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Abstract 
 
Background: Cervical cancer screening programs are poorly implemented in LMICs due to a shortage of 

specialists and expensive diagnostic infrastructure. To address the barriers of implementation researchers have 

been developing low-cost portable devices and automating image analysis for decision support.  

However, as the knowledge base is growing rapidly, progress on the implementation status of novel imaging 

devices and algorithms in cervical cancer screening has become unclear. The aim of this project was to provide 

a systematic review summarizing the full range of automated technology systems used in cervical cancer 

screening. Method: A search on academic databases was conducted and the search results were screened by 

two independent reviewers. Study selection was based on eligibility in meeting the terms of inclusion and 

exclusion criteria which were outlined using a Population, Intervention, Comparator and Outcome framework. 

Results: 17 studies reported algorithms developed with source images from mobile device, viz. Pocket 

Colposcope, MobileODT EVA Colpo, Smartphone Camera, Smartphone-based Endoscope System, 

Smartscope, mHRME, and PiHRME. While 56 studies reported algorithms with source images from 

conventional/commercial acquisition devices. Most interventions were in the feasibility stage of development, 

undergoing initial clinical validations.  

Conclusion: Researchers have proven superior prediction performance of computer aided diagnostics 

(CAD) in colposcopy (>80% accuracies) versus manual analysis (<70.0% accuracies). Furthermore, this review 

summarized evidence of the algorithms which are being created utilizing portable devices, to circumvent 

constraints prohibiting wider implementation in LMICs (such as expensive diagnostic infrastructure). However 

clinical validation of novel devices with CAD is not yet implemented adequately in LMICs. 
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Introduction  

 
Cervical cancer remains a critical public health issue, particularly in low- and medium-income countries (LMICs), 

where it is the second highest cause of mortality among women [1]. The World Health Organization (WHO) 

highlighted that of the estimated 604,000 new cases in 2020, 90% were in LMICs, with South Africa experiencing 

disproportionately higher rates partly due to the high prevalence of HIV [2,3]. This is underscored by the age-

standardized mortality rates in South Africa being 7 to 10 times higher than in developed countries [5]. A notable 

disparity exists between LMICs and developed countries in cervical cancer incidence and mortality rates, largely 

attributed to the lack of organized population screening in resource-limited settings [1,5]. 

The preventability of cervical cancer through early detection of pre-malignant lesions underscores the 

importance of effective screening programs. However, in LMICs, common challenges such as limited specialist 

availability and the high cost of diagnostic equipment, particularly in colposcopy and cytology, impede the 

implementation of effective screening strategies [9]. This has led to a high burden of preventable cervical cancer 

cases [5]. 

Addressing these challenges, researchers are developing low-cost, portable equipment, some 

incorporating automated image analysis for diagnostic support [6]. These technological advancements hold 

promise in mitigating the screening challenges by offering cost-effective and accessible solutions. However, the 

landscape of such automated technology systems for cervical cancer screening is not well-understood, with 

existing literature being fragmented and lacking in comprehensiveness [6]. Review literature often misses 

emerging technologies, especially those incorporating automated digital image analysis algorithms across 

various optical screening domains. 

 

Contextualizing Cervical Cancer Screening Challenges in LMICs 

 
The cervical cancer screening landscape in LMICs is marked by significant challenges that impede the effective 

prevention and management of this disease.  Maimela et al. [3] reported that in South Africa, the time from 

cytology (pap smear) to colposcopy can exceed six months, leading to delayed care and increased mortality from 

preventable cervical cancer. This critical delay in treatment is attributed to the limited availability of colposcopy 
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services at the primary healthcare level, constrained by limited budgets for specialized clinical equipment and a 

scarcity of specialist gynaecologists [1, 3]. As a result, colposcopy service provision is often confined to tertiary-

level facilities, creating significant access barriers.  

The constraints in healthcare service delivery, spanning cytology, colposcopy, and histopathology, are 

multifaceted. In cytology and histopathology, the reliance on manual slide analysis by cytotechnologists or 

pathologists is particularly challenging. This process is time-consuming and prone to reader variability errors [10, 

11, 12], which compounds the difficulties faced in implementing effective cervical cancer screening programs in 

LMICs as recommended by the WHO [13]. 

Commercially available cytology scanners like ThinPrep® Imaging System and BC Focal Point™ GS 

Imaging System, and histopathology scanners like Aperio are known for their effectiveness. However, their high 

purchase and operational costs [15, 16, 17] make these effective technologies impractical for widespread use in 

mass screening programs in LMICs. This financial barrier is a significant challenge not only in the realm of 

cytology and histopathology but extends across all cervical cancer screening domains. 

In response to these challenges, researchers have developed inexpensive portable equipment in 

colposcopy [18], cytology [16], and histopathology [17], some of which have incorporated automated image 

analysis to provide diagnostic decision support. The developers of MobileODT [23], Pocket colposcope [24], and 

Gynocular [25] have recently announced on their respective websites that research into building automation 

functionality into the companies’ product portfolio has begun. These innovations address not only the challenges 

of specialist availability but also the issue of equipment costs. 

Systematic reviews, such as those by Rossman et al. [19], Allanson et al. [20], and others have 

provided valuable insights into digital interventions and the accuracy of specialists’ interpretations using various 

imaging devices. However, many of these reviews have overlooked the broader application and potential of 

comprehensive decision support technology systems, which include a combination of acquisition devices and 

computer aided diagnosis (CAD) algorithms [21-22]. This omission signifies a gap in fully understanding the 

landscape of emerging technologies, particularly those still in development or undergoing proof-of-concept 

investigations. Moreover, systematic reviews of CAD algorithms in colposcopy, cytology, and histopathology, 
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such as those by Fernandes et al. [26], Conceicao et al. [27], and de Matos et al. [28], have often focused on 

model development in a single domain in isolation. This narrow focus leaves out the contextualization of 

acquisition devices suitable for large-scale screening programs in LMICs that could be paired with CAD 

algorithms.  

Our systematic review aims to address this research gap by covering three domains (colposcopy, 

cytology, and histopathology) in which CAD algorithms are applied. This multi-domain approach allows for the 

identification of all automated technologies relevant to optical cervical cancer screening, thus making it more 

comprehensive than similar prior works. Unlike earlier reviews that only covered model development, this review 

includes a holistic view of the technology system in order to address both infrastructure and specialist availability 

challenges in LMICs. This could aid clinical researchers and policymakers in making informed decisions about 

integrating these technologies into community screening programs or clinical trials, particularly in LMIC contexts. 

 

1. Methodology  

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed 

in executing the methodology [29]. Hence, a Prospero record (ID: CRD42022303174) was registered defining a 

clear search strategy based on PICO, which was applied on five main academic databases (PubMed, Scopus, 

EBSCOhost, Web of Science and Google Scholar). The academic database search was conducted between 

January – May 2022.  This combination of databases is inclusive of American, European, and African 

publications; thus, ensuring that relevant research from LMICs was not overlooked throughout the search. 

Furthermore, Google search and Google Scholar (first 10 pages) were used to search grey literature and 

additional articles discovered from reference lists. Grey literature search was conducted between January – June 

2022. The default Google search engine language setting was English and geography setting was South Africa. 

Searches were also conducted on the following patent search engines: Espacenet, Patent Public Search, Japan 

Patent Office, Yandex, and Baidu. Patent searches were conducted between July – August 2023. 

