identification of functional mutations,
LOH, mutational signatures, and TMB.

METHODS

Data Download

BAM files were downloaded through the GDC Data Transfer
Tool using manifest files built by the GenomicDataCommons
R/Bioconductor package.19 The TCGAutils R/Bioconductor
package20 was used to annotate the manifest file: TCGAutils::
UUIDtoBarcode for transferring universally unique identifiers

to TCGA barcodes and TCGAutils::TCGAbiospec for extracting
biospecimen data from TCGA barcodes. Capture kit informa-
tion was obtained via the GDC API. BAM files mapping to
multiple capture kits were excluded. BED files containing the
locations of baits based on hg19 were lifted over to GRCh38
using hg19ToHg38 liftover chain file downloaded from the
University of California, Santa CruzGenomeBrowser.21 None of
the data analyzed in this study were used to develop or tune the
algorithm or parameters and thus represent true validation sets.

Data Processing

ABSOLUTE analysis of TCGA SNP6microarray data has been
described previously.2,22,23 The manually curated ABSOLUTE
outputwas obtained fromSynapse24 and lifted over toGRCh38.
In addition to the PureCN-based15 workflow described in
detail in the Appendix, we applied the FACETS 0.5.618 copy
number tool to all samples. Tumor and normal BAM file pairs
were processed by snp-pileup with the parameters -g -q15
-Q20 -P100 -r25,0, and the outputs from which were imported
using readSnpMatrix and further processedby preProcSample,
procSample with cval = 150, and emcncf.

Single-nucleotide variants were called with Mutect 1.1.725

(Appendix). SGZ17 in version 1.0.0 was used to classify the
mutation calls into somatic versus germline (Appendix).
Variants labeled “germline,” “probable germline,” “somatic,”
“probable somatic,” or “somatic subclonal” by SGZ were
considered called, and all others were considered un-
called. Finally, we applied deconstructSigs26 to identify
the 30 mutational signatures27 curated by the Wellcome
Trust Sanger Institute28 (Appendix).

Statement of Reproducible Research

Analyses presented in this article are reproducible using the
code and instructions available through GitHub.29

RESULTS

Reliable analysis of clinical tumor-only sequencing data
involves multiple nontrivial steps that are distinct from the
analysis of matched tumor and normal sequencing. Here,
we describe and benchmark a detailed workflow for hybrid-
capture tumor-only sequencing data including variant

CONTEXT

Key Objective
The current study explores the feasibility of tumor-only sequencing to determine various complex biomarkers beyond known

driver mutations and provides open-source implementations.
Knowledge Generated
We demonstrate that sophisticated algorithms can, in many cases, minimize the need for sequencing matched normal

specimens. Our workflow is available for download and in the Terra Cloud platform.
Relevance
Clinical tumor-only sequencing reduces time and cost over matched tumor and normal sequencing and enables analyses of

the large number of specimens for which blood samples are unavailable.
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calling, coverage normalization for copy number calling,
purity and ploidy inference, and classification of variants
by somatic status (Appendix Fig A1).

Tumor Purity and Ploidy Inference

We selected OV and LUAD WES data from TCGA as com-
plementary, representative data sets for our benchmarking
study.30,31 Among the TCGA data sets, OV shows the highest
tumor purity as a result of the availability of large surgical
specimens. High purity complicates somatic versus germline
classification because of the overlapping distributions of
expected allelic fractions. The LUAD data set, obtained by
core needle biopsies, in contrast, ranks among the lowest
in tumor purity, presenting a different challenge for copy
number calling because of the dilution of signal.15,17 LUAD
is additionally challenging because of increased copy
number heterogeneity.2,22 Subclonal copy number changes
increase the number of copy states, making ploidy inference
often ambiguous.2,32

