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Abstract

The aim of this study was to measure the impact of genetic data in improving the prediction

of type 2 diabetes (T2D) in the Malmö Diet and Cancer Study cohort. The current study was

performed in 3,426 Swedish individuals and utilizes of a set of genetic and environmental

risk data. We first validated our environmental risk model by comparing it to both the Finnish

Diabetes Risk Score and the T2D risk model derived from the Framingham Offspring Study.

The area under the curve (AUC) for our environmental model was 0.72 [95% CI, 0.69–0.74],

which was significantly better than both the Finnish (0.64 [95% CI, 0.61–0.66], p-value

< 1 x 10−4) and Framingham (0.69 [95% CI, 0.66–0.71], p-value = 0.0017) risk scores. We

then verified that the genetic data has a statistically significant positive correlation with inci-

dence of T2D in the studied population. We also verified that adding genetic data slightly but

statistically increased the AUC of a model based only on environmental risk factors (RFs,

AUC shift +1.0% from 0.72 to 0.73, p-value = 0.042). To study the dependence of the results

on the environmental RFs, we divided the population into two equally sized risk groups

based only on their environmental risk and repeated the same analysis within each subpop-

ulation. While there is a statistically significant positive correlation between the genetic data

and incidence of T2D in both environmental risk categories, the positive shift in the AUC

remains statistically significant only in the category with the lower environmental risk. These

results demonstrate that genetic data can be used to increase the accuracy of T2D predic-

tion. Also, the data suggests that genetic data is more valuable in improving T2D prediction

in populations with lower environmental risk. This suggests that the impact of genetic data

depends on the environmental risk of the studied population and thus genetic association

studies should be performed in light of the underlying environmental risk of the population.

Introduction

Type 2 diabetes, the most common form of diabetes, is a rising healthcare problem worldwide.

The number of people affected with type 2 diabetes has risen significantly over the past 30

years. The global prevalence of diabetes among adults over 18 years of age has increased from
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4.7% in 1980 to 8.5% in 2014. This resulted in 1.5 million deaths due to diabetes, making it the

eighth leading cause of death [1].

As a multifactorial disease, the risk of developing T2D is determined by different types of

RFs. Behavioral and clinical RFs (together called environmental RFs in this article), as well as

genetic factors contribute to the development of T2D [2–3]. Numerous epidemiological stud-

ies have reported associations between behavioral and lifestyle RFs, such as diet, smoking,

physical activity and BMI, as well as blood and phenotypic markers, such as triglycerides, gen-

der and the development of T2D. Subsets of these RFs have been used to create phenotypic dia-

betes risk scores such as the risk score derived from the Framingham Offspring Study [4] and

the Finnish Diabetes Risk Score [5]. However, these risk scores do not incorporate genetic

data. For decades, scientists have been studying how variations in the genome contribute to

variations in disease risk. The association between genetics and the development of T2D has

been repeatedly reported through linkage analysis, twin studies and Genome Wide Association

Studies (GWAS). However, the genetic markers identified thus far have all shown low pene-

trance. Therefore, to accurately assess an individual’s risk of T2D one needs to consider all of

these factors. The risk assessments in this study are based on a multifactorial risk assessment

engine, named BaseHealth™ Risk Engine, which integrates the genetic and environmental RFs

to perform a disease risk assessment [6–7].

One of the limitations in the design of genetic studies, specifically GWAS, is the lack of

environmental risk stratification. In most studies a group of people who have been diagnosed

with T2D (cases) are assessed against a group of people who have not yet been diagnosed with

T2D (controls). However, there is typically no detailed risk stratification available within each

of these groups. Within a group of people with T2D there will likely be different levels of envi-

ronmental and genetic risk. The same applies to a group of people without T2D. Some will

likely have higher risk of developing T2D in the future due to either genetic or environmental

RFs. Not accounting for detailed stratification of environmental RFs when evaluating the effect

of genetic risk can affect the scope of interfacing between the environmental and genetic RF.

The purpose of this study is three-fold: (i) to investigate whether the incidence of T2D in a

Swedish cohort varies when stratifying the population by level of genetic and environmental

risk, (ii) to determine whether the impact of genetic predisposition varies across different envi-

ronmental risk groups and (iii) to determine whether adding genetic data improves the sensi-

tivity and specificity of an environmental type 2 diabetes risk assessment.