PICO framework 
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The search philosophy was developed using key words and phrases formulated according to the Population (P), 

Intervention (I), Comparator (C), Outcome (O)  framework [30]. The detailed PubMed search strategy with the 

number of search hits returned is presented in Supplementary Table 1. 

Inclusion and exclusion criteria 

Inclusion and exclusion criteria were defined during registration of the review for each component of the PICO 

framework, then used in study selection during screening.  

For the Population/Participants component, studies involving both expert clinicians, such as gynaecologists, 

colposcopists, cytologists, histopathologists, as well as generalist healthcare professionals such as nurses at 

primary healthcare centres were included. The study subject had to be women receiving cervical cancer 

screening services. Studies with women who had been confirmed to have invasive cancer were excluded 

because those studies focused on staging interventions which were outside the scope of this systematic review.  

For the Intervention component, studies investigating CAD-enabled cervical cancer screening technology 

systems were included. The relevant optical acquisition devices were those used to perform colposcopy, micro-

endoscopy, Visual Inspection using Acetic Acid (VIA), or  Visual Inspection using Lugol’s iodine (VILI); cytology; 

and histopathology. Thus, studies applying radiographical or ultrasonic medical imaging modalities, such as PET, 

CT, MRI, X-ray, and ultrasound were excluded because the images from these modalities are not used for 

cervical cancer screening. Studies using non-image datasets were excluded because the focus of this research 

was on image analysis.  

For the Comparator component, studies that were included were those that measured the performance of 

automated interventions against the following comparators: 1) histopathological results 2) HPV results, 3) 

cytology expert judgement, 4) colposcopy expert judgement and/or 5) alternative state-of-the-art CAD algorithms. 

Studies without ground truth or alternative comparators were excluded since such studies preclude the 

determination of the effectiveness of proposed intervention(s).  

For the Outcome component, studies whose algorithms achieved segmentation of objects/regions and/or 

the algorithms discriminating between binary classes or multiple classes were included. Studies conceptualizing 

CAD algorithms without implementation of said CAD algorithms on an image-based dataset were excluded, 

because those studies would not have had proven outcomes relevant to this systematic review. Thus, review 
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papers and other systematic reviews were excluded from analysis. However, systematic review publications 

played a crucial role in shaping the research justification and identifying any critical interventions that the initial 

search might have overlooked, thus reinforcing this review's foundation and comprehensiveness.  

This systematic review excluded studies whose full text was not accessible due to university subscription 

constraints or lack of responses from authors who were contacted requesting access to full text papers. 

 Screening and Data extraction 

Two reviewers worked independently to screen 566 publications, critically appraising the titles and abstracts of 

studies, using the above inclusion and exclusion criteria, then appraising full text articles. A third reviewer made 

the final decision when there were conflicting decisions. Based on inclusion criteria, 73 articles were deemed 

eligible for data extraction. These included articles are listed in Supplementary Table 2. Figure 1 summarizes the 

selection process using the PRISMA flow diagram.  

Data extraction and study quality assessment tools (adapted from Cincinnati Children’s LEGEND guideline and 

JBI critical appraisal checklist for diagnostic test accuracy studies) were developed to minimise risk of bias.  

2. Results  

Population analysis  

The study methodologies of 49 authors contained information about specialists and women participating in the 

research. In contrast, 24 authors did not divulge information about the women participating in the research, but 

only mentioned the type of clinicians involved. N=30 studies included women from LMICs as the target 

population in the methodology (Figure 2 shows the geographical breakdown of populations). Specialists 

performed the screening examination for the majority of the studies (n= 47). Two studies, Cholkeri-Singh et al. 

[31] and Peterson et al. [32] reported nurse participation in the application of their automated colposcopy 

interventions. 
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Intervention analysis  

The intervention analysis involved the development of a tabulated data narrative tool, which was populated with 

information about the interventions reported in included studies. The narrative tool was inspired by a review 

paper by Fernandes et al. [26] which presented numerous study datapoints by using a pipeline framework of the 

main CAD tasks involved in the development of algorithms for colposcopy domain. Based on the research 

question in this systematic review, there was motivation to understand how a pipeline for cytology that was 

outlined by Conceicao et al. [27], and a pipeline for histopathology that was outlined by de Matos et al. [28] 

differed from the colposcopy pipeline. This analysis approach resulted in extensive information that needed 

sorting and structuring; thus, the need for a narrative tool presented in Table 1. 

The CAD pipelines in all three cervical cancer screening domains can all be described the same way, as 

indicated by the themes grouped as ‘Specific innovation feature, or CAD task’ in Table 1. Some authors’ 

contributions spanned the entire automation pipeline from acquisition to classification (n=17), while other 

contributions covered a portion of the pipeline via standalone algorithms (n=56).  

 Variations in contributions became evident when looking at functional purpose and other characteristics of 

interventions. This was not surprising because the design of an algorithm depends on the properties of the 

images being analysed, which vary considerably between domains. 

Findings under each innovation feature (or CAD task) in Table 1 are summarized as follows:  

Acquisition: Portability 

Portable screening devices were identified from 17 studies, and these are listed in Supplementary Table 3.  The 

table contains a summary of the portable devices for each screening domain, and a summary of the stages of 

the medical device development cycle where the devices lie. The stages were synthesised based on three 

stages defined by the medical device development lifecycle framework, viz concept & feasibility phase, 

verification and validation phase (pre-launch clinical trials are conducted in this phase); and c) product launch & 

post market monitoring phase i.e. the phase of clinical adoption [33]. Ten studies used CAD-enabled portable 

devices in the feasibility phase [34,35, 36,37,38,39,40,41,17,42]. Six studies used CAD-enabled portable devices 

which were in the verification and validation phase [32,18; 43,44,45,16]. Of the six studies, three studies used 
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the same device (MobileODT EVA) but applied different algorithms. One study used a CAD-enabled portable 

device, i.e., the Grandium Ocus which was in the product launch & post monitoring phase at the time of writing 

[46].  

Portable micro-endoscopy systems were identified, these were the mHRME [37] and the PiHRME [41]. These 

systems are an extension of mobile colposcopy; however, visualization of abnormality is conducted at subcellular 

level [22]. Thus, these portable microscopes can be considered to be in a hybrid screening domain since their 

application lies at the intersection of colposcopy and cytology (or microscopy). 

Commercial cytology scanners that were identified were not portable, these were the BD FocalPoint™ GS 

imaging system, and the Hologic ThinPrep® Imaging system [47]. Two additional devices were identified 

however it is unclear whether they are commercially available; these are the high-resolution slide scanner iScan 

2.0 [48] and the signal plane scanner [49]. 

Novel histopathology systems were used adjunct to conventional microscopes; therefore, they were not fully 

portable. Only the supplementary parts being paired to conventional devices were portable. The systems 

identified were the fluorescence lifetime imaging system [50], the confocal fluorescence imaging system [51], and 

the snapshot narrow band imaging camera [52]. Confocal fluorescence acquisition can be performed in-vivo. 

This is advantageous since histopathological results can be obtained in real-time during a patient visit instead of 

patients waiting for weeks for results from pathology laboratories [51]. Furthermore, the possibility of in-vivo 

pathology could reduce the costs associated with biopsy excision and analysis in the laboratory.  

