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Abstract: Persistence of a fetal thickened nuchal translucency (NT), one of the most sensitive and
specific individual markers of fetal disorders, is strongly correlated with the possibility of a genetic
syndrome, congenital infections, or other malformations. Thickened NT can also be found in normal
pregnancies. Several of its pathophysiological aspects still remain unexplained. Metabolomics
could offer a fresh opportunity to explore maternal–foetal metabolism in an effort to explain its
physiological and pathological mechanisms. For this prospective case-control pilot study, thirty-nine
samples of amniotic fluids were collected, divisible into 12 euploid foetuses with an enlarged nuchal
translucency (>NT) and 27 controls (C). Samples were analyzed using gas chromatography mass
spectrometry. Multivariate and univariate statistical analyses were performed to find a specific
metabolic pattern of >NT class. The correlation between the metabolic profile and clinical parameters
was evaluated (NT showed an R2 = 0.75, foetal crown-rump length showed R2 = 0.65, pregnancy
associated plasma protein-A showed R2 = 0.60). Nine metabolites significantly differing between
>NT foetuses and C were detected: 2-hydroxybutyric acid, 3-hydroxybutyric, 1,5 Anydro-Sorbitol,
cholesterol, erythronic acid, fructose, malic acid, threitol, and threonine, which were linked to altered
pathways involved in altered energetic pathways. Through the metabolomics approach, it was
possible to identify a specific metabolic fingerprint of the fetuses with >NT.

Keywords: prenatal diagnosis; ultrasound foetal nuchal translucency; metabolomics; amniotic fluid;
gas chromatography mass spectrometry; energetic pathways

1. Introduction

Genetic screening and invasive prenatal diagnosis paradigms have been profoundly
modified in the last 30 years owing to the introduction of innovative technologies and
improved operator skills [1]. Novel approaches to ultrasound and biochemical screen-
ing, the detection of foetal abnormalities, reducing foetal loss risk following invasive
prenatal procedures, and increasing the accuracy of molecular analysis are in continuous
development [1–3].

Among contemporary developments is the rapid diffusion of non-invasive prenatal
screening (NIPS), using foetal cell-free DNA (cfDNA) obtained from maternal blood, as
a diagnostic technique for aneuploidies [2]. However, the scientific community must
carefully consider the impact that NIPS may have on more well-established methods of
prenatal screening and diagnosis [4,5].

Despite recent progress, first trimester combined screening, which is performed be-
tween 11 and 13+6 weeks of gestation by calculating the risk of aneuploidies using maternal
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age, ultrasound foetal nuchal translucency (NT) thickness, foetal heart rate (FHR), maternal
serum-free ß-human chorionic gonadotropin (ß-hCG), and pregnancy associated plasma
protein-A (PAPP-A), is still of paramount importance for risk assessment in pregnancy [6].

NT is a fluid-filled space in the posterior neck of the foetus, between the skin and the
soft tissue at the level of the cervical spine, as visualized by ultrasound [7]. NT normally
increases with the foetal crown-rump length (CRL) [8]. The thickened NT represents one
of the most sensitive and specific individual markers of aneuploidy, structural defects,
biometric discrepancies, and deviations from normal anatomy [9].

Persistence of a thickened NT is strongly correlated with the possibility of a genetic
syndrome, congenital infections, or other malformations such as congenital heart disease
or delayed development of the lymphatic system [10,11]. Nevertheless, a thickened NT
can also be found in normal pregnancies [11]. Although this phenomenon has already
been widely analysed in the literature, several of its pathophysiological aspects still remain
unexplained. Metabolomics could offer a fresh opportunity to explore maternal–foetal
metabolism in an effort to explain its physiological and pathological mechanisms [12].

Several metabolomics studies have been performed in the prenatal period on chorionic
villi and amniotic fluid [13–16]; regarding the presence of a thickened NT, metabolomics
could aid in clarifying the mechanisms of excessive accretion of fluids in foetuses, im-
proving the performance of combined screening and honing an increasingly tailored
diagnostic approach.