We first compared maximum likelihood purity and ploidy
estimates from our workflow using tumor WES with those
from manually curated ABSOLUTE SNP6 microarray calls
(Figs 1A to 1D, Data Supplement, Appendix). We analyzed
233 OV and 442 LUAD samples and found a high corre-
lation of microarray and WES results for tumor purity
(Pearson correlation, r = 0.75 and r = 0.84 for OV and
LUAD, respectively) and tumor ploidy for OV (87.1% con-
cordant, defined as ploidy difference , 0.5; Pearson
correlation, r = 0.73). Note that since SNP6 and WES data
were generated from different tissue slides, a perfect
correlation of purity is not expected, whereas ploidy should
be in general similar. Ploidy estimates for LUAD were also
concordant in the majority of samples (77.1% concordant;
Pearson correlation, r = 0.57). In addition, we applied
FACETS, a widely used allele-specific CNA analysis tool for
tumor and matched normal sequencing,18 to both OV and
LUAD paired WES data (Appendix Fig A2). For 68.9% of all
samples, all 3 tools generated concordant purity and ploidy
calls (Appendix Fig A3). For OV, PureCN showed a higher
ploidy concordance with ABSOLUTE than FACETS
(87.1% v 73.8%, respectively), whereas for LUAD, its
concordance was slightly lower (77.1% v 79.6%, respec-
tively). Samples of discordant ploidy, compared with con-
cordant samples, had lower purity (39.2% v 54.3%,
respectively; 2-sided Mann-Whitney, P , .0001) and
lower mean coverage (100.4× v 107.2×; 2-sided Mann-
Whitney, P = .03).

Allele-Specific Copy Number and LOH

We further analyzed the accuracy of allele-specific copy
number analysis by comparing ABSOLUTE from SNP6 data
with the corresponding numbers called by PureCN on WES
data. We restricted our comparison to the samples with
concordant ploidy calls and tumor purity . 30% and
demonstrated a high concordance of copy number calls
(Figs 1E and 1F).

In an LOH event, the minor copy number is by definition 0;
LOH calling is thus a special case of allele-specific copy
number calling. We examined 2 specific loci of main clinical
interest, HLA-A/B/C and TP53, in more detail. TP53 is lost
most frequently in ovarian cancer, and HLA LOH is the
major interest in immunotherapy.33,34 HLA and TP53 loci
were investigated in 143 and 223 OV cases, respectively,
where both tumor-only WES and SNP6 array made LOH
calls (Data Supplement). For LUAD, the same comparison
was done in 298 and 332 samples for HLA and TP53 loci,
respectively. In OV, the mean agreement in LOH status
between tumor-only WES and SNP6 microarray was
94.2% for HLA and 99.6% for TP53 (Fig 1G). In LUAD, it
was 91.0% for HLA and 95.5% for TP53 (Fig 1H), with the
discordant samples showing low purity (average of 30.9% v
43.3% tumor purity for discordant v concordant samples,
respectively; 2-sided Mann-Whitney, P , .0005).

Classification of Variants by Somatic Status

We next evaluated the somatic status predictions of variants
not found in public germline databases. We first compared
predictions against a simple model that uses only allelic
fractions. This essentially compared the performance of
commonly used ad hoc allelic fraction filters such as 0.4
against our model that adjusts allelic fractions for allele-specific
copy number. We observed a significant improvement over
this simple model in tumors with purity. 30% (Figs 2A and
2B, Data Supplement). At tumor purity , 30%, inclusion of
copy number does not provide a benefit for classification
because of the large difference in expected allelic fractions of
germline and somatic variants. A small number of cases
were observed in which the simple model performed slightly
better in terms of area under the curve; these were mainly
cases with small numbers of CNAs. However, the complex
model still provides a benefit in that it returns a probability.

We then examined how many variants can be classified as
either germline or somatic with reasonable certainty (Data
Supplement). As expected, this call rate was largely a
function of tumor purity (Figs 2C and 2D). Increasing se-
quencing coverage also increased these rates (Appendix
Figs A4A and A4B). Somatic variants were classified with
higher median accuracy than germline variants (96.1% v
88.1%, respectively, in OV; and 97.2% v 96.6%, respectively,
in LUAD; Figs 2E and 2F). This is also expected because the
somatic group includes subclonal mutations, which are usually
easier to classify than monoclonal mutations because of their
lower allelic fractions and therefore higher allelic fraction dif-
ference comparedwith germline.We observed a similarmedian
somatic and germline accuracy using SGZ (94.0%and 88.9%,
respectively, in OV; and 98.4% and 97.3%, respectively, in
LUAD; Figs 2G and 2H),17 but with lower median call rates
(39.5% and 59.5% for OV and LUAD, respectively, for SGZ v
64.4% and 82.2%, respectively, for PureCN).