Materials and methods

Risk assessment engine (RAE)

The medical information and statistical data placed within the risk assessment engine from

BaseHealth™ are chosen after stringent filtration. The inclusion criteria for the environmental

[8–23] and genetic [24–52] studies include quality of the data (study design, sample size and

statistical methods), source of data, documented reproducibility, and correlation to either pro-

gression or prevention of type 2 diabetes. Reports based on expert consensus, guidelines, and

majority practice patterns were not included.

The process for selecting studies for environmental RFs is illustrated in Fig 1. A list of

potential RFs was compiled from four sources (UpToDate, Mayo Clinic, Wikipedia and

WebMD). Those RFs were scored based on how many of the sources included them. Based on

the resulting scores, RFs were accepted for literature search, rejected or reviewed by the physi-

cian group for a final decision. Literature searches of the MEDLINE database were performed

for each accepted RF from January 1990 through July 2015 using the MeSH term diabetes mel-
litus, type 2 plus MeSH terms and keywords for each RF. Searches used for each RF are listed
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in S1 File. To be considered for inclusion studies must (1) be observational cohort, cross-

sectional or case-control studies with type 2 diabetes as an endpoint (2) include a measure of

risk such as an odds ratio (OR) with confidence interval (3) have a quantifiable measure of the

RF and (4) be of sufficient sample size. Of the 608 abstracts screened, 85 full-text manuscripts

met all inclusion criteria after review. These 85 manuscripts were then scored on a number of

criteria including sample size, diversity of the population (in terms of age, ethnicity, gender

etc.), and employment of a well-adjusted model to narrow down the studies to a handful of

representative studies for each RF. A team of physicians reviewed the 36 highest scored manu-

scripts and selected 16 representative studies covering the 21 environmental RFs that were

modeled in the RAE.

The process for selecting single nucleotide polymorphisms (SNPs) associated with T2D for

inclusion in the RAE is illustrated in Fig 2. For studies prior to 2013 a database of GWAS stud-

ies was acquired from NextBio Inc. (Now part of Illumina Inc. www.illumina.com]. For studies

from January 2013 through July 2015 the NHGRI-EBI Catalog of published genome-wide

association studies (available at: www.ebi.ac.uk/gwas) was utilized to identify the studies of

interest. In some cases, references from studies found in one of the above databases were also

included. Studies were excluded if they didn’t meet a minimal sample size requirement and

SNPs were excluded if they did not reach GWAS significance (P-value< 5 × 10−8 in most stud-

ies). From 29 studies, 154 SNPs from any ethnicity were selected. Because the population for

this study was of European descent, SNPs found in other ethnicities were excluded leaving 53

SNPs. These SNPs were run through the SNP Analyzer Engine that scored them based on cri-

teria such as sample size of the study, p-value of the SNP and replication across multiple stud-

ies. 25 SNPs that were not replicated across multiple studies were excluded at the end of this

step leaving 28 SNPs. These 28 SNPs covered 24 LD blocks in people of European descent. The

Fig 1. A flow diagram on how environmental RFs for T2D were identified and representative studies

were selected to be modeled in the RAE. * Some RFs overlap between data sources.

https://doi.org/10.1371/journal.pone.0180180.g001

Fig 2. A flow diagram on how SNPs were selected for inclusion in the RAE.

https://doi.org/10.1371/journal.pone.0180180.g002
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SNPs in each LD block are ranked based on the scores assigned in the previous step. For 18

out of the 24 LD blocks the highest scoring SNP was available for the majority of individuals in

the MDC-CC data (� 80% individuals depending on the LD block). For one LD block the

highest scoring SNP was not available for any individual because it was not on Illumina’s

OmniExpress array used in this study, but the second highest scoring SNP was available for

the majority of the individuals (89% individuals). An individual needed to have data for all

these 19 LD blocks to be included in the analysis. For five of the LD blocks none of the SNPs

were available as they were not available on the array used in this study. As a result, these LD

blocks could not be used in the risk calculation. The SNPs were scored in each study they

appeared in and the OR was used from the highest scoring study.

The collection of selected studies was used to identify and validate the RFs and their associ-

ated effect sizes. Risk is quantified on the engine by an OR. We also considered studies report-

ing RF effect sizes in the form of a hazard ratio (HR) or a relative risk ratio (RR). In these

cases, HRs and RRs are considered an approximation of the true OR. RRs can be a reasonable

approximation for ORs (resulting in a relative error of 10% or less) when the prevalence of the

disease in the unaffected population is less than or equal to 10% and true ORs are less than or

equal to 2 [53]. These criteria are met by type 2 diabetes and the majority of the ORs that are

used in the analysis. For a subset of RFs in type 2 diabetes we did not find appropriate data

from published studies. In these cases, we built our own statistical models based on the

NHANES dataset [8] to calculate the effect sizes of the relevant RFs. ORs obtained for individ-

ual RFs are applied to calculate the overall OR at any given age. If an individual was taking

blood pressure or lipid-lowering medications at baseline, they were assigned the maximal OR

for the corresponding RFs. The health profiles of Malmö Diet and Cancer study participants

are submitted to the RAE and overall ORs are calculated for both affected and unaffected indi-

viduals as illustrated in Fig 3. S1A Table provides OR ranges for the 21 environmental risk fac-

tors used in the study. S1B Table provides allelic odds ratios for the SNPs used by the RAE.