In a recent study, our research group analysed the metabolic composition of amniotic
fluids of foetuses with enlarged NT with a nuclear magnetic resonance approach [17],
obtaining interesting results. The aim of the current study is to ratify, challenge, or
augment our previous results, using a complementary analytical approach such as gas
chromatography-mass spectrometry (GC-MS).

GC-MS can provide information about tissue metabolites, such as lipids, amino acids,
and high-energy metabolites [18,19], providing a “snapshot” of the metabolic profile under
different conditions [20,21]. Quantification of metabolites allows identification of altered
metabolic pathways through the use of pattern recognition techniques [22].

We performed a metabolomic study recruiting euploid fetuses with >NT, including
the minimum number of subjects per group to be considered for pilot studies [23], with
the aim to explore the metabolic profile of the amniotic fluid, in order to investigate the
underpinning pathological or physiological mechanisms.

2. Patients and Methods
2.1. Patients

This prospective study was conducted in the Department of Obstetrics and Gynecol-
ogy in the Microcitemico Paediatric “A. Cao” Hospital of Cagliari.

Amniotic fluids were collected from women who underwent amniocentesis due to an
increased risk of aneuploidy. All patients had first trimester combined screening for aneu-
ploidy via ultrasound measurement of foetal NT and CRL in combination with biochemical
markers, such as PAPP-A and free β-hCG. All amniocentesis procedures were performed
between 15 and 18 weeks of gestation with a free-hand transabdominal technique. Written
consent was obtained from all participating women and the study was approved by the
Institutional Review Board of Microcitemico Hospital. Patient demographic characteristics
and ultrasonographic data (ethnic group, age, CRL, NT value, free β-hCG, and PAPP-A)
were collected; all information is reported in Table 1 and the statistical details of the com-
parisons between the two classes of patients are reported in the Supplementary Materials
(Figure S1).

All samples were kept at −80 ◦C until use. All pregnancies were followed longitudi-
nally; the corresponding foetal, maternal, and neonatal data were collected and retained in
a database.
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Table 1. Demographic and clinical characteristics of the enrolled patients.

Classes N Age (Range)

Ultrasound Biochemical Assay

NT ± SD
(mm)

CRL± SD
(mm)

PAPP-A
MoM ± SD (UI/L)

Free β-hCG
MoM ± SD (mlU/mL)

Controls 27 35.1 (23–44) 1.41 ± 0.17 54.4 ± 4.3 0.77 ± 0.28 1.43 ± 1
Enlarge Nuchal Translucency 12 37.2 (29–44) 2.5 ± 0.3 62.1 ± 7.5 0.97 ± 0.47 1.93 ± 1.7

NT = nuchal translucency; CRL = crown-rump length of the fetus; PAPP-A MoM = pregnancy associated plasma protein A; free β-hCG
MoM = beta-subunit of human chorionic gonadotropin.

2.2. Sample Preparation and Data Analysis

Samples were extracted as follows: 200 µL of each sample was mixed with 400 µL
of acetone (containing succinic acid-2,2,3,3-d4 as an internal standard (Sigma-Aldrich,
St. Louis, MO, USA)), vortexed, and then centrifuged at 10,000 rpm for 10 min at 4 ◦C. The
supernatant was transferred to an Eppendorf tube and dried under vacuum overnight
with an EppendorfTM Concentrator Plus. Dried extracts were derivatised with 50 µL of
methoxyamine dissolved in pyridine (10 mg/mL, Sigma-Aldrich, St. Louis, MO, USA)
at 70 ◦C. After 1 h, 100 µL of N-Methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA,
Sigma-Aldrich, St. Louis, MO, USA) was added and left at room temperature for one
hour. Successively, samples were diluted in 100 µL of hexane (Sigma-Aldrich, St. Louis,
MO, USA). The GC-MS analysis and the data processing were performed as previously
described [24].