We further investigated the ability to detect functionally
important mutations using a driver detection algorithm.35
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Well-defined LUAD driver genes such as TP53, KRAS, KEAP1,
andSTK11were called in both tumor-only andpaired analyses.
We observed a small number of false-positive hits from
sequencing artifacts that the matched normals, but not the
pool of normals, filtered out (Data Supplement).

TMB

We next sought to investigate the accuracy of the variant
classification for determining TMB (Appendix). From the
comparison of tumor-only and paired analysis modes, we
found a high concordance (Pearson correlation, r = 0.98)
and good calibration of somatic mutation rates per megabase
in both OV and LUAD (Fig 3A; Data Supplement). The mean
absolute difference in somatic rates per megabase of the

matched versus tumor-only pipeline was 0.60 Mb for OV and
1.74Mb for LUAD. A simplified pipeline that removed variants
with allelic fraction. 0.4 and was otherwise identical showed
differences of 0.9Mb for OV and 1.80Mb for LUADcompared
with the matched pipeline (Data Supplement).

Mutational Signatures

To further evaluate the clinical utility of our workflow, we
assessed the accuracy of mutational signature identification36

from tumor WES data with or without matched normal profile.
Among 30 validated mutational signatures, we investigated
the 2 OV-associated mutational signatures with known etiology
in detail (Fig 3B). Signature 1 has been found in all cancer
types and is linked to aging. Signature 3 is associated with

FIG 1. Accuracy of purity, ploidy, and exome-wide copy number inference. (A-D) Comparison of purity and ploidy
estimates from paired SNP6 microarray data (ABSOLUTE2) against those from tumor-only whole-exome se-
quencing (WES) data (PureCN) in ovarian cancer (OV) and lung adenocarcinoma (LUAD) samples. (E-F) Shown are
concordances of the major and minor allele copy numbers of ABSOLUTE copy number alteration (can) calls with
the corresponding tumor-only WES PureCN calls for all altered regions where both tools could make a call. Bubbles
on the diagonal represent concordant calls. States where theminor copy number is 0 (1-0, 2-0, 3-0, 4-0) are regions
in loss of heterozygosity (LOH). (G-H) Concordance of LOH calls between the 2 analyses was further reviewed on
HLA-A/B/C and TP53 loci for the cases with sufficient power to detect LOH: LOH observed in both microarray and
WES analyses (both, dark red); absent in both analyses (neither, orange); detected only frommicroarray data (SNP6
array, dark blue); and detected only from WES data (tumor WES, light blue). TCGA, The Cancer Genome Atlas.
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homologous repair deficiency, a potential biomarker for PARP
inhibition in ovarian cancer.37 We obtained a high agreement
for mutational signature calls from tumor-only and paired
analyses (77.5% for signature 1 and 88.1% for signature 3),
confirming that our workflow can detect mutational signatures
without matched normal profile even in high-purity samples.

In LUAD data, we again reproduced previously associated
signatures of known etiology. In addition to the aging
signature 1, we found a significant fraction of samples
dominated by the APOBEC (signature 2 and signature 13),
tobacco (signature 4), and DNA mismatch repair deficiency
(signature 6) signatures (Fig 3C, Data Supplement). We

observed high agreement between tumor-only and matched
normal data for all these signatures (79.3%, 94.8%, 95.7%,
and 75.5% for signatures 1, combined 2 and 13, 4, and 6,
respectively).