Design and study population

The Malmö Diet and Cancer study (MDC) is a population-based, prospective study in which

inhabitants in Malmö born between 1923 to 1945 (males), or 1923 to 1950 (females), were

invited to participate. 28,449 accepted and attended a baseline examination between 1991–

1996. A random 50% sample of the participants examined in MDC between 1991–94

Fig 3. Illustration of the RAE used to assess the risk of type 2 diabetes in the MDC-CC. In this study,

T2D relative environmental and genetic risks are used.

https://doi.org/10.1371/journal.pone.0180180.g003
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(n = 12,445) were invited to also participate in a study on the epidemiology of carotid artery

disease, the cardiovascular cohort of the MDC (MDC-CC). 6,094 subjects accepted and under-

went a more detailed examination, which has been previously described [54]. Individuals were

excluded if they had prevalent T2D at baseline (n = 267) or had missing environmental RF

data (n = 1,287). This left 4,540 individuals who had sufficient environmental data and were

free of T2D at baseline. All the individuals (n = 497) with censored data were removed so the

population includes only individuals with known disease status at the end of the follow-up

period. These removed individuals include those who left the study before either receiving a

T2D diagnosis or the end of the follow-up period. The environmental and genetic ORs are not

significantly different between the excluded 497 individuals and the remaining 4,043 individu-

als for which the disease status is known at the end of the follow-up period (Two-sided t-test

p-values = 0.791 and 0.685 performed on the logarithm of the environmental and genetic odds

ratios, respectively). Six hundreds and seventeen individuals were then excluded due to miss-

ing genotyping data. The study then focused on the remaining group of 3,426 individuals with

the required genetic and environmental data (Tables 1 and 2) and who did not leave the study

with unknown T2D status. All of these individuals were free from diabetes at baseline and 402

developed T2D during the follow-up period. The 15-years incidence for diabetes was assessed.

Diabetes cases were retrieved using record linkage of the Swedish personal Identification

Code with six different national and regional diabetes registers: the Malmö HbA1c register

(MHR) (see definition below), having a diagnosis of DM registered in the nationwide Swedish

Table 1. Distribution of individuals across environmental data characteristics.

Risk factor Number of individuals (%)

Male 1,298 (37.9)

Female 2,128 (62.1)

Physical activity—Very low (MET-h/week) 3,238 (94.5)

Physical activity—Low (MET-h/week) 186 (5.4)

Physical activity—Moderate (MET-h/week) 2 (0.1)

Neither parent with T2D 3,337 (97.4)

One parent with T2D 89 (2.6)

Two parents with T2D 0 (0)

Never smoker 1,471 (42.9)

Past smoker 1,151 (33.6)

Current smoker—Sometimes 152 (4.44)

Current smoker—Regularly 652 (19.0)

MET, metabolic equivalent

https://doi.org/10.1371/journal.pone.0180180.t001

Table 2. The environmental data characteristics in the MDC-CC.

Risk factor Value (Mean ± SD)

Age (Baseline) 57.1 ± 5.93

BMI 25.6 ± 3.75

Alcohol (drinks/week) 5.15 ± 5.94

Systolic blood pressure (mmHg) 140 ± 18.3

Diastolic blood pressure (mmHg) 86.5 ± 9.24

Triglycerides (mmol/L) 1.32 ± 0.69

HDL-C (mmol/L) 1.41 ± 0.37

https://doi.org/10.1371/journal.pone.0180180.t002
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National Diabetes Register (NDR) [55] or the regional Diabetes 2000 register of the Scania

region of which Malmö is the largest city [56], or the Swedish National Patient Register, which

covers all somatic and psychiatric hospital discharges and Swedish Hospital-based outpatient

care [57], or having diabetes as a cause of death in the Swedish Cause-of-Death Register [58],

or having been prescribed anti-diabetic medication as registered in the Swedish Prescribed

Drug Register [59].

