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Abstract

Joint inflammation is present in the majority of OA patients and pro-inflammatory mediators, such as IL-6,

are actively involved in disease progression. Increased levels of IL-6 in serum or synovial fluid from OA

patients correlate with disease incidence and severity, with IL-6 playing a pivotal role in the development

of cartilage pathology, e.g. via induction of matrix-degrading enzymes. However, IL-6 also increases ex-

pression of anti-catabolic factors, suggesting a protective role. Until now, this dual role of IL-6 is incom-

pletely understood and may be caused by differential effects of IL-6 classic vs trans-signalling. Here,

we review current evidence regarding the role of IL-6 classic- and trans-signalling in local joint pathology

of cartilage, synovium and bone. Furthermore, we discuss targeting of IL-6 in experimental OA models

and provide future perspective for OA treatment by evaluating currently available IL-6 targeting strategies.
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Introduction

OA is a degenerative joint disease with increasing inci-

dence due to a rise in life expectancy and average body

weight in western society [1, 2]. Currently, therapies are

focused on pain management or eventually joint re-

placement. OA affects all joint tissues, resulting in loss

of articular cartilage, ectopic bone formation, subchon-

dral bone sclerosis and synovial inflammation [3].

Inflammation is increasingly accepted as a driver of OA

pathology, implying the synovium and inflammatory

cytokines in driving cartilage degeneration [4–6]. For this

reason, treatment strategies have focused on targeting

pro-inflammatory cytokines TNF-a and IL-1b in hand

and knee OA [7–10], which did not result in clinical

applications thus far. Therapies targeting IL-6 are

approved and effective in treating RA, juvenile idiopathic

arthritis, Castleman’s disease, and giant cell arteritis

[11]. Also in OA, IL-6 plays a significant role in joint

pathology, but has not been a primary target of interest

as research mostly focused on IL-1b and TNF-a. Here,

we review the current state of evidence regarding the

role of IL-6 in OA pathophysiology, and discuss potential

therapeutic approaches to target the IL-6 signalling

pathway in OA.

Understanding the complexity of the IL-6
signalling pathway

Intracellular signalling cascades

IL-6 signalling starts by binding of IL-6 to the IL-6 recep-

tor a subunit (IL-6R), followed by complex formation

with a homodimer of glycoprotein 130 (gp130) [12]. The

IL-6R has no signal transduction capacity and its ex-

pression is limited, e.g. to monocytes, hepatocytes and

certain leucocyte subsets [13]. In contrast, the signal-

transducing receptor gp130 is ubiquitously expressed.

Gp130 also functions as a b subunit for other IL-6 family

cytokines, like oncostatin-M, IL-11, IL-27 and leukemia

inhibitory factor [14]. After IL-6 receptor complex forma-

tion, the Janus kinases/signal transducers and activators

of transcription (JAK/STAT) pathway is activated (Fig. 1),

leading to recruitment and activation of STAT1, STAT3,

and to a lesser extent STAT5 [15]. Besides canonical

signalling via JAK/STAT, IL-6 activates non-canonical

signalling via mitogen-activated protein kinase (MAPK)

cascade (Ras-Raf-MEK-ERK pathway) and PI3K- protein

kinase B (PkB)/Akt. IL-6-induced JAK/STAT is tightly

controlled by negative feedback regulators, such as

suppressor of cytokine signalling (SOCS) protein family

and protein inhibitors of activated STATs (PIAS) [16, 17].

SOCS proteins are directly induced by gp130 cytokines,

resulting in a negative feedback loop. SOCS3 has been

identified as a specific inhibitor of IL-6 signalling and dir-

ectly inhibits JAK-kinase activity [18, 19]. PIAS negative

inhibitors are constitutively expressed and inhibit DNA-

binding activity by binding to activated STAT-dimers.
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FIG. 1 Overview of IL-6 signalling pathways

After IL-6 binding to the IL-6R, complex formation with gp130 initiates phosphorylation of JAKs resulting in activation

of STAT3-, PI3K- and Ras-Raf-MEK-ERK signaling. Activated transcription factors (e.g. STAT3, NF- jb and NF-IL-6)

translocate to the nucleus to regulate target gene expression. SOCS and PIAS proteins negatively regulate IL-6-induced

JAK-STAT signal by blocking JAK-mediated activation of STAT3 (SOCS3), or by blocking DNA-binding activity of STAT3

(PIAS). gp130: glycoprotein 130; IL-6: interleukin-6; JAK: janus kinase; MAPK: mitogen-activated protein kinase; NF- jb:

nuclear factor kappa-light-chain-enhancer of activated B cells; NF-IL6: a nuclear factor for IL-6 expression; PIAS: protein

inhibitors of activated STATs; PI3K: phosphoinositide 3-kinase; SOCS3: suppressor of cytokine signaling 3; STAT3: signal

transducer and activator of transcription 3.

Rheumatology key messages

. IL-6 signalling is actively involved in OA pathology, identifying IL-6 as a promising therapeutic target.

. Differences between classic- vs trans-signalling explain the protective and degenerative IL-6 effects in joint tissues.

. Specific targeting of IL-6 trans-signalling could be a superior treatment strategy in OA.
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Cytokine interplay and intracellular cross-talk

Interplay between IL-6 signalling pathways and other

cytokines exists on multiple levels [14]. For example,

other cytokines from the IL-6 family, like ciliary neuro-

trophic factor (CNTF) and IL-30, can also bind and acti-

vate the IL-6R, although with lower binding affinity

compared with the CNTF- and IL-30 receptors [20, 21].