Pre-processing  

Depending on the image acquisition device used within a cervical screening domain, different image quality 

issues are encountered [53]. Common pre-processing techniques in colposcopy were colour space subtraction, 

adaptive thresholding, filling, and filters. These techniques were used to achieve automated speculum removal 

[54, 36, 18, 55]. The majority of studies using cytology images used techniques for denoising and tissue contrast 

enhancement [56; 50; 57,58]. An additional common pre-processing task across all screening domains was data 
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augmentation, which is a technique used to avoid model overfitting when training deep learning models with low 

volumes of data. Registration 

Registration was used more frequently in the colposcopy domain, e.g. rigid global registration [59], registration 

on time-series images [60], and landmark-based registration [61,42,40]. In the cytology and histopathology 

domains, feature-based registration [62] and spatial co-registration of images [52] were used. 

Segmentation and classification 

From the relevant reviewed studies, one of two machine learning approaches (shallow or deep learning) were 

observed for segmentation and classification algorithms. Table 2 lists the studies where segmentation and 

classification were applied. Summaries of observations from each screening domain are presented below. 

Colposcopy segmentation and classification: Within the reviewed literature, algorithms detecting acetowhite 

regions used static and/or temporal image datasets (i.e., sequence-based images or stills from video footage). 

Both steps were performed using algorithms which extracted features related to colour information, texture 

information or spatial information [63, 54; 18, 45]. Colour features were largely used for detection of cervix and 

acetowhite regions. Whereas texture features were largely used for the detection of atypical vessels and 

mosaicism. It was observed that the majority of colposcopy studies (18 out of 32) which were reviewed used 

shallow machine learning algorithms for CAD segmentation and classification.  

Cytology segmentation and classification:  For the majority of reviewed cytology studies, image 

segmentation involved detection of ROIs from whole slide image datasets (n=17). Three studies used single cell 

datasets [35,64, 58]. Feature extraction algorithms were used to identify and select features related to colour 

information, texture information, and cell morphology (that is, area and shape of nuclei, and area of cytoplasm). 

It was observed that a slight majority of reviewed cytology studies (15 out of 30) used deep learning 

algorithms for CAD segmentation and classification. In contrast, 14 out of 30 cytology studies used shallow 

machine learning algorithms.  

Histopathology segmentation and classification:  Histopathology classification algorithms identified in the 

review used cell morphology and textural features to identify abnormal ROIs. It was observed that the majority of 
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reviewed histopathology studies (5 out of 8), used shallow machine learning algorithms for CAD segmentation 

and classification.  

Micro-endoscopy segmentation and classification:  One of the micro-endoscopy binary classification 

algorithms that was used was a deep-learning algorithm [41]. The algorithm used in the second micro-endoscopy 

study for binary classification was not disclosed [37].  

Comparator analysis  

A classifier algorithm’s performance is dependent on the ground truth comparator used, and comparators 

reported by studies were diverse. Common performance measures reported by reviewed studies were accuracy, 

sensitivity (also known as recall), specificity, and area under curve (AUC). Some studies reported two or three 

performance measures while others reported four metrics. Deep learning algorithms used in cytology have more 

frequently reported greater performance measures when compared to the shallow algorithms. The comparative 

analysis of results for all studies that reported segmentation or classification results are summarized in Table 3. 

Outcome analysis  

For segmentation, the study outcomes were ROI detection. For classification, the study outcomes were binary or 

multiclass classification. Seventy-two studies reported CAD outcomes and only one study did not report the 

outcome of automated analysis [65]. Seventeen studies used CAD-enabled devices and 53 studies used 

standalone algorithms to determine decision outcomes. As seen in Table 2 , a total of 13 studies only reached 

the segmentation step by yielding ROI detection outcome, and a total of 59 studies fulfilled the last step of the 

automation pipeline by achieving a classification outcome.  

Quality assessment 

This systematic review found that the majority of studies had low risk of bias. However, this review has high 

publication bias in general due to lack of grey literature with adequate information to evaluate PICO criteria. The 

methodological bias in some studies was due to issues of ethical approval, unclear steps in the method, 

unknown accuracy of results and/or no disclosures of conflicts of interest. Regardless of the high risk of 
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methodological bias, the studies were included in analyses because they met PICO criteria and their qualitative 

findings were relevant to this systematic review.  
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3. Discussion  

General discussion on interventions  

Two types of interventions were found, i.e., 1) integrated systems which had an acquisition device linked to an 

image analysis algorithm; and 2) standalone image analysis algorithms. Seventeen studies used acquisition 

devices with corresponding image analysis algorithms. These device and algorithm systems are presented in 

Supplementary Table 3. Most of these devices were designed using smartphones; they include the Pocket 

Colposcope, MobileODT EVA Colpo, Smartphone Camera, Smartphone-based Endoscope System, 

Smartscope, mHRME and PiHRME. The majority of included studies reported standalone image analysis 

algorithms (Table 2 shows groupings of standalone algorithms in each screening domain). 

Fundamental goals of interventions 

The contributions of studies were considered valuable if they promoted any of the following fundamental goals: 

1) obtaining clinical validation within LMIC contexts; 2) having automated systems achieve greater efficacies than 

manual analysis; and/or 3) lowering the cost of cervical cancer screening program(s). Interventions consisting of 

acquisition and automated analysis met all the fundamental goals. In contrast, standalone algorithms achieved 

only one goal (greater prediction performance), and without pairing them with an inexpensive portable acquisition 

device, the standalone algorithms would not be suitable in LMIC.  

Goal 1(a) of clinical validation in LMIC as it relates to population  

According to the Food & Drug Administration (FDA), true clinical validation is achieved when the intended 

purpose of an intervention is proven reliably within the target population [68]. It has not been proven whether 

diagnostic performances attained with current interventions could be sustained if the study methodology were 

designed for nurses as crucial users of automated interventions, instead of specialist clinicians.  

Goal 1(b) of clinical validation in LMIC as it relates to the intervention dimension of PICO 

The CAD models associated with mobile acquisition devices in colposcopy tend to be shallow machine learning 

algorithms [18,38], because shallow models have faster computational speeds and robust performance on small 
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datasets [45]. The limited battery life of mobile phones precludes the use of energy-intensive neural network-

based algorithms, especially when there is no guarantee of readily available battery charging solutions [16].  

Cloud computing has been suggested as a possible solution to accommodate energy-intensive 

applications. However, the implementation of cloud computing needs to be investigated in LMICs because cloud-

based systems need good network connectivity. Peterson [32] reported that having good network connectivity 

was not always feasible at a screening camp in Kenya. Roblyer et al. [65] reported challenges when using their 

device in a pre-trial feasibility study conducted in Nigeria. One of the challenges was unstable electricity supply, 

which is a frequent occurrence in many LMICs. MobileODT, has adapted their commercialised AVE solution, 

which is a cloud-based web service, to run on the EVA Colpo smartphone device via a mobile application 

(MobileODT, 2019). Currently, clinical validation of the adapted algorithm and mobile application are underway in 

LMICs globally [69,70].  

The disadvantage of shallow machine learning algorithms is that they underperform against deep learning 

alternatives mostly when applied on multi-classification problems. This implies that there is a trade-off that 

researchers have to make between computational simplicity and prediction accuracy. Research is ongoing on 

adaptations of deep learning models that are necessary for the models to be embedded onto mobile apps [66]. In 

addition, research is growing on edge computing, where edge platforms can operate independently during 

network outages [71]. Sun [72] reported a prototype Google Edge TPU which, when embedded to cameras, 

could allow computations of neural networks. 