The MHR analysed and catalogued all HbA1c samples at the Department of Clinical Chem-

istry taken in institutional and non-institutional care in the greater Malmö area from 1988

onwards. Individuals who had at least two HbA1c recordings�6.0% in the MHR using the

Swedish Mono-S standardization system (corresponding to 7.0% according to the US National

Glycohemoglobin Standardization Program [NGSP]) were considered as having diabetes.

In addition, diabetes at the baseline examination of MDC was obtained by self-report of a

physician diagnosis or use of antidiabetic medication according to a questionnaire, or fasting

whole blood glucose of� 6.1 mmol/L (corresponding to fasting plasma glucose concentration

of�7.0 mmol/L). Furthermore, a diabetes diagnosis could be captured at the MDC-CC re-

investigation by self-report of a physician diagnosis or use of DM medication according to a

questionnaire or fasting plasma glucose of� 7.0 mmol/L or a 120-min value post OGTT

plasma glucose> 11.0 mmol/L [60]. Finally, a diabetes diagnosis could be captured by fasting

plasma glucose of� 7.0 mmol/L which was analyzed in a re-investigation of about 1/3 of the

MDC participants who also participated in the Malmö Preventive Project [61].

All participants provided written consent and the study was approved by Regional Ethical

Review Board in Lund, Sweden.

Genotyping

Genotyping of the MDC-CC was made using the HumanOmniExpressExomeBeadChip and

iScan system (Illumina, San Diego, CA, USA) analyzing 850,000 common, low frequency and

rare SNPs. 5,451 individuals were successfully genotyped, i.e. passed our QC criteria. Criteria

for excluding SNPs and study participants are presented in S2 Table.

Statistical analysis

The environmental and genetic (SNP) data for each individual was submitted to the RAE. The

RAE engine identifies the OR for each risk factor based on the study used to represent that RF.

An aggregate environmental OR was calculated for each individual by multiplying the ORs

from individual environmental RFs. An aggregate genetic OR was calculated for each individ-

ual by multiplying the ORs from individual SNPs. In the models including both environmental

and genetic factors, the aggregate odds ratio based on the environmental and genetic risk fac-

tors are multiplied together to get the final odds ratio.

The aggregate environmental and genetic odds ratios were used to divide the population

into environmental and genetic risk groups. In deciding the number of environmental and

genetic categories, we tested multiple combinations including all the combinations that split

them into either two or three risk groups. While all combinations showed the same trend, the

case of 2 environmental and 3 genetic categories most clearly demonstrated the results. The

population was split into two equally sized environmental risk groups, named ERG1, ERG2,

using the median environmental odds ratio in the cohort. Independently, the aggregate genetic

odds ratios were used to divide the population into three equally sized genetic risk groups

using tertiles of the genetic odds ratios in the population. The three subpopulations are named

GRG1, GRG2 and GRG3. This categorization provides a total of six risk groups an individual

can be assigned to. The analysis is performed on 10,000 samples (with replacement) from the
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original population. The result is used to calculate bootstrap confidence intervals and p-values

for the measures reported in this study.

Results

The characteristics of the 3,426 individuals from the MDC-CC used in this study are shown in

Tables 1 and 2. Among the 21 environmental RFs and 154 genetic RFs that were utilized by the

RAE for its T2D assessment, data for only 13 environmental and 139 genetic RFs was available

from the MDC-CC (Tables 3 and 4). The 139 genetic RFs (SNPs) span 19 LD blocks in people

of European descent. The RAE has a ranking system that scores SNPs in each LD block and

selects the highest scoring SNP with available data in each LD block for use in the risk assess-

ment. In 18 of the covered 19 LD blocks the data for the highest scoring SNP was available for

the majority of the individuals. In one of the LD blocks the data for the highest scoring SNP

was not available and thus the data for the second highest scoring SNP was picked by RAE. For

an individual to be included in the analysis they must have data for SNPs in all 19 LD blocks.

The list of SNPs used in the risk assessment are presented in Table 5.

Evaluation of the environmental odds ratios

To evaluate the performance of the RAE’s environmental model, we calculated the AUC based

only on the environmental ORs and compared it with the AUCs obtained with two well-

known T2D scores, the Framingham score [4] and the Finnish score [5] for our population.

The AUCs for each model are presented in Table 6. The AUC of the RAE is significantly higher

Table 3. List of environmental RFs available in the RAE and the MDC-CC.