Terra Pipeline

The described workflow is available as a shareable work-
space on Terra (formerly known as FireCloud) of the Broad
Institute (Cambridge, MA; Appendix). Users can thus easily
test the workflow and apply it to their own data stored in
Google Cloud Storage (Google, Mountain View, CA) or to
data already hosted by Terra, such as TCGA.
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DISCUSSION

We present a complete workflow for reliable analysis of
clinical tumor-only WES data without matched normal
samples. This workflow is validated on OV and LUAD data
from TCGA and benchmarked against a gold standard,
manually curated analysis of SNP6 microarray data with
matched normals. Our workflow estimates tumor purity,
ploidy, LOH, TMB, and mutational signatures with high
concordance to established workflows for SNP6 and WES
data with paired tumor and normal samples.

TMB is an emerging biomarker for response to
immunotherapy,38-41 but the current lack of standards
significantly challenges implementing TMB testing in the
clinic.42 To our knowledge, this is the first thoroughly validated
open-source, tumor-only TMB pipeline. This open-source
reference implementation will help establish standards for
TMB calling and support its implementation in standard
clinical settings where tumor-only WES is performed.

Although high tumor purity challenges somatic status
classification (Figs 2C and 2D), the proposed approach
to determining clinically relevant biomarkers such as
TMB and somatic signatures is surprisingly robust to
varying tumor purity (Fig 3). Notably, signatures of clear
etiology such as homologous repair deficiency, APOBEC,
or smoking had a significantly higher concordance with
matched analyses than broader and less certain signatures,
such as those associated with aging. In contrast, we also
note that high tumor purity is beneficial for LOH and copy
number calling. Still, all parts of the workflow achieved high
accuracy in tumors of 40%-60% purity, the range in which
most clinical tissue specimens fall.

Increasing sequencing coverage increases the accuracy
of somatic status classification16 and ploidy inference. The
results presented in this study are based on relatively low-
coverage WES sequencing to an average of 100×. The
substantial improvements in sequencing costs and runtimes
of current-generation instruments such as Illumina NovaSeq
(Illumina, San Diego, CA) make much deeper sequencing
of WES feasible. Therefore, we expect accuracies reported
here to be pessimistic estimates for assays implemented in
the clinic.

The average runtime of a WES sample was approximately
3 hours and required 3.5 GB of RAM on an Intel Xeon
E5-2680 v4 cluster node (Intel, Santa Clara, CA). Paral-
lelization could reduce the runtime to approximately 30
minutes per sample, making application in high-throughput
clinical settings feasible. This is an order of magnitude more
thanmatched tumor and normal allele-specific CNA callers.18

These tools usually average coverage and SNP allelic
fractions across segments in their likelihood models to
reduce data points dramatically. Because without matched
normal the germline status of variants is not available,
PureCN in contrast includes this uncertainty in the likelihood
model, resulting in the longer runtime.

This study has several limitations. First, we focused on
benchmarking our tumor-only workflow where it differs
from standard matched tumor and normal analyses. A
systematic evaluation of accuracy for the variant calling
steps upstream of this workflow is beyond the scope of this
study.43,44 Second, our workflow is currently not designed
for whole-genome sequencing (WGS) data. In contrast to
gold standard WGS tools, PureCN was designed for high-
coverage data (. 100×) and currently does not use in-
formation largely unavailable in hybrid-capture data such
as split reads or SNP phasing. These would be straight-
forward additions once high-coverage diagnostic WGS
becomes common in oncology. However, support for WGS
would likely require the implementation of additional
heuristics to achieve acceptable runtimes, for example by
averaging information in noncoding regions. Third, as with
allele-specific CNA calling in matched tumor and normal
data, purity and ploidy inference can be ambiguous in
a minority of cases of low purity or of high heterogeneity.
Therefore, our pipeline provides tools that allow manual
correction of results by trained curators, described in the
documentation of the PureCN package. Importantly, the
accuracy of TMB calling was robust even to inaccuracies
in ploidy, partly because different ploidy solutions can be
equivalent for variant classification.17

Fourth, all samples in this study originated from high-
quality fresh frozen samples from only 2 cancer types, and
only limited benchmarking on formalin-fixed paraffin-
embedded samples was previously done.15 Cancer types
that have proven to be difficult to analyze with ABSOLUTE
(eg, chromosomally stable samples from patients with
myeloproliferative disease2) are expected to be similarly
challenging with PureCN. Finally, reliable labeling of
clonal hematopoiesis from tumor-only or low-coverage
matched normal sequencing remains a shortcoming but
is an area of research we are currently pursuing.