2.3. Statistical Analysis

A multivariate statistical analysis was performed using SIMCA-P software [25] (ver. 15.0,
Sartorius Stedim Biotech, Umea, Sweden). Initially, variables (metabolites) were UV scaled
and then principal component analysis (PCA) was applied, with the aim to explore the
sample distributions without classification, and to identify potential strong outliers through
the application of the Hotelling’s T2 tests. Subsequently, a partial least square discriminant
analysis (PLS-DA) was performed. This type of model allows to observe, if present,
differences between samples assigned to different classes [26]. The variance and the
predictive ability (R2X, R2Y, Q2) were evaluated to establish the suitability of the models.
In addition, a permutation test (n = 400) was performed to validate the models [27]. The
scores from the PLS-DA model were subjected to a CV-ANOVA (analysis of variance testing
of cross-validated predictive residuals) test to establish the significance of the separation
between the two classes of patients (p < 0.05).

To study a possible linear relationship between a matrix Y (dependent variable, foetal
nuchal thickness, PAPP-A, and free β-hCG) and a matrix X (predictor variables, e.g.,
metabolites), PLS models were carried out [28].

The most significant variables were extracted from the PLS-DA model’s loading plot.
The variables’ influence on projection (VIP) value was also evaluated for the selection
of the discriminant metabolites. In particular, when the value was >1, the metabolite
was considered relevant for explaining Y (assignment to the two classes, controls and
>NT). To verify the significance of the metabolites deemed noteworthy by multivariate
statistical analysis, U-Mann Whitney tests were performed. GraphPad Prism software
(version 7.01, GraphPad Software, Inc., San Diego, CA, USA) was used to conduct this
univariate statistical analysis.

2.4. Pathways’ Analysis

Metabolic pathways were generated using MetaboAnalyst 5.0 [29]. This approach
allows to obtain a comprehensive metabolomic data interpretation, correlating metabolite
alterations in specific pathways. In particular, this tool combines the results from pathway
enrichment analysis with pathway topology analysis to help researchers identify the most
relevant pathways involved in the conditions under study.
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3. Results

Thirty-nine samples of amniotic fluid were analysed with GC-MS, divisible into
12 patients with an enlarged nuchal translucency (>NT) and 27 controls (C). A total of
32 metabolites, including organic acids, amino acids, fatty acids, and sugars, were identified
in amniotic fluid samples (Figure 1).
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Figure 1. Main compounds identified by GC-MS: 1. Pyruvic acid, 2. lactic acid, 3. valine, 4. alanine,
5. 2-hydroxybutyric acid, 6. 3-hydroxybutyric acid, 7. isoleucine, 8. urea, 9. uerine, 10. glycerol,
11. threonine, 12. glycine, 13. succinic acid, 14. glyceric acid, 15. fumaric acid, 16. malic acid,
17. threitol, 18. erythronic acid, 19. threonic acid, 20. α-ketoglutaric acid, 21. xylulose, 22. xylitol,
23. ribitol, 24. ribonic acid, 25. 1,5-anydrosorbitol, 26. fructose, 27. glucose, 28. sorbitol, 29. palmitic
acid, 30. myoinositol, 31. stearic acid, 32. cholesterol.

The data were organised into a matrix, which then underwent multivariate statistical
analysis. Firstly, the PCA model was evaluated, and the Hotelling’s T2 test identified the
presence of one outlier affecting the model (belonging to the control class, Figure S2). The
supervised model obtained with the PLS-DA analysis showed robust statistical parameters:
R2X = 0.2, R2Y = 0.76, Q2 = 0.4, p < 0.002 (Figure 2A).

The model was then validated with a permutation test (R2 intercept = 0.48; Q2 inter-
cept = −0.27) (Figure 2B). Subsequently, analysis of correlations between the complete
metabolic profile and NT in patients with abnormal NT values was completed via partial
least squares (PLS) regression analysis (Figure 2C). The correlation between the complete
metabolic profile and NT measured in the same patients showed an R2 = 0.75, p = 0.002. PLS
correlation analysis was also performed to evaluate correlations between the metabolic pro-
file of patients and others clinical parameters, such as CRL, PAPP-A MoM, and free β-hCG
MoM. CRL and PAPP-A MoM showed R2 values of 0.65 and 0.6, respectively, while free
β-hCG MoM showed no correlation (R2 equal to 0.35, Figure 3A, B, and C, respectively).
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Moreover, the clinical parameters were correlated between them through the Pearson
correlation. The values of the NT strongly correlated with the CRL (R2 = 0.7, p < 0.0001),
while no correlations were observed for both PAPP-A MoM and free β-hCG MoM (R2 = 0.32
and 0.06, respectively, Figure 4).