A common path of development has been observed, where the first component, the device, is clinically 

validated and commercialized; then the second component, the algorithm, subsequently goes through its own 

validation track. Eventually, the two validated modules are merged to provide an end-to-end product. However, 

no studies in colposcopy have reported reaching the point of fully validating and commercializing a combined 

system of mobile device and app-based analysis, regardless of that being indicated as the desired end point that 

researchers are aiming for. Of the portable colposcopy technologies reviewed, MobileODT seems to be the only 

example whose clinical validation in LMIC is fairly advanced.  

Goal 2 on higher efficacies as it relates to the comparator dimension of PICO 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.24314466doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.27.24314466
http://creativecommons.org/licenses/by-nd/4.0/


 15 

The performance of automated image analysis systems is measured by any of the following common 

parameters: precision, accuracy, sensitivity, specificity and area under the curve (AUC). The higher these 

parameters are, the better the performance of the algorithm. If accuracy is used in isolation, it can be a 

misleading metric when a dataset has an imbalance skewed towards the negative class. In screening programs, 

there's a prevalent trend of negative case skewness within datasets, attributed to the predominance of negative 

outcomes over positive ones in the collected data. [74]. Hence, metrics like sensitivity and specificity succinctly 

enhance performance analysis in skewed datasets. Area under curve is usually the best way to compare various 

binary classifiers’ performances because an AUC-maximising classifier has the advantages of robust 

performance even under data imbalanced conditions. Any binary classifier yielding the greatest AUC would be 

the model proven superior over others. However, such a comparison was difficult to make in this systematic 

review because there was inconsistency in reporting of AUC, with some studies reporting it and some not. This 

made selection of the best system on the basis of accuracies challenging. 

Colposcopy prediction performance 

Studies on automated image analysis in colposcopy indicated accuracies ranging from 70.0% - 100%; 

sensitivities ranging from 81.3% - 98.1%; and specificities ranging from 50.0% - 98.5%. In comparison, the 

accuracy range of manual colposcopy analysis, according to Asiedu et al. [18], was typically 52.0% - 70.0%; 

sensitivities typically ranged from 68.0% - 88.0%; and specificities typically ranged from 20.0% - 71.0%; provided 

histopathology was the ground truth against specialist judgement. This provides evidence that automated 

interventions in colposcopy, produce more effective diagnostic results compared to results attained through 

manual diagnosis. However, the upper limits of the performance ranges from automated analysis were skewed 

by presence of studies utilising subjective colposcopy judgement only, as ground truth. These types of studies 

more frequently achieved performance values above 90.0%. In contrast to this, studies that used histopathology 

as ground truth, most frequently had performance values under 90.0%. If the ranges were evaluated with only 

the subset of studies that indicated histopathology as ground truth, then sensitivity estimates for automated 

systems in the subset would range from 80.0% - 90.0%. Since this subset of sensitivity estimates vary marginally 

from sensitivities of manual analysis (claimed to range between 68% - 88%), it was not always true that 

automated analysis yielded superior sensitivities than manual analysis. On the other hand, it can indeed be said 
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that automated interventions unconditionally yielded superior accuracy and specificity ranges. Even when a 

subset of pathologically confirmed studies was considered, accuracies from automated analysis remained 

greater, ranging from 80.0%-99.4%, and specificities also remained greater, ranging from 79.0%-93.0%. These 

deductions point to a need for a meta-analyses to conclusively determine whether automated analysis yields 

greater prediction performance than manual analysis.  

Cytology prediction performance 

According to Kanavati et al. [75] commercial automated cytology scanners did not produce greater performance 

metrics for all classes (particularly the class of atypical squamous cells of undetermined significance) than 

conventional manual analysis, but rather produced equivalent performance. This contradicts the observation that 

automated cytology scanners improve prediction performance [76]. This difference in views might have stemmed 

from there being marginal differences between automated analysis and manual analysis, as was the case for 

colposcopy. In cytology, research seems to have focussed on improving automation model performance through 

application of deep learning algorithms, which are more robust for multiclass abnormality classification than 

shallow machine learning algorithms. However, as indicated in the previous sections, shallow machine learning 

algorithms of similar performance level may be advantageous over deep models due to computational simplicity, 

which may allow porting to a smartphone [66].. Prediction performance is an important success factor that 

researchers seem to have focused on. However, since performance alone is not enough to justify any decision 

for implementation of an automated system in LMICs, other factors for evaluating successes of an automated 

screening system should be equally considered. That is, factors such as cost of intervention, and degree of 

clinical validations by developers or researchers. These are further described in the following paragraphs. 

 

Goal 3 on lower screening program cost 

Screening program expenses consist mainly of infrastructure/equipment and labour costs. Equipment costs in 

particular can be reduced by utilizing inexpensive devices. However, most studies presenting novel alternatives 

did not report on costs. Since most portable acquisition devices in colposcopy were designed for integration with 

smartphones, the expectation of cost reduction is based on the assumption that the purchase cost of mobile 
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phones is more affordable than conventional medical imaging devices. However, purchase price alone is not a 

good reflection of the total costs of a device if hidden costs have been disregarded. Purchase price makes up to 

20-30% of total cost of a product during its lifecycle, and hidden costs make up to 70 - 80% of the full costs of a 

product. Examples of hidden costs are operational costs such as consumables or parts, maintenance/upgrade 

costs, training and education, downtime, et cetera [77]. Researchers have not assessed how the total lifecycle 

costs of novel devices compare against the lifecycle costs of conventional devices. In cytology and 

histopathology, it was not demonstrated whether the purchase prices of novel devices that were proposed were 

low-cost when compared to conventional microscopes or scanners.  

Health technology assessments (HTA) are an option that researchers can use to address unknowns about 

the cost-effectiveness of technologies. This type of research study is often needed for justifying policy decision 

on adopting a medical technology [47,78]. From the analysed studies, only commercial automated technologies 

in cytology have been investigated by a health ministry for adoption into national standards through an HTA 

study [47]. Since national healthcare standards developed by policy makers greatly influence widespread 

adoption in clinical practice [78], any technology with favourable outcomes from an HTA study would most likely 

gain greater success. 

Recommendations 

Meta-analysis 

The qualitative analysis of prediction performance supported that automated systems generate greater 

efficacies. However, because some parameters were marginally higher than manual analysis, a meta-analysis 

will be required in the future to statistically prove the hypothesis that automated analysis yields greater efficacies 

than manual analysis. Such a meta-analysis would require researchers to standardise performance metrics. 

Economic analyses 

Since most portable colposcopy acquisition devices were developed using smartphones, any cost savings 

assume that mobile phones are cheaper than other medical imaging devices. However, this assumption must be 

interrogated because the purchase price alone indicates a small fraction of the total costs of the product over its 
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lifetime. Costs such as internet data, cloud computing fees, and costs of biennial device upgrades (as hardware 

needs to keep up with software upgrades) are some examples of hidden costs that need to be considered to 

determine the true cost-effectiveness. It is unclear what the economic feasibility of proposed interventions will be 

over a lifetime period compared to that of a conventional device. 

Clinical validations 

It is unknown if the diagnostic performance attained with current automated interventions could be maintained 

when nurses use the automated interventions instead of expert physicians. 