As a result of the high concordance with matched tumor
and normal sequencing, the proposed workflow supports
the clinical application of tumor-only sequencing, especially
in diagnostic settings. Furthermore, implementation of the
workflow on Terra will facilitate users, even those with no
coding experience, to process their own data in the Cloud.
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APPENDIX

Installation

PureCN can be obtained and installed under the Artistic 2.0 license
from Bioconductor (https://doi.org/doi:10.18129/B9.bioc.PureCN), Bio-
conda (https://bioconda.github.io/recipes/bioconductor-purecn/README.
html), or GitHub (https://github.com/lima1/PureCN). Unless otherwise
specified, R scripts referred to in this Appendix are part of the PureCN
package.

Dependencies

Genome reference FASTA files were downloaded from National Center
for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_
pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.
fna.gz). dbSNP version 135 was downloaded from https://software.
broadinstitute.org/gatk/download/bundle, and COSMIC version 77
was downloaded from https://cancer.sanger.ac.uk/cosmic. As an
alternative to dbSNP, PureCN also supports population allele frequencies
provided by databases such as GnomAD or ExAC provided as POPAF or
POP_AF info field in VCFs. By default, in this case, a population allele
frequency of 0.001 or higher defines known germline variants.

The workflow described in this article assumes that germline single-
nucleotide polymorphisms (SNPs) and somatic mutations were
identified by MuTect 1.1.7,25 which requires Java 1.7. Other commonly
used variant callers with tumor-only mode can be used instead, but the
resulting VCFs need to be filtered for common artifacts before subjecting
them to this workflow.

This workflow further requires a read mappability file for the reference
FASTA file. The mappability scoremi is defined as 1/(No. of alignments)
for a k-mer starting at position i in the reference genome. For hg19,
these scores can be downloaded as precomputed for various k-mer
sizes from the University of California, Santa Cruz (UCSC) Genome
Browser (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeMapability/). For other reference genomes, we require the
GEM library version 1.315 (Derrien T, et al: PLoS One 7:e30377,
2012).

Finally, GATK3 CallableLoci was used to collect callable regions with
sufficient coverage, mappability, and sequence quality. VCFs were
combined into a single multisample VCF with GATK3 CombineVariants.

Variant Calling

MuTect was run separately on both tumor and normal BAM files
(Appendix Fig A1) using arguments –dbSNP Homo_sapiens_
assembly38.dbsnp.vcf and –cosmic CosmicCodingMuts.vcf. For
benchmarking purposes, MuTect was also run in matched normal
mode by providing both tumor and normal BAM files and otherwise
identical parameters (Appendix Fig A1, dashed line). Capture kit
intervals were not provided to include all SNPswith sufficient coverage in
the flanking regions of baits. Normal samples were run in artifact de-
tection mode (–artifact_detection_mode argument) and then combined
into a single multisample VCF (referred as normal.panel.vcf.file in the
following) using GATK3 CombineVariants with argument –minimumN
5. The latter specifies the minimum number of normal VCF files
containing the variant call to be included in the normal database. This
was set to a high value to ensure that all individual-specific germline
variants were ignored, which would otherwise indirectly provide
matched normal information for some tumors.

Reference Files Generation

The first step of the workflow (Appendix Fig A1) is the generation of
reference files for each capture kit. To exclude regions of low read
mappability, bigWig files were generated from the GRCh38 reference
genome assembly without ALT contigs using the GEM library (Derrien
T, et al: PLoS One 7:e30377, 2012) and the UCSC wigToBigWig tool.
The k-mer size in gem-mappability was set to the read lengths of the
studies, and the maximum number of mismatches and edit distances

was set to 2 (–m and –e arguments, respectively), matching the
settings used by ENCODE.

Next, the script IntervalFile.R was used with default arguments to an-
notate the regions defined by the baits BED file with mean GC-content,
mean mappability, and gene symbols. IntervalFile.R further splits on-
and off-target regions into bins of maximum 400 bp and 200 kbp,
respectively (Appendix Fig A1, black line), as previously described
(Talevich E, et al: PLOS Comput Biol 12:e1004873, 2016).