Life 2021, 11, x  7 of 14 
 

 

 

Figure 4. Pearson correlation of the clinical parameters NT, CRL, PAPP-A MoM, and free β-hCG 

MoM. The values of the NT strongly correlated with the CRL (R2 = 0.7, p < 0.0001), while no correla-

tions were observed for both PAPP-A MoM and free β-hCG MoM (R2 = 0.32 and 0.06, respectively). 

Through analysis of the loadings plot and the VIP values of the PLS-DA model, it 

was possible to identify the variables responsible for the class separation. Discriminant 

metabolites were highlighted and then a U-Mann Whitney test was carried out to find 

significant differences in concentrations. 

Nine metabolites significantly differing between patients with enlarged NT and 

healthy controls were detected and deemed to be responsible for the separation of the two 

groups: 2-hydroxybutyric acid, 3-hydroxybutyric, cholesterol, erythronic acid, fructose, 

malic acid, threitol, and threonine were found to be decreased in the >NT group, while 1,5 

Anydro-Sorbitol was found to be increased in the same group (Figure 5). 

Figure 4. Pearson correlation of the clinical parameters NT, CRL, PAPP-A MoM, and free β-hCG MoM.
The values of the NT strongly correlated with the CRL (R2 = 0.7, p < 0.0001), while no correlations
were observed for both PAPP-A MoM and free β-hCG MoM (R2 = 0.32 and 0.06, respectively).

Through analysis of the loadings plot and the VIP values of the PLS-DA model, it
was possible to identify the variables responsible for the class separation. Discriminant
metabolites were highlighted and then a U-Mann Whitney test was carried out to find
significant differences in concentrations.

Nine metabolites significantly differing between patients with enlarged NT and
healthy controls were detected and deemed to be responsible for the separation of the two
groups: 2-hydroxybutyric acid, 3-hydroxybutyric, cholesterol, erythronic acid, fructose,
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malic acid, threitol, and threonine were found to be decreased in the >NT group, while 1,5
Anydro-Sorbitol was found to be increased in the same group (Figure 5).
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Figure 5. Graphs of the metabolites with p-values < 0.05 after U-Mann Whitney test and Holm–
Bonferroni correction.* = p < 0.05; ** = p < 0.001.

All statistical information for each metabolite is reported in Table 2. In particular,
trend, p-value, adjusted p-value, and the parameters of the respective ROC curves are listed.

Table 2. Statistical parameters of the discriminating metabolites for the separation between C and >NT patients.

Metabolites Trend >NT
vs. C

p-Value Corrected
p-Value

ROC Curve

Area Std.
Error

Confidence
Interval p-Value

2-OH-Butyrate ↓ 0.007 0.02 0.77 0.07 0.62–0.92 0.008
3-OH-Butyrate ↓ 0.0006 0.004 0.83 0.06 0.7–0.96 0.001

1,5 Anydro Sorbitol ↑ 0.02 0.03 0.73 0.08 0.56–0.90 0.02
Cholesterol ↓ 0.0009 0.004 0.82 0.06 0.7–0.95 0.001

Erithronic acid ↓ 0.007 0.02 0.76 0.08 0.6–0.9 0.008
Fructose ↓ 0.003 0.01 0.79 0.07 0.65–0.94 0.003

Malic Acid ↓ 0.0003 0.001 0.85 0.06 0.7–0.97 0.0005
Threitol ↓ 0.0002 0.001 0.86 0.05 0.74–0.97 0.0004

Threonine ↓ 0.0008 0.004 0.83 0.06 0.7–0.95 0.001



Life 2021, 11, 913 8 of 13

Metabolites showing AUC > 0.8 (3-OH butyrate, cholesterol, malic acid, threitol,
and threonine) were combined to build a total ROC curve with parameters as follows:
AUC = 0.91, standard error = 0.04, CI = 0.82–0.99, p-value < 0.0001.