According to Kumar et al. [67], while AI-based models have demonstrated their superiority in cancer 

research, their practical implementation in low-resource clinics is lacking. This is possibly due to inadequate data 

availability since many LMIC do not have electronic medical records, nor national digital health strategies; there 

is poor electricity supply or internet infrastructure to support implementation of digital solutions [79]. This 

systematic review revealed one area for improvement in clinical validations; that researchers must evaluate a 

fully integrated system rather than only testing components of a system in isolation. Evaluation of the entire 

system during both short and long equipment run times is the only way to eliminate assumptions thereby 

providing a fact basis on the resilience of a system as a whole, the true computation performance, and prediction 

of performance results [80]. Many proposed models are yet to be comprehensively validated in clinical LMIC 

settings to ensure that implementation challenges unique to low resource settings are addressed by proposed 

systems. 

4. Conclusion  

Seventeen studies reported the application of algorithms coupled to novel image acquisition devices, and 53 

studies reported standalone image analysis algorithms. The main advantage of the novel acquisition devices 

identified was that they were based on mobile phone technology and could therefore have low purchase costs, 

unlike conventional alternatives which are heavy and expensive. Apart from portable/mobile CAD-enabled 

devices, other innovative CAD-enabled device(s) were identified, for example, a device that was used adjunctive 

to a microscope in histopathology. This device is the confocal fluorescence acquisition system, and it overlaps 

two cervical cancer domains, namely colposcopy and histopathology because it can visualize tissue in-vivo for 
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high-grade CIN detection. This means this technology could have an impact of optimizing the cervical cancer 

screening process; thus, potentially giving patients the convenience of receiving histopathological results the 

same day of their visit, instead of waiting weeks for results to come back from a central laboratory.  

Automated analysis improved diagnostic decisions made by clinicians by achieving higher prediction 

accuracies than manual expert analysis. The type of CAD algorithms identified were either deep machine 

learning algorithms or shallow machine learning algorithms, and they were used to detect ROIs in an image, or to 

classify normal cases from abnormal cases. Deep learning methods, which are more reliable for classifying 

multiclass abnormalities than shallow machine learning algorithms, have been used more commonly in cytology 

research to improve automation model performance especially for granular multiclass classification problems. 

However, alternative shallow machine learning algorithms were reported to be advantageous over deep models, 

due to computational simplicity, which is considered to be more suitable for execution on mobile phones. This 

implies that there is a trade-off that researchers make between computational simplicity and prediction accuracy. 

Although the majority of studies focused on standalone algorithms, with the goal of improving prediction 

performance, performance alone is insufficient to justify the implementation of an automated system in LMICs. 

Other aspects, such as intervention costs and stage of development, should be considered when evaluating the 

feasibility of an automated cervical cancer screening system. 

Research groups tend to focus on their respective disciplinary areas, for example, medical device 

development or software development, before cross-collaborating to commercialize integrated technology 

systems. In colposcopy, no developer had completed the validation of an integrated device and software system. 

However, one developer (i.e. MobileODT) was more advanced since their clinical validations for an integrated 

system was in progress at the time of this systematic review. When conducting clinical validations in LMIC, it is 

crucial to use algorithms on mobile devices to minimise reliance on connectivity to cloud platforms. Furthermore, 

it is necessary to validate if performance of interventions is maintained when the intervention is applied by nurses 

instead of specialists. This paper will hopefully draw more attention to automated systems featured herein, so 

that the promising systems may be advanced into clinical trials and health technology assessments in LMICs. 

5. Tables and Figures 

Table 1: Integrated overview of the full automation pipeline 
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Automation 

Pipeline 

scope 

Specific 

innovation 

feature, or CAD 

task 

Functional purpose of 

feature or CAD task 

Other characteristics of Intervention  

Acquisition 

(Source of 

images) 

Portability Device/equipment 

generating images 

Conventional device – no portable option 

Device used adjunct to conventional device e.g., multispectral imaging 

Novel device (mobile/portable) 

Hybrid screening e.g., in-vivo microscopy 

CAD Methods 

(Algorithms) 

Pre-processing 

(Quality) 

Enhancement Colour normalization; Colour scale; Image contrast 

Specular reflection removal (colour space) 

Image feature fusion (ROI) 

Noise extraction 

Data augmentation Rotation, Brightness adjustment, Cropping, Smoothing, Random increasing 

of dataset images, Zooming, Shifting – width/height shift range, Flipping – 

horizontal/vertical flip in a random direction, Other data augmentation – e.g. 

scale, shear, normalization, etc 

Registration Global registration 

 

Rigid registration with standard normalised cross-correlation techniques 

Local elastic registration techniques 

Removal of local 

deformations 

Locally normalized cross-correlation 

2D elasticity operator 

Landmark-based registration E.g., using stain landmarks during acquisition (Lugol’s iodine) 

Feature-based registration 

Segmentation Detection of cervix  Detection of ROI from outer parts, cervical tissue 

Detection of acetowhite 

regions (colour, location, 

texture) 

Detection using static image-based dataset 

Detection using sequence-based dataset 

Detection using Video frames dataset 

Detection of vessels & 

mosaicism 

Punctation, mosaics, atypical vessels 

Detection of other features – 

abnormality detection/lesion 

detection 

Colour 

Location (spatial information) 

Textural feature extraction 

Deep models – statistical encoded features 

Cell morphology feature extraction 

Region of interest – including patches, nuclei, cytoplasm 

Feature selection 

Classification Deep learning algorithms Standard neural networks: MLP, ResNet, AlexNet, VGG etc 

Custom neural networks 

Shallow machine learning 

algorithms 

Tree ensembles: random forests, decision trees 

Logistic regression 

Support Vector Machines 

K-Nearest Neighbours 

Conditional Random Fields 

Other 

 

Table 2: Segmentation and Classification CAD outcomes  

Outcome Colposcopy studies Cytology studies Histopathology studies Microrendoscopy studies 

Segmentation 

(ROI detection 

outcome) 

Device linked to algorithm: 

None 

 

Standalone CAD (n=7): 

Guo et.al. (2020) [Mask R-

CNN] 

Cholkeri-Singh et.al. (2018)  

[DSI feature map] 

Shrivastav et.al. (2018) 

[canny edge detection model 

& Earth Movers Distance] 

Yan et.al. (2022)  [HLDnet] 

Bai et al. (2018) [K-means 

clustering algorithm] 

Srinivasan et.al. (2009) 

Device linked to algorithm (n=1): 

Dalla Palma et al. (2013)[CAD 

unspecified] 

Standalone CAD (n=6): 

Wang et al. (2021) [FCN] 

Li et al. (2021) [DGCA-RCNN] 

Ma et al. (2020) [FPN] 

Qin et al. (2015)[super pixel-

based segmentation] 

Muhimmah et al. 

(2017)[Watershed transformation] 

 

None None 
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[GMM] 

Das et al. (2011)[K-means 

clustering algorithm] 

Binary 

classification 

outcome  

Device linked to 

algorithm(n=9): 

Asiedu et al. (2018) [SVM 

classifier] 

Park et.al. 

(2021)[XGB,RF,SVM,ResNet-

50] 

Huh et al. (2004) [multivariate 

statistical analysis] 

Monsur et al. (2017) [mean 

gray values] 

Kudva et al. (2018a) [SVM] 

Bae et al. (2020) [KNN] 

Vinals et al. (2021) [ANN] 

Peterson et.al. (2016) 

[CervDx Application] 

Kudva et al. (2018b) [shallow 

CNN] 

Standalone CAD (n=11): 

Gutiérrez-Fragoso et al. 