Risk Factor RAE Data MDC-CC Data

Age Yes Yes

Alcohol Yes Yes

BMI Yes Yes

Coffee consumption Yes No

Ethnicity Yes Yes

Family history Yes Yes

Gender Yes Yes

Gestational diabetesa Yes No

HDL Yes Yes

Hypertension* Yes Yes

Passive smoker Yes No

Past smoking Yes Yes

Physical activity Yes Yes

Polycystic ovary syndromea Yes No

Processed meat Yes No

Red meat Yes No

Smoking Yes Yes

Soft drinks Yes No

Triglyceride Yes Yes

Vitamin D Yes No

Waist circumference Yes Yes

*Hypertension risk includes either elevated systolic or diastolic blood pressure
a Female only RF

https://doi.org/10.1371/journal.pone.0180180.t003
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than both the Framingham and Finnish scores (Bootstrap p-values 0.0017 and< 1 x 10−4,

respectively).

Comparison of SNP odds ratios

For the 19 representative SNPs used in the RAE’s genetic risk assessment, an OR was calcu-

lated from the MDC-CC for comparison. For the purpose of this comparison, we did not

exclude MDC-CC individuals that had prevalent T2D at baseline or did not have sufficient

environmental RF data in order to retain more T2D cases. The ORs for 16 SNPs (rs17106184,

rs1020731, rs9502570, rs849135, rs1111875, rs243021, rs1801282, rs4402960, rs7756992,

rs7903146, rs1552224, rs1387153, rs4275659, rs702634, rs231362, and rs9936385) were in the

same direction in the RAE and the MDC-CC data. The mismatched OR effects for the other 3

SNPs (rs972283, rs10811661 and rs13266634) were only slightly different between the 2 groups

(Fig 4). The ORs for rs972283 rs10811661 and rs13266634 were 1.04, 1.09 and 1.01 in the

MDC-CC compared to 0.93, 0.85 and 0.86 in the RAE.

Table 4. Number of available environmental and genetic RFs in the RAE and the MDC-CC.

RAE Data MDC-CC Data

Environmental RFs 21 13

Genetic RFs 154 139

All genetic markers are single nucleotide polymorphisms (SNPs)

https://doi.org/10.1371/journal.pone.0180180.t004

Table 5. The nineteen unique SNPs that were picked and used by RAE for T2D genetic risk assessment.

SNP Gene Chromosome SNP Rank In The Underlying LD Block

rs17106184 FAF1 1 Highest Scoring

rs1020731 RBMS1 2 Highest Scoring

rs9502570 Intergenic 6 Highest Scoring

rs849135 JAZF1 7 Highest Scoring

rs1111875 Intergenic 10 Highest Scoring

rs243021 Intergenic 2 Highest Scoring

rs1801282 PPARG 3 Highest Scoring

rs4402960 a IGF2BP2 3 Highest Scoring

rs7756992 CDKAL1 6 Highest Scoring

rs7903146 b TCF7L2 10 Highest Scoring

rs1552224 ARAP1 11 Highest Scoring

rs1387153 Intergenic 11 Highest Scoring

rs4275659 ABCB9 12 Highest Scoring

rs702634 ARL15 5 Highest Scoring

rs231362 KCNQ1 11 Highest Scoring

rs9936385 FTO 16 Highest Scoring

rs972283c Intergenic 7 Highest Scoring

rs10811661 c Intergenic 9 Highest Scoring

rs13266634 c SLC30A8 8 Second Highest Scoring

a The second highest scoring SNP in this LD block (rs1470579) was used for 5 individuals in which genotyping failed for the highest scoring SNP.
b The second highest scoring SNP in this LD block (rs7901695) was used for 8 individuals in which genotyping failed for the highest scoring SNP.
c SNPs that showed an opposite odds ratio direction (increased risk vs. decreased risk) in the MDC-CC and the RAE.

https://doi.org/10.1371/journal.pone.0180180.t005
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Interaction between environmental and genetic risk

To measure the interaction between the genetic and environmental data, first two equally

sized (n = 1,713) environmental risk groups (ERG1 and ERG2) were created using the median

environmental odds ratio in the cohort. The median of the environmental ORs was 68.32,

which is relatively large due to the effect of the age OR. The reference age for calculating the

age OR is 20 years and all the individuals are at least 61 years old at the end of the follow-up

period. Then, Pearson correlations between the genetic odds ratios and the case status of inci-

dent T2D were measured in ERG1 and ERG2 individually as well as in the full cohort. There

were minor but significant correlations for all groups with coefficients of 0.086, 0.070, and

0.071 in ERG1 ([95% CI, 0.030–0.127], P-value = 2.8 x 10−3), ERG2 ([95% CI, 0.019–0.110],

P-value = 7.8 x 10−3), and ERG1+ERG2 ([95% CI, 0.034–0.099], P-value = 2 x 10−4) respec-

tively (Table 7).