The significant metabolites identified by the multivariate analysis were then used
to identify the most significant metabolic pathways involved in >NT foetuses. To meet
this aim, Metaboanalyst 5.0 was employed to carry out both enrichment and pathways’
analysis. These dual approaches identified the synthesis and degradation of ketone bodies,
butyrate metabolism, valine, leucine, and isoleucine biosynthesis, and the metabolism of
other carbohydrates, as significant in the pathogenesis of >NT (Figure 6A,B).
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Figure 6. The metabolic pathways most altered in foetuses with enlarged nuchal translucency.
Pathways (A) and enrichment (B) analysis were conducted: synthesis and degradation of ketone
bodies, butyrate metabolism, valine, leucine, and isoleucine biosynthesis, and the metabolism of
other carbohydrates, were the most altered.

4. Discussion

“Omics sciences” aim at the comprehensive and quantitative analysis of wide ar-
rays of analytes in biological samples, each demonstrating varying concentrations and
physicochemical properties. Metabolomics is known to have strong potential for use in
perinatal medicine [12,30]. Previous studies exploited this approach to investigate both
physiological [13,31] and pathological [32,33] metabolic changes in AF occurring during
pregnancy. We decided to analyse, for the first time, to the best of our knowledge, the
pathophysiological mechanisms involved in increased nuchal fold size, which represents
a crucial node in the evaluation of pregnancy progression. In our prospective study, we
designed a specific experimental metabolomic workflow to assay the concentration of
several metabolites from AF in euploid foetuses with enlarged NT, in order to obtain
information regarding the underlying mechanisms that may precipitate this condition
when other aetiologies are not evident.

Specifically, GC-MS has vast potential as a tool for investigations of this type and,
together with multivariate analytical tools, allows the study of both small- and large-scale
variations in metabolomic profile, which contribute to the final result.

The amniotic fluid of >NT foetuses showed a distinct metabolic profile compared
with the control group. In addition, we found alterations in a number of metabolic path-
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ways involved in the following: synthesis and degradation of ketone bodies, butyrate
metabolism, valine, leucine, and isoleucine biosynthesis. Interestingly, the metabolic profile
of the amniotic fluid of the enrolled subjects strongly correlated with the parameters NT
and CRL, directly carrying information relative to the fetal composition, suggesting a close
dependence between the metabolic imprint and the specific intrauterine contest. Weak
correlations were evidenced when clinical parameters were considered such as PAPP-A
MoM and free β-hCG MoM, which mainly reflect placental activity. Moreover, when we
considered the correlations between only the clinical parameters, we observed a strong
correlation of the NT values with the CRL, but no correlations were evidenced between the
NT values and PAPP-A MoM and free β-hCG MoM, as expected.

Several metabolic modifications occur in a woman’s body during pregnancy, for
reasons such as ensuring the appropriate use of energy resources. In this light, ketone
bodies are essential substrates used as glucose substitutes to supplement the metabolism
of both the mother and the foetus. Indeed, oxidation of ketones is an important contributor
to mammalian energy metabolism within extrahepatic tissues in myriad physiological
states, including pregnancy, and is a vital alternative metabolic fuel source [34]. It is im-
portant to consider that human pregnancy is characterised by alterations in maternal lipid
metabolism [35], which is strongly correlated with ketone biosynthesis. More interestingly,
maternal ketogenesis allows the foetus to exploit these molecules not only as energy fuels,
but also as substrates for brain lipid synthesis [34]. Physiologically, lipolysis increases the
availability and use of free fatty acids as energy substrates for the mother’s body in place
of glucose, consumed mostly by the foetus [36]. These mechanisms represent the basis of
the increased ketogenesis during pregnancy. In contrast, >NT foetuses showed a decreased
level of 3-hydroxybutyrate in amniotic fluid.

The transfer of ketone bodies across the placenta occurs via passive diffusion down
their concentration gradient or by specific placental carrier-dependent transport [37]. On
one hand, unrestricted and rapid arrival of ketone bodies from maternal to foetal circulation
guarantees embryonic brain development under conditions of nutrient deficiency [38],
though on the other, high levels of these compounds are strongly linked with an increased
incidence of foetal abnormalities such as malformations, impaired neurophysiological
development, and still birth [39]. Alteration of these pathways is likely strongly corre-
lated with the other altered pathways in the >NT class, including butyrate (butanoate)
metabolism. Butanoate metabolism explicates the metabolic destiny of several short chain
fatty acids or short chain alcohols normally produced by intestinal fermentation. Many
of these molecules are eventually used in the production of ketone bodies; the creation of
short-chain lipids; or as precursors to the citrate cycle, glycolysis, or glutamate synthesis.