(2017) [KNN] 

Mary et al. (2012) [CRF] 

Hu et al. (2018) [Faster R-

CNN] 

Li et al. (2020) [E-GCN] 

Kudva et al. (2020) [Custom 

CNN] 

Park et al. (2011) [CRF] 

Xue et al. (2020b) [CAIADS: 

YOLO,U-Net] 

Peng et al. (2021) [VGG16] 

Saini et al. (2020) [ColpoNet] 

Mehlhorn et al. (2012) [KNN] 

Jaya et al. (2018) [ANFIS 

classifier] 

 

Device linked to algorithm(n=3): 

Wang et al. (2009) [FISH] 

Yamal et al. (2015)[DT] 

Holmström et al. (2021)[CNN] 

 

Standalone CAD (n=7): 

Bhowmik et al. (2018) [SVM] 

Gertych et al. (2012) [SVM] 

Zhang et al. (2014) [RF] 

Ke et al. (2021) [ResNet-50] 

Sornapudi et al. (2019)[VGG19 

and ResNet-50] 

Sun et al. (2017) [RF] 

Schilling et al. (2007)[FLD] 

 

Device linked to 

algorithm(n=1): 

Pal et al. (2021) [Deep 

Multiple instance learning 

algorithm] 

Standalone CAD algorithms 

(n=5): 

Gu et al. (2015) [Extreme 

learning machine] 

Yi et al. (2020) [Euclidean 

distance algorithm] 

Rahmadwati et al. (2012) 

[Hybrid of graph cut and 

colour segmentation] 

Konstandinou et al. (2018) 

[Wilcoxon statistical test 

and Biserial correlation] 

Zhao et al. (2016)[SVM] 

Device linked to algorithm 

(n=2): 

Hunt et al. (2018) 

[undisclosed CAD algorithm] 

Parra et al. (2020) 

[MobileNetV2] 

 

Standalone CAD: None 

Multiclass 

classification 

outcome  

 

Device linked to 

algorithm(n=1): 

Chandran et al. (2021) 

[CYENET] 

 

Standalone CAD (n=4): 

Yuan et al. (2020) [ResNet-

50; Mask R-CNN] 

Chen et al. (2019) [RF] 

Buiu et al. (2020) [MobileNet 

V2] 

Novitasari et al. (2020) 

Device linked to algorithm(n=1): 

Sampaio et al. (2021) [F-RCNN] 

 

 

 

Standalone CAD (n=13): 

Sokouti et al. (2014) [LMFFNN] 

Hussain et al. (2020) [CNN 

Ensemble] 

Bhatt et al. (2021) [EffecientNet-

B3] 

Lin et al. (2021)[rule-based risk 

Standalone CAD 

algorithms(n=2): 

Sheikhzadeh et al. (2015)  

[Statistical correlation] 

Meng et al. (2021) [CNNs – 

DeepLab v3+] 

None 
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[KELM] 

 

stratification (RRS) module: 

DCNN] 

Manna et al. (2021) [ensemble of 

CNN classifiers] 

Shanthi et al. (2021) [SVM] 

William et al. (2019)[Fuzzy C-

means] 

Win et al. (2020) [tree ensemble 

classifier] 

Zhu et al. (2021) [CNN ensemble] 

Kim et al. (2015) [Hough 

transform extraction algorithm] 

Liang et al. (2021)[Faster R-CNN 

with FPN] 

Tripathi et al. (2021)[Resnet152] 

Suguna et al. (2021) [GBT, NNM] 

 
Acronyms: Mask R-CNN: Mask Region-based Convolutional Network. DSI feature map: Dynamic Spectral imaging. HLDnet: HSIL+ Detection Network. GMM: Gaussian  mixture  modelling. 
SVM: Support Vector Machine. ResNet-50: Residual Neural Network with 50 layers. XGB: X Gradient Boost. KNN: K-Nearest Neighbours. CRF: Conditional Random Forests. ANN: Artificial 
neural network. RF: Random Forests. YOLO: You Look Only Once. E-GCN: Graph Convolutional Network with Edge features. CAIADS: Colposcopic Artificial Intelligence Auxiliary Diagnostic 

System. CYENET: Colposcopy Ensemble Network. CNN: Convolutional Neural Network. KELM: Kernel Extreme Learning Machine. VGG-16: Visual Geometry Group with 16 layers. ANFIS: 
Adaptive Neuro Fuzzy Inference System classifier. FCN: Fully Convolutional Network. DGCA-RCNN: Faster Region-based Convolutional Neural Networks with infused deformable and global 

context aware layers. FPN: Feature Pyramid Network. FISH: Fluorescent In-Situ Hybridization. DT: Decision Trees. ResNet-152: Residual Neural Network with 152 layers. VGG-19: Visual 
Geometry Group with 19 layers. LMFFNN: Levenberg–Marquardt feedforward MLP neural network . DCNN: data-driven deep convolutional neural network. FLD: Fischer Linear Discriminant. 

SGF: Statistical Geometric Features. GBT: Gradient Boosting Tree. NNM: Neural network model. 

Notes:  

1.Deep learning algorithms are highlighted in grey 

2. The type of algorithm used by Peterson et.al. (2016) [CervDx Application] cannot be determined from the given name of the model. 
3. The type of algorithm used by Dalla Palma et.al. (2013) is not known. 

 

Table 3: Comparison of state-of-the-art classifiers reported in literature 

Authors Classifier Ground truth 

comparator 

Accuracy % Sensitivity 

% 

Specificity 

% 

AUC Acquisition device Images in 

dataset 

Colposcopy classifiers 

Shallow machine learning algorithms 

Asiedu et al. 

(2018) 

Support Vector 

Machine 

Histopathology, 
Colposcopists 

80.0 81.3 78.6 0.860 Pocket colposcope 200 

Kudva et al. 

(2018a) 

Support Vector 

Machine 

Colposcopist 97.9 99.1 97.2 - Android device 

camera 

102 

Monsur et al. 

(2017) 

Mean gray 

values 

Colposcopist - 83.0 79.0 - Android device 

camera 

24 

Chen et al. 

(2019) 

Random 

Forest 

Cytology, HPV 85.7 71.4 100 - Conventional/modified 

colposcope 

1,095 

Mary et al. 

(2012) 

Conditional 

Random 

Fields 

Other CAD 
methods 

- 70.0 88.0 - Conventional/modified 

colposcope 

- 

Park et al.   

(2011) 

Conditional 

Random 

Fields 

Histopathology - 70.0 80.0 - Conventional/modified 

colposcope 

192 

Bae et al. 

(2020) 

K-Nearest 

Neighbors  

Histopathology 80.8 84.1 71.9 0.807 Smartphone-based 

endoscope system 

240 

Huh et al. 

(2004) 

Multivariate 

statistical 

analysis 

Histopathology, 
Colposcopist 

- 90 50 - Optical detection 

system (ODS) 

1,569 

Gutiérrez-

Fragoso et al. 

(2017) 

KNN and 

PLA 

representation 

Other CAD 

methods 
70 60 79 - Conventional/modified 

colposcope 

200 

Das et al. 