Independently from the environmental risk groups, three equally sized (n = 1,142) genetic

risk groups (GRG1, GRG2, and GRG3) were created based on the tertiles of the genetic odds

ratios in the population. The genetic OR cutoffs used for this categorization were 0.755 and

1.049. This results in six combinations of environmental and genetic risk that each individual

can be assigned to. Fig 5 plots 15-year incidence of T2D in each combination of risk groups.

Within environmental risk group 1, the 15-year T2D incidence in genetic risk group 3 was

0.082 [95% CI, 0.059–0.097] compared to 0.033 [95% CI, 0.020–0.045] and 0.044 [95% CI,

0.028–0.057] in genetic risk groups 1 and 2 respectively (Table 8). When the same calculation

Table 6. Comparison of the RAE’s environmental model with two well-known environmental risk

scores for T2D.

Environmental Risk Score AUC P-value

RAE 0.72 (0.69, 0.74) —

Framingham 0.69 (0.66, 0.71) 0.0017

Finnish 0.64 (0.61, 0.66) < 1 x 10−4

https://doi.org/10.1371/journal.pone.0180180.t006

Fig 4. Relationship between the ORs for the 19 selected SNPs for type 2 diabetes in the RAE and the

MDC-CC.

https://doi.org/10.1371/journal.pone.0180180.g004
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was done for the individuals in environmental risk group 2, the 15-year incidences were almost

the same in genetic risk group 2 (0.193 [95% CI, 0.159–0.216]) and 3 (0.194 [95% CI, 0.164–

0.220]) and just slightly different from risk group 1 (0.158 [95% CI, 0.129–0.181]) (Table 8).

Table 9 demonstrates p-values evaluating the significance of the difference in T2D incidences

between each pair of genetic risk groups. The analysis is performed separately for each envi-

ronmental risk group. As demonstrated in Table 9, the difference between the incidence of

T2D in genetic risk group 3 and genetic risk groups 1 and 2 is significant only in the environ-

mental risk group 1. This result implies the impact of genetic data on the incidence of type 2

diabetes might be different across different environmental risk groups, and thus the

Table 7. The correlation between genetic data and type 2 diabetes status in the MDC-CC.

Environmental Risk Group (ERG) r (95% CI) P-value (r 6¼ 0)

ERG1 & ERG2 0.071 (0.034, 0.099) 2 × 10−4

ERG1 0.086 (0.030, 0.127) 2.8 × 10−3

ERG2 0.070 (0.019, 0.110) 7.8 × 10−3

ERG1 contains the individuals with total environmental ORs below the median environmental risk. ERG2

contains those above the median risk. ERG1 & ERG2 is the entire cohort.

https://doi.org/10.1371/journal.pone.0180180.t007

Fig 5. The type 2 diabetes 15-year incidence stratified by environmental and genetic risk groups in the

MDC-CC. ERG1 contains the individuals with total environmental ORs below the median environmental risk. ERG2

contains those above the median risk. GRG1 has the individuals in the lowest tertile of total genetic risk, while GRG2

and GRG3 are the tertiles with moderate and high genetic risk individuals respectively.

https://doi.org/10.1371/journal.pone.0180180.g005
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environmental risk level of an individual should be accounted for when evaluating the risk due

to genetic factors.

Effect of genetic data on increasing the quality of T2D incidence

prediction

As mentioned earlier, the RAE is used to get both an environmental and a genetic OR for each

individual in the cohort. To assess the value of adding genetic data in increasing the quality of

risk predictions based on an environmental model, the AUC was calculated for the environ-

mental odds ratios alone and for the combined environmental and genetic odds ratios. The

AUC for the environmental only model was 0.72 [95% CI, 0.69–0.74] and when the genetic

data was added the AUC increased by 1% to 0.73 [95% CI, 0.70–0.75] (Table 10). This

improvement was statistically significant (P-value = 0.042). We verified that practically the 1%

improvement in the AUC will result in approximately 2% improvement in sensitivity or speci-

ficity of T2D incidence predictions in the MDC-CC.

Next, we studied how the value of genetic data in improving the quality of T2D predictions

varies in different environmental risk groups. To this end, we performed the above analysis

separately in ERG1 and ERG2. As shown in Table 10, there is a positive shift of 5% in AUCs in

ERG1 and this shift is statistically significant (P-value = 0.029). There is also a positive shift of

1% in AUCs in ERG2 but the shift is not statistically significant (P-value = 0.248). This result

supports the hypothesis that the value of genetic data is higher in populations with lower envi-

ronmental risk levels.