Cholesterol is another discriminating metabolite that captured our attention in this
study; its concentration is significantly diminished in >NT foetuses compared with the
control class. It has been estimated that there must be a net accumulation of approxi-
mately 1.5–2.0 g of cholesterol for each kg of tissue added to the body of the developing
embryo [35,40]. As a consequence of its high cholesterol demand, the developing foetus ob-
tains this sterol either as a product of de novo biosynthesis [41] or from maternally derived
deposits in the yolk sac and the placenta [42]. This molecule plays a key role in embryonic
and foetal development, with myriad functions. Cholesterol is an essential component of
cell membranes, influencing membrane fluidity and passive permeability. Cholesterol is
also a precursor for bile acids and steroid hormones (e.g., glucocorticoids that are actively
synthesised in foetal adrenal glands, especially during late pregnancy) and has roles in
maintaining cellular homeostasis and signalling under a variety of both physiological and
pathological states. Moreover, it plays important roles in cell proliferation, differentiation,
as well as cell-to-cell communication [35,40]. Low maternal serum cholesterol levels during
pregnancy are associated with reduced birth weights, and inversely correlated with the
incidence of microcephaly, while maternal gestational hypercholesterolemia promotes early
atherogenicity [35].
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Valine, leucine, and isoleucine biosynthesis was another altered pathway, strongly
correlated with the decrease in threonine availability. Amino acids play a critical role in
embryonic development [43]. The human placenta expresses over 15 different amino acid
transporters, and each is responsible for the uptake of several different amino acids [44].
Reduced fetal plasma concentrations of several amino acids were also observed in in-
trauterine growth-restriction (IUGR) at term [45,46]. The transport of amino acid and in
particular that of valine, leucine, and isoleucine across the placenta is reportedly impaired
in fetal growth restriction [47] and preeclampsia [48]. Interestingly, placental amino acids
transporters were found to also be altered in IUGR human foetuses [49]. Indeed, leucine
transport was found to be reduced in human term placentas of IUGR pregnancies [50].
According to data in the HMDB [51], branched chain amino acids play a critical role in
stress and energy metabolism, which we supposed to be altered in >NT foetuses. Valine is
metabolized and directed to carbohydrate synthesis, leucine moves to fat synthesis, and
isoleucine contributes to both [52]. Finally, leucine is known to play an important role in
fetal nutrition [53,54].

5. Conclusions

To summarize, a complex mix of potential altered pathways putative for the presence
of >NT in euploid foetuses was identified in this study. Large-scale studies of metabolites
are fundamental in understanding cellular metabolism and human pathophysiology and,
in this perspective, one of the weak points of this study could be the sample size. Indeed,
the number of the fetuses with >NT analysed in this study represents the minimum subjects
per group to be considered for pilot studies [23], and it is reasonable to assume that the
study should be expanded for its conclusions to be more robust. At the moment, it is not
easy to explain what happens during fetal development from the metabolomic point of
view, especially regarding this topic. This is because of two main reasons: first of all, there
are no studies based on the evaluation of the fetal metabolic profile in euploid foetuses
with thickened NT and it is difficult to have a comparison with other results. On the other
hand, we miss the serum data of the mothers, which could be extremely important to
speculate regarding the biological interpretation of the data. Conversely, it is also important
to underline that this study demonstrated that, in AF of euploid foetuses with thickened
NT, the metabolic profile was significantly altered compared with control subjects, and
this represents a good starting point, for the scientific community, to offer a promising
predictive model of what could happen during the late phases of pregnancy or after birth
(e.g., intrauterine growth restriction, small for gestational age, extremely low birth weight,
and so on). Finally, this approach may contribute to improving the understanding of some
pathological mechanisms that represent a focal point in the evaluation of pregnancy during
the first trimester.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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and controls (white boxes).
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