(2011) 

K-means 

clustering 

Colposcopist 89.0 - - - Conventional/modified 

colposcope 

240 
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Mehlhorn et 
al. (2012) 

K-Nearest 
Neighbors 

Colposcopist 80.0  85.0 75.0 - Conventional/modified 
colposcope 

198 

Bai et al. 

(2018) 

K-means 

algorithm 

Colposcopist, 
Other CAD 
methods 

87.3 96.7 82.0 - Used pre-existing 

dataset 

100 

Jaya et al. 
(2018) 

 

Adaptive 
Neuro Fuzzy 

Inference 

System 

classifier 

 

Colposcopist, 
Pathologist, 
Other CAD 
methods 

99.4 97.4 99.4 - Used pre-existing 
dataset 

50 

Novitasari et 

al. (2020) 

Kernel 

Extreme 

Learning 

Machine 

method 

Histopathology, 
Other CAD 
methods 

95.0 - - - Used pre-existing 

dataset 

500 

Combination of both shallow and deep learning 

Park et al. 

(2021) 

XGB 

RF 
SVM 

ResNet-50 

Colposcopist, 
Other CAD 
methods 

- - - 0.820 

0.790 
0.840 

0.970 

Dr Cervicam 4,119 

Deep learning algorithms 

Kudva et al. 

(2018b) 

Shallow CNN Colposcopist; 

other CAD 
method 

100 - - - Android device 

camera 

102 

Yuan et al. 

(2020) 

Ensemble – U-

Net, ResNet, 

Mask R-CNN 

Colposcopists 84.1 85.4 82.6 0.930 Conventional/modified 

colposcope 

22,330 

Vinals et al. 

(2021) 

ANN Histopathology, 
Colposcopist 

89.0 90.0 87.0 - Smartphone 5,280 

Chandran et 

al. (2021) 

CYENET Colposcopists 92.3 92.4 96.2 - Mobile ODT EVA 

(Kaggle dataset) 

5679 

Hu et al. 

(2018) 

Faster R-CNN Cytology, 

HPV test 
- 97.7 84.0 0.910 Used Pre-existing 

dataset 

9,406 

Li et al. 

(2020) 

E-GCN Histopathology, 
Colposcopist 

81.9 81.8 - - Used Pre-existing 

dataset 

7,668 

Kudva et al. 

(2020) 

Custom CNN Colposcopist 93.8 91.5 89.2 - Used Pre-existing 

dataset 

2,198 

Peng et al. 

(2021) 

VGG-16 Histopathology, 

Other CAD 
methods 

86.3 84.1 89.8 - Conventional/modified 

colposcope 

300 

Xue et al. 
(2020b) 

CAIADS – 
YOLO, U-net 

Histopathology, 
Colposcopist 

85.5 71.9 93.9 - Used Pre-existing 
dataset 

101,267 

Buiu et al. 

(2020) 

MobileNetV2 

architecture 

Colposcopist, 
Other CAD 
methods 

91.6 (binary) 

 

83.3 (multi-

class) 

 

91.6 (binary) 

 

 

83.3 

(multiclass) 

 

- - Used Pre-existing 

dataset 

3,339 

Saini et al. 
(2020) 

ColpoNet Other CAD 
methods 

81.4 - - - Used pre-existing 
dataset 

120 

Cytology classifiers 

Shallow machine learning algorithms 

Wang et al. 

(2009) 

Fluorescent in 

situ 

hybridization 

Cytologist - 92.0 - - FISH microscope 150 (WSI) 

Yamal et al. 
(2015) 

Decision trees Cytologist - 61.0 89.0 - Cytosavant system 1728 x 2600 
(single cell 

images) 

Win et al. 

(2020) 

Tree ensemble Benchmark 

results pre-

determined by 

cytologists 

98.5 -Herlev 

 

 

98.3 -

SIPKAMED 

unclear unclear - No device used in 

study: Public dataset 

917 Herlev 

(Single cell) 

 

4049 

SIPAKMED 

(Single cell 

& WSI) 

Zhang et al. 

(2014) 

Random forest Cytologist; 

Other CAD 
methods 

93.0 88.0 100 - Motorized microscope 

with image processing 

Unknown 

number of 
images 

(WSI) 
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Sun et al. 
(2017) 

Random 
Forest 

Cytologist; 
Other CAD 

methods 

94.4 - - 0.980 No device used in 
study: Public dataset 

917 Herlev 
(Single cell) 

 

William et al. 

(2019) 

 

 

Fuzzy C-

means 

Cytologist; 

Other CAD 

methods 

98.9 

 

 

97.6 

 

 

95.0 

99.3 

 

 

98.1 

 

 

100 

97.5 

 

 

97.2 

 

 

90.0 

- Public dataset 

 

 

Existing private 

dataset 

 

Existing private 

dataset 

917 Herlev 

(Single cell) 

 

497 Pap 

smears 

(WSI) 

 

60 Pap 

smears 

(WSI) 

Shanthi et al. 

(2021) 

SVM using 

RBF kernel 

Benchmark 

results pre-

determined by 

cytologists 

99 99 - 1.00 No device used in 

study: Public dataset 

917 Herlev 

(Single cell) 

Bhowmik et 

al. (2018) 

SVM-L Cytologist; 

Other CAD 

methods 

97.7 95.6 98.8 0.960 Conventional – digital 

microscope 

146 (WSI) 

Gertych et al. 

(2012) 

SVM Cytologist 

 

82.6 89.4 99.5 - Conventional – digital 

microscope 

24 (WSI) 

Qin et al. 

(2015) 

Super pixel-

based 

segmentation 

Cytologist - 95.8 - - Whole slide image 

scanner Vectra 2 

99 WSI 

images 

Sokouti et al. 

(2014) 

Levenberg–

Marquardt  

feedforward  

MLP neural 

network 

Cytologist 100 100 100 - Conventional – Digital 

microscope 

1,100 (WSI) 

Kim et al. 

(2015) 

Hough 

transform 

extraction 

algorithm 

Cytologist 91.5 - - - Existing dataset 30 cell 

images 

Muhimmah et 

al. (2017) 

 

Watershed  

transformation  

Cytologist 98.0 - - - Existing dataset 15 

Schilling et 

al. (2007) 

Fischer linear 

discriminant 

Cytologist;Other 

CAD methods 

84.8 - - - Conventional - 

miscroscope 

- 

Deep learning algorithms 

Holmström et 

al. (2021) 

 

CNN (Aiforia 

platform) 

Cytologist 100 for high 

grade 

95.7 84.7 0.940 Portable slide 

scanner, Ocus 

740 (WSI) 

Hussain et al. 

(2020) 

Ensemble 

CNNs 

Cytologist 98.9 97.8 97.9 - Conventional – Digital 

microscope 

2990 (WSI) 

Ke et al. 

(2021) 

ResNet-50 Cytologist 94.5 100 91.1 - Conventional scanner 130 (WSI) 

Sampaio et 

al. (2021) 

F-RCNN 

 

Cytologist; 

Other CAD 
methods 

37.8 (mAP) 46.0 

(Smartscope 
dataset) 

63.0 

SIPAKMED 

- - Smartscope 21 x 79 

(WSI) 

Wang et al. 

(2021) 

Fully 

Convolutional 

Network 

Cytologist; 

Other CAD 

methods 

- 90.0 100 - Conventional – Digital 

microscope 

143 (WSI) 

Bhatt et al. 