Only capture kits that were used for . 100 samples were considered,
and separate normal databases were built for each kit (Appendix Fig
A1, blue lines). With these criteria, 233 ovarian carcinoma (OV) tumors
and their matched normal samples were processed from 2 different
capture kits (Custom V2 Exome Bait, 48 RXN X 16 tubes; and
SureSelect Human All Exon 38 Mb v2). For lung adenocarcinoma
(LUAD), 442 tumors and matched normal samples were processed
(Custom V2 Exome Bait, 48 RXN X 16 tubes kit).

Coverage files were generated for all normal samples using Coverage.R
(Appendix Fig A1, blue lines) with default arguments. This script
normalizes on- and off-target coverages independently for GC-content.

The normal coverage databases for the LUAD and the 2 OV capture kits
(output file normalDB.rds) were then generated with the NormalDB.R
script with default arguments. In brief, outlier normal samples with
very high or very low coverage were excluded (median coverage,
. 4× or , 0.25×, respectively). Furthermore, intervals with no read
count in . 3% of samples and average coverage , 25% of the
chromosome median were removed. In total, 157 and 176 process-
matched normals from 2 OV capture kits and 250 normals from LUAD
were used to build the 3 normal databases.

For each interval, NormalDB.R then calculates the inverse of the
log2–copy number ratio standard deviation across all normal samples
and creates the interval_weights.txt output file, later used by the
segmentation function to downweight intervals with high variance in
normal controls.

Reads harboring nonreference alleles have a lower chance of passing
filters, thus resulting in average allelic fractions of heterozygous SNPs
below the expected 0.5. Therefore, NormalDB.R next computes
a position-specific nonreference mapping bias (output file mapping_
bias.rds) for all variants in the normal.panel.vcf.file, provided through
the –normal_panel argument. Mapping bias is defined as the ratio of
the sum of all alt reads over all samples versus the total number of
reads of heterozygous SNPs (allelic fraction . 0.05 and , 0.9). This
procedure further uses an empirical Bayes approach that adds the
average number of nonreference and total reads per SNP across all
samples to this ratio, thus forcing the mapping bias of rare or low-
coverage SNPs closer to the average mapping bias.

Whole-Exome Copy Number Calling

Tumor coverages were calculated and GC-normalized using the
Coverage.R script with default arguments, analogous to the normal
coverages (Appendix Fig A1, red line). The PureCN.R script was then
used for the main copy number calling step that includes tumor purity
and ploidy inference as well as classification of somatic status and
clonality for all variants.15 The –postoptimize flag as well as all previously
mentioned reference files were provided. Variants in the UCSC simple
repeat track were excluded (–snpblacklist argument). Otherwise, default
parameters were used.

In brief, tumor versus normal log2–copy number ratio was first cal-
culated and denoised using tangent normalization (BeroukhimR, et al:
Nature 463:899-905, 2010), again independently for on- and off-
target regions. This was changed from older PureCN versions (, 1.8)
described previously,15 in which the nmost similar normals were used
for normalization of the tumor coverage. Since PureCN v1.10, mapping
bias of variants not found in the normal database is imputed by
averaging the mapping bias of the 5 neighbors on both sides,
weighting each of the 10 SNPs by corresponding number of samples in
the database. Then DNAcopy (Venkatraman ES, et al: Bioinformatics
23:657-663, 2007) was used for the segmentation of merged on- and
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off-target log2 ratios. Reliable germline SNPs present in the normal
database without major mapping bias were used to improve the seg-
mentation by Ward clustering and identification of copy-neutral loss of
heterozygosity (LOH). Candidate purity and ploidy combinations for the
segmented log2 ratios were identified in a 2D-grid search and sub-
sequently optimized using simulated annealing. Allelic variants were
finally fitted to all local optima, calculating somatic posterior probabilities
for all variants.