The environmental factors used in this study did not include family history of diabetes. To

compare the impact of genetic and family history data in improving the quality of risk assess-

ment based only on environmental RFs, we calculated AUC in a model that consists only of

Table 8. The 15-year type 2 diabetes incidence across different environmental and genetic risk

groups.

GRG 1 (95% CI) GRG 2 (95% CI) GRG 3 (95% CI)

ERG 1 0.033 (0.020, 0.045) 0.044 (0.028, 0.057) 0.082 (0.059, 0.097)

ERG 2 0.158 (0.129, 0.181) 0.193 (0.159, 0.216) 0.194 (0.164, 0.220)

Risk groups are the same as shown in Fig 5.

https://doi.org/10.1371/journal.pone.0180180.t008

Table 9. P-values evaluating the significance of difference between 15-year incidences of T2D in dif-

ferent genetic risk groups.

GRG 3 6¼GRG 1 GRG 3 6¼GRG 2 GRG 2 6¼GRG 1

ERG 1 0.0011 0.0138 0.379

ERG 2 0.0952 0.841 0.154

Data is provided separately for environmental risk groups 1 and 2.

https://doi.org/10.1371/journal.pone.0180180.t009

Table 10. The AUC after running the RAE utilizing environmental data alone and combined with the genetic data.

Environmental Risk Group AUC (Environmental Only) AUC (Environmental + Genetic) P-value

ERG1 & ERG2 0.72 (0.69, 0.74) 0.73 (0.70, 0.75) 0.042

ERG1 0.58 (0.52, 0.62) 0.63 (0.57, 0.67) 0.029

ERG2 0.65 (0.62, 0.68) 0.66 (0.63, 0.69) 0.248

https://doi.org/10.1371/journal.pone.0180180.t010

Utilization of genetic data can improve the prediction of type 2 diabetes incidence in a Swedish cohort

PLOS ONE | https://doi.org/10.1371/journal.pone.0180180 July 12, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0180180.t008
https://doi.org/10.1371/journal.pone.0180180.t009
https://doi.org/10.1371/journal.pone.0180180.t010
https://doi.org/10.1371/journal.pone.0180180


environmental RFs and family history data (at the absence of genetic data). The resulting AUC

was 0.72 [95% CI, 0.70–0.74]. The difference between this and the AUC obtained with the

model including only environmental RFs is not significant (P-value = 0.333). This result sup-

ports the hypothesis that the genetic data has more value in increasing the quality of T2D pre-

dictions than family history data. A point to note, however, is that the prevalence of family

history of T2D is low in the studied cohort (2.6% compared to previously reported values of

~20–40% [8, 16]). Further experiments are needed to compare the effects of genetic and family

history data in improving the prediction of T2D.

Discussion

Our objective with this study was to measure the effect of utilizing both genetic and environ-

mental data to predict the incidence of type 2 diabetes in a Swedish cohort. Frequently, studies

of human health and common complex diseases have focused on identifying either genetic or

environmental RFs that could explain variation in disease susceptibility. Type 2 diabetes is a

multifactorial disease caused by both genetic and environmental RFs. Therefore, it’s important

to have the ability to accurately measure the impact of each RF individually and in combina-

tion with other RFs.

We aimed to apply the risk assessment engine to evaluate the T2D risk of individuals in the

MDC-CC. We found that 62% of the environmental factors that are used by the RAE were

available in the data for the MDC-CC. The environmental model used by the RAE performed

significantly better than two existing T2D risk scores (Framingham and Finnish). Of the 24

LD blocks typically used by the RAE for the T2D genetic risk assessment, data for 19 LD blocks

was available for the MDC-CC. Among the 19 representative SNPs that were used for the anal-

ysis, 16 of them showed the same odds ratio direction (increased risk/decreased risk) for T2D

in the MDC-CC as in the RAE. The 3 SNPs whose ORs’ direction didn’t match (increased risk

/decreased risk) had ORs of 1.04, 1.09 and 1.01 in MDC-CC compared to 0.93, 0.85 and 0.86

in the RAE. This slight difference in ORs for these SNPs between the two data sets could be

due to the specific ethnicities studied in each dataset or just due to the random nature of the

studies.