(2021) 

 

 

EffecientNet-

B3 

Benchmark 

results pre-

determined by 

cytologists 

99.7 99.7 99.6 - No device used in 

study: Public dataset 

917 Herlev 

(Single cell) 

4049 

Sipkamed 
(WSI & 

Single cell) 

Li et al. 

(2021) 

DGCA-RFNN Benchmark 

results pre-

determined by 

cytologists 

50 (mAP) - - 0.670 No device used in 

study: Public dataset 

800 DHB 

dataset 

(WSI) 

Lin et al. 

(2021) 

Data-driven 

Deep 

Convolutional 

Neural 

Network 

 

Benchmark 

results pre-

determined by 

cytologists 

- 90.7 80.0 - No device used in 

study: existing private 

dataset 

19,303 

(WSI) 

Ma et al. 

(2020) 

CCDB Benchmark 

results pre-

determined by 

65.3 (mAP) 95.1 - - No device used in 

study: Public dataset 

800 DHB 

dataset 

(WSI) 
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cytologists 

Manna et al. 

(2021) 

Ensemble 

CNN model 

Benchmark 

results pre-

determined by 

cytologists 

95.4 

(SIPKAMED) 

 

 

 

 

99.2  

(Mendeley 

LBC) 

98.5 

(SIPKAMED) 

 

 

 

 

99.2  

(Mendeley 

LBC) 

- - No device used in 

study: Public dataset 

4049 

SIPKAMED 

(Single cell 

& WSI) 

 

 

963 

Mendeley 

LBC (WSI) 

Sornapudi et 

al. (2019) 

VGG-19 

 

 

ResNet-50 

Cytologist; 

Other CAD 

methods 

89 

 

 

 

89 

89 

 

 

 

88 

- 0.950 Public dataset & BD 

Surepath 

917 Herlev 

(Single cell) 

 

 

4120 patch 

dataset 

(WSI) 

Zhu et al. 

(2021) 

 

 

CNN 

ensemble 

Cytologist, 

Histopathologist, 

Other CAD 

methods 

82.3  

(mAP by 

YOLOv3 

ROI 

detector) 

94.0 

 

 

82.1 0.967 Existing private 

dataset and study 

generated 

81,727 

(WSI) 

retrospective 

 

34,403 

(WSI) 
prospective 

Tripathi et al. 

(2021) 

ResNet-152 

 

 

 

VGG-16 

Benchmark 

results pre-

determined by 

cytologists 

94.9 

 

 

 

94.4 

- - - Conventional 

microscope 

 

996 

SIPAKMED 

(single cell 

images) 

Liang et al. 

(2021) 

Faster R-CNN 

with Feature 

pyramid 

network (FPN) 

Cytologist 26.3 (mAP) 35.7 - - Digital slide scanner 

(commercialized) 

7,410 

Tripathi et al. 

(2021) 

ResNet152 

 

Cytologist 

Histopathologist 

94.9 - - - Conventional – Digital 

microscope 

966 

SIPAKMED 

(single cell 

images) 

Suguna et al. 

(2021) 

Neural 

network model 

Other CAD 

methods 

93.5 89.4 - - No device used in 

study: Public dataset 

917 Herlev 

(Single cell) 

Histopathology classifiers 

Shallow machine learning classifiers 

Sheikhzadeh 

et al. (2015) 

Statistical 

correlation 

Pathologist - 93.0 (HSIL) 96.0 

(HSIL) 

 Confocal fluorescence 

microscopy 
 

46 

Yi et al. 

(2020) 

Euclidean 

distance 

algorithm 

Pathologist 100 - - - Snapshot narrow-

band imaging (SNBI) 

prototype video 

camera 

 

12 

Rahmadwati 

et al. (2012) 

Hybrid of 

graph cut and 

colour 

segmentation 

Pathologist - 99.8 97.0 - Digital microscope 

 

475 

Gu et al. 

(2015) 

Extreme 

learning 

machine 

Pathologist - 94.6 84.3 - Fluorescence lifetime 

imaging microscope 

(FLIM) 

32 

Zhao et al. 

(2016) 

Support vector 

machine 

Pathologist 98.9  95.0 99.3  Existing dataset 1,200 

Konstandinou 

et al. (2018) 

Wilcoxon 

statistical test  
and Biserial 

correlation 

Pathologist 89.0 - - - Conventional 

microscope 

44 

Deep learning classifiers 

Pal et al. 

(2021) 

Deep multiple 

instance 

learning 

algorithm 

(Deep MIL) 

Pathologist, 

Other CAD 

methods 

84.6 - - - J5 Samsung affixed to 

a common 

microscope 

1331 (WSI) 

Meng et al. 
(2021) 

CNNs – 
DeepLab v3+ 

Pathologist, 
other CAD 

methods 

70.0 (mAP) - - - Undetermined 100 (WSI) 
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Micro-endoscopy classifiers 

Deep learning classifiers 

Hunt et al. 

(2018) 

Undisclosed Colposcopist, 

Pathologist 

- 92 77 - mHRME 187 

Parra et al. 

(2020) 

MobileNetV2 

 

Colposcopist, 

Pathologist 

90 - - - PiHRME 4,053 

Notes: Park et al.(2021) is an example of a study that investigated several classifiers for comparative purposes, but recommended one 

classifier. In such instances, only  the results of the recommended classifier are reported in this table. mAP is mean average precision, a 
metric commonly used for measuring accuracy of object detection in segmentation task. WSI stands for whole slide images. Roblyer et 

al. (2007) and Dalla Palma et al. (2013) were not listed in this table because the study did not report performance metrics nor a specific 
CAD algorithm. 

 

 

 

Figure 1: Flow of studies through different phases of systematic review 
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Figure 2: Geographical breakdown of populations in the included studies 
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Research Contribution  

This systematic review provides a perspective on CAD-enabled cervical cancer screening technology systems 

for the cytology, colposcopy, and histopathology domains of cervical cancer screening protocols. In contrast to 

our work, the majority of prior reviews examined only a single domain. This is a fragmented approach, in our 

view, because successful diagnosis depends on all three domains, which have common challenges of specialist 

shortages and expensive equipment. The similar challenges across multiple domains provides an opportunity to 

discover unforeseen overlapping technologies. In this study, the multi-domain methodology helped identify two 

novel technologies that overlap across two domains, which might have otherwise been missed. The two 

overlapping technologies are the mobile high-resolution micro-endoscopy (mHRME) and confocal fluorescence 

imaging. High resolution micro-endoscopy intersects between colposcopy and cytology domains, and confocal 

fluorescence imaging intersects between colposcopy and histopathology domains. In addition, this systematic 

review identifies pre-commercial and commercialized technologies used across the full automation pipeline 

which consists of acquisition, pre-processing, registration, segmentation and classification. Including image 

acquisition in the automation pipeline is necessary because the types of CAD algorithms that may be used for 

the subsequent automated image analysis are determined by the image acquisition device used. 

Scope and limitations  

The reader should note the following scope: This systematic review focused on interventions in cervical cancer 

screening, and not staging. Moreover, relevant CAD-enabled cervical cancer screening technology systems were 
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those producing optical images with decision-support, which were applied in the cytology, colposcopy, and 

histopathology domains of the cervical cancer screening protocol. Particular attention was given to interventions 

in these screening domains because portable devices could be used to produce optical images.   
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