The likelihood model of PureCN has been described previously.15

PureCN versions . 1.8.0 differ in 2 minor details. First, the un-
certainty of copy number log2 ratio standard deviation is now included
in the optimization. This is an advantage in high-quality samples where
shifts in log2 ratio across chromosomes can sometimes exceed the
average noise within segments. Second, the observed sample ploidy
can differ from the true ploidy, especially in smaller gene panels that
cover only small fractions of the genome. Previously described PureCN
versions modeled this potential deviation as a function of the sample
noise, but this was changed to a function of tumor purity.

Classification of Variants by Somatic Status

Variants with a somatic posterior probability ≥ 0.8 were classified as
somatic, whereas those with a probability of ≤ 0.2 were classified as
germline. Although this cutoff may seem arbitrary and liberal, the
assumption is that such a classification of specific variants is mostly of
interest when additional information strongly suggests functional
significance, such as determined by in silico functional prediction tools
or as a result of location in hotspot domains of relevant genes. All
variants found in germline databases with small prior probability of
being somatic were excluded from benchmarking.

SGZ17 in version 1.0.0 was applied to all WES data. SGZ is methodo-
logically similar to PureCN but does not include the uncertainty of allele-
specific copy number in the posterior probability calculation and is not
correcting allelic fractions for nonreference mapping bias. Because SGZ
does not ship with a copy number tool, allele-specific copy number data
as generated by the PureCN callLOH function were provided. Variants
flagged by PureCN for recurrent presence in the pool of normals or for
high imputedmapping bias were excluded. The same set of variants was
thus used for both tools. Parameters of both tools including classification
cutoffs were specified before data analysis.

Tumor Mutational Burden

To call tumor mutational burden (TMB), defined as the number of
somatic mutations per megabase, Dx.R was run with the –callable and
–snpblacklist flags and otherwise default arguments, confining the
regions of interest to bases reliably callable by MuTect and excluding
simple repeats. Callable regions were obtained by GATK3 CallableLoci
with a minimum read depth of 30 (–minDepth argument) and oth-
erwise default parameters. Noncoding regions were excluded from the
CallableLoci output using FilterCallableLoci.R. Mutations with a pos-
terior probability . 0.5 for being somatic, and that were also not in-
cluded in germline databases and not flagged by PureCN, were
included in the TMB calculation. In the matched tumor and normal
TMB pipeline, somatic variants were assigned a prior somatic prob-
ability of 0.999 and germline SNPs a prior of 0.0001; otherwise,
identical parameters were used. Note that for TMB, we use a different
posterior probability cutoff of 0.5 instead of 0.8. The assumption here is
that assignment errors in the 0.2 to 0.8 range will roughly cancel each
other out. The inclusion of all variants is also important to avoid a bias in
which TMB is underestimated in higher purity samples where variant
classification is more difficult. Importantly, PureCN reports both so-
matic and private germline rates (number of SNPs per megabase not
found in the used germline database); clear outlier cases in private

germline rates, which should not show dramatic differences across
individuals, indicate that many of the uncertain variants were mis-
classified. In our experience, this is rare even in high-purity samples.

Mutational Signatures

Dx.R was run with the –signature argument that internally calls the
deconstructSigs R package.26 Somatic variant filtering was identical to
the TMB step, with the exception that noncoding regions were kept to
increase the number of mutations. Samples with ≤ 50 somatic mu-
tations were excluded as recommended,26 leaving 160 OV and 368
LUAD samples for analysis.

Terra Workspace

To make our copy number variant (CNV) analysis method easy to use
on new data, we built a shareable workspace on Terra (formerly known
as FireCloud) of the Broad Institute (Cambridge, MA). Currently, our
Tumor_Only_CNV workspace consists of 7 workflows, written in workflow
description language, and 5 Jupyter Notebooks, written in R. Workflows
cover the whole analysis process from the raw input files to final
outputs, with Notebooks describing the accessory data processing
and downstream analysis steps. The workspace (https://app.terra.bio/
#workspaces/waldronlab-sehyun/Tumor_Only_CNV) can be accessed
by logging into Terra with a Gmail account.

For public accessibility, our workspace is built on synthetic example
data, consisting of 92 normals and 8 tumors labeled as “neutral” and
“case,” respectively. Users can apply the Terra workspace to their own
data stored in Google Cloud Storage (Google, Mountain View, CA) or to
data already hosted by Terra, such as The Cancer Genome Atlas
(TCGA).