To study the interaction between genetic and environmental RFs, the MDC-CC was

divided into two environmental risk groups. It was demonstrated that there is a positive corre-

lation between genetic risk predisposition and incidence of type 2 diabetes in the whole popu-

lation as well as in each of the two environmental risk groups. This implies the correlation

between the genetic risk predisposition and incidence of type 2 diabetes holds regardless of the

non-genetic risk group of the individual.

Independent from environmental risk groups, the population was divided into three genetic

risk groups. After measuring the incidence of T2D in each of the risk categories, the effect of

genetics on type 2 diabetes is more pronounced in individuals who do not carry many envi-

ronmental RFs as compared to those who are at higher risk due to environmental factors. This

indicates that genotyping individuals who are already at high-risk for type 2 diabetes due to

their environmental RFs is of lesser value for their T2D risk stratification. Furthermore, it was

demonstrated that even those phenotypically high-risk individuals who have the lowest possi-

ble genetic risk will still have higher type 2 diabetes risk than individuals who have high genetic

risk but few environmental RFs. This finding is in concordance with previous findings about

the effect of environmental RFs on the appearance of type 2 diabetes in various populations

and how reduction of these RFs can minimize the total risk of developing T2D [6–7].

In order to evaluate whether the addition of genetic data increases the quality of predictions

beyond what is achievable by environmental RFs, AUCs were calculated in the presence and
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absence of genetic odds ratios. It was demonstrated that adding genetic data results in a minor

but significant positive shift in the AUC. The resulting AUCs were 0.72 [95% CI, 0.69–0.74]

for the model including environmental RFs only and 0.73 [95% CI, 0.70–0.75] for the model

including both genetic and environmental RFs. Talmud et al. [62] studied the effect of adding

genetic data to an environmental risk prediction by combining a 65 SNP genetic risk score

and the Framingham Offspring diabetes risk score. The combined risk score improved the

AUC by 1% over the Framingham risk score alone (from 0.75 to 0.76), which is the same

we saw when adding the genetic model to the RAE despite using fewer SNPs. Although their

phenotypic and combined AUCs were slightly higher, when we tested the Framingham risk

score on our population it performed significantly worse than the RAE’s environmental risk

model.

Two factors in our study make this prediction problem challenging. One factor is the time

horizon of the study is relatively long (15-years) and the other factor is that all participants are

relatively old, between 61–83 years old at the endpoint. To compare the effect of genetic data

with family history data, we repeated the above experiment with the genetic data being

replaced with the family history data. We noticed the increase in the AUC with family history

data is no longer significant. This result supports the hypothesis that genetic data is more valu-

able than family history data in improving the T2D incidence prediction. A point to note is

that the prevalence of family history of T2D is low in the studied cohort (2.6% compared to

previously reported values of ~20–40% [8,16]). The low prevalence of family history among

the diabetic patients in the MDC-CC may be due to some missing family history data in the

cohort. Further experiments are needed to establish the relative values of genetic and family

history data in improving the prediction of T2D.

To study the value of genetic data in improving T2D prediction in different environmental

risk groups, we studied the additional value of genetic data separately in risk categories ERG1

and ERG2. Specifically, we calculated AUCs of a model based on environmental RFs at the

presence and absence of genetic data separately in each of the risk categories ERG1 and ERG2.

We demonstrated that the increase in the AUC is statistically significant only in the ERG1.

This finding again supports the hypothesis that the value of genetic data in improving the pre-

diction of incident T2D is higher in populations that are at lower environmental risk for T2D.

The values of AUC are lower in each of the risk categories ERG1 and ERG2 compared to the

whole population. That is because, by design, individuals in each of these risk categories are

similar in terms of their environmental risk scores making it difficult to use their environmen-

tal risk scores to determine their risk for a certain condition.

In conclusion, the results of this study demonstrate that inclusion of genetic data in a com-

prehensive risk assessment engine can make a slight improvement in predicting type 2 diabetes

incidence compared to environmental factors alone. We believe addition of new reliable

genetic markers that will be discovered in future might increase the level of association

between genotypic and phenotypic data for T2D. In this study, the genetic data brought higher

value in individuals with a lower environmental risk. Even those individuals who have genetic

predisposition for the disease can reduce their total disease risk by managing environmental

RFs. Although genetic predisposition for a disease is something that cannot be modified, the

power of knowing that information can help the individual be more thoughtful about manag-

ing and controlling the associated environmental RFs. The recognition that environmental fac-

tors that increase risk for type 2 diabetes may be also driven by genetic factors and modified by

environmental factors patterns a rich yet complex paradigm for designing additional testing

intervention strategies in the future.
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