The 7 workflows are named based on the order of the processes and
the major tool used in each workflow. Three workflows with the prefix
“1_” can be run at the same time because they do not require any
output from other workflows as their input. Briefly, 1_PureCN_IntervalFile
generates an interval file from a BED file. 1_MuTect1_Variants_Calling
on tumor samples identifies germline SNPs and somatic mutations.
1_MuTect1_PON is applied to a pool of process-matched normals and
builds a single VCF containing variants present in more than a user-
defined number of samples, which is later used to filter nonreference
read mapping biases. 2_PureCN_Coverage runs separately on tumor
and process-matched normal samples to calculate GC-normalized
coverage. 3_PureCN_normalDB builds a normal database for cover-
age normalization. 4_PureCN_PureCN takes the assay-specific files
created from the previous workflows to normalize, segment, and de-
termine purity and ploidy of tumor samples. Finally, 5_PureCN_Dx
extracts copy number and mutation metrics from 4_PureCN_PureCN
output.

Four of the 5 notebooks cover preprocessing of input files. 1_Annotate_
Manifest demonstrates how to build sample manifest files when using
TCGA data, using GenomicDataCommons and TCGAutils R/Bioconductor
packages. 2_Build_Data_Table illustrates how to custom-subset data
in a proper format for the Terra data model. 3_Format_BED creates
a properly formatted BED file before it is used in the 1_PureCN_
IntervalFile workflow. 4_Download_SNP_Blacklist shows how to directly
download UCSC simple repeats, an input for the snpblacklist variable
of PureCN and Dx workflows. The final notebook, 5_Downstream_
Analysis, demonstrates how to extract major results from the analysis,
such as purity and ploidy estimates, LOH, and TMB. As a result of lack
of gene annotation in the synthetic example data, some outputs from
4_PureCN_PureCN and 5_PureCN_Dx are not available with synthetic
data sets. Instead, we provide a list of default outputs from one of the
ovarian cancer samples analyzed in this article.
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FIG A1. Copy number alterations analysis workflow. Raw input data files and the intermediate/processed data files are depicted as blue and gray oval
shapes, respectively. R scripts provided by PureCN are depicted by rose squares, and third-party tools are depicted by gray squares. Gray solid lines
indicate how the target region information is processed. Blue and red solid lines describe how normal and tumor BAM files are processed, respectively.
Dashed and solid teal lines show how germline single-nucleotide polymorphisms and somatic mutations were prepared with or without matched normal,
respectively.
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FIG A2. Purity and ploidy estimates using an alternative tool. Purity and ploidy estimates from paired whole-
exome sequencing (WES) data were obtained using FACETS. As in Figure 1, 233 ovarian cancer (OV) and
442 lung adenocarcinoma (LUAD) samples were analyzed and compared with ABSOLUTE calls. (A) Purity
and (B) ploidy estimates of OV. (C) Purity (436 cases are plotted because FACETS did not return a purity
estimate for 6 of the LUAD samples as a result of insufficient information) and (D) ploidy estimates of LUAD.
TCGA, The Cancer Genome Atlas.
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FIG A3. Concordance of PureCN and FACETS with ABSOLUTE. From 233 ovarian cancer (OV) and 436
lung adenocarcinoma (LUAD) cases, concordance was calculated of whole-exome sequencing (WES)–
based estimates from PureCN and FACETS with SNP6 array-based ABSOLUTE calls. Concordance was
defined as a purity difference, 0.1 and a ploidy difference, 0.5. Estimates agreed by all 3 methods (both,
orange); agreed by ABSOLUTE and PureCN only (PureCN, red); or agreed by ABSOLUTE and FACETS only
(FACETS, purple); or neither PureCN nor FACETS agreed with ABSOLUTE (neither, blue).
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FIG A4. Correlation of call rates and median sequencing coverage. Median coverage is plotted against call rate for
different purity ranges. LUAD, lung adenocarcinoma; OV, ovarian cancer.
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