Furthermore, interplay between IL-6 and pro-inflammatory

cytokine signalling may restrict uncontrolled pro-

inflammatory signalling [22]. For instance, IL-1b strongly

inhibits IL-6-mediated acute phase reaction in the liver by

directly inhibiting p38 MAPK-dependent STAT3

phosphorylation [22, 23]. More specifically, MAPK p38

and the transcription factor NF-jb were identified as

crucial regulators of the IL-6 signalling pathway [22].

Also, interplay between IL-6 and anti-inflammatory cyto-

kines, such as TGF-b, is present at receptor level and at

the level of intracellular mediators [24–26]. Crosstalk be-

tween STAT3 and Smad3, the main intracellular medi-

ator of TGF-b signalling, exists in diverse

pathophysiological conditions and leads to either syner-

gistic or antagonistic actions depending on cell type and

context [26].

Modes of IL-6 signalling

IL-6 has the unique ability to initiate signal transduction

via different modes of receptor activation. Signalling via

membrane-anchored IL-6R (mIL-6R) is termed classic sig-

nalling and is important for the acute-phase response,

hematopoiesis and central homeostatic processes [27]

(Fig. 2a). Interestingly, a soluble form of IL-6R (sIL-6R) can

be produced by shedding of membrane-bound receptor

or alternative splicing [28, 29]. sIL-6R can bind secreted

IL-6, forming a complex that increases the half-life of IL-6

[30]. Signalling via sIL6R is called trans-signalling and

greatly broadens the scope of IL-6 responsiveness, as

any gp130-expressing cell can bind and respond to the

IL-6/sIL-6R complex (Fig. 2b). IL-6 trans-signalling mainly

regulates pro-inflammatory events and is implicated in nu-

merous chronic diseases and cancers [27, 31]. Trans-

signalling leads to stronger activation of IL-6 intracellular

signalling routes, resulting in enhanced target gene ex-

pression, but how this works is still unclear [32, 33].

Possibly, restricted expression of mIL-6R limits activation

of STAT3 via classic signalling, but not trans-signalling

due to additional presence of sIL-6R [32]. Within our cir-

culation, a soluble form of gp130 (sgp130) acts as a nat-

ural inhibitor of IL-6 trans-signalling by binding to the IL-6/

sIL-6R with high affinity [31, 34–36]. Sgp130 therefore

specifically inhibits IL-6 trans-signalling and does not af-

fect classic signalling or recently discovered IL-6 cluster-

signalling. IL-6 cluster-signalling involves membrane IL-6/

IL-6R complexes on dendritic cells, which activate gp130

receptors on receiving T cells resulting in the generation

of pathogenic Th17 cells (Fig. 2c). [37]. Whether IL-6

cluster-signalling is also relevant in other biological set-

tings remains to be investigated.

Local and systemic perspective: levels of
IL-6 and its soluble receptors in OA

IL-6 levels relate to OA incidence and pathology

IL-6 was detected in OA synovial fluid (SF) as early as

1988. However, this did not result in follow-up studies,

as IL-6 levels were lower compared with RA SF and

healthy controls were not included [38, 39]. Later, it be-

came clear that IL-6 levels were significantly increased

in OA SF and serum compared with healthy individuals

[40–42]. Furthermore, additional studies showed a clear

relation between systemic IL-6 levels and OA incidence

[43–45]. Increased circulating levels of IL-6 were predict-

ive for knee OA and cartilage loss in 3 and 15 years in

two independent follow-up studies [43, 44]. Moreover, a

high innate capacity to produce IL-6, in response to

lipopolysaccharide stimulation, was associated with

hand OA development in 90-year-old individuals [45].

Higher IL-6 levels in OA serum or SF also correlate with

disease progression or severity of cartilage pathology

[42, 46–48]. This suggests that IL-6 levels may reflect

cartilage damage, which is supported by the fact that

SF IL-6 levels are strongly increased in individuals with

cartilage defects but no macroscopic signs of OA [49,

50]. When local vs systemic levels of IL-6 were com-

pared in the same patients, IL-6 concentrations were

higher in OA SF (119.8 6 193.5 pg/ml) compared with

plasma samples (3.1 6 2.7 pg/ml) [51]. Furthermore, two

patient subgroups can be identified based on IL-6 levels

in OA SF, high producers (2022 6 526 pg/ml) vs average

producers (132 6 19 pg/ml), of which high producers

may particularly benefit from IL-6 targeted therapy [52].

Local production of IL-6 by joint tissues

It is now recognized that synovial inflammation is im-

portant in OA, and synovitis is observed in �50% of OA

patients [5, 53]. The synovium is an important producer

of IL-6 in OA, for instance via (activated) synovial fibro-

blasts or plasma cells in the synovial lining [52, 54–56].

Besides the synovium, the infrapatellar fat pad (IFP) is

an important source of IL-6. The IFP is the main fat tis-

sue within the knee, and actively contributes to OA

pathophysiology via production of pro-inflammatory

mediators and adipokines [57]. Interestingly, the IFP

from knee OA patients secreted significantly higher lev-

els of IL-6, but not TNF-a and IL-1b, compared with ab-

dominal fat tissue from the same patients [58].

Furthermore, IFP-conditioned medium cultured with

traumatized cartilage explants caused IL-6-dependent

glycosaminoglycan release [59]. Also, synovial fibro-

blasts from obese OA patients secreted higher levels of

IL-6 compared with normal-weight patients [60], indicat-

ing that IL-6 may be particularly relevant in obesity-

derived OA, especially as IL-6 plays a central role in cell

metabolism [61].

A roadmap to target interleukin-6 in osteoarthritis
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Broadening our horizon: levels of soluble IL-6
receptors in OA

The ratio of IL-6 classic- vs trans-signalling is regulated

by sIL-6 receptors [62]. Increased levels of sIL-6R in OA

patients may direct future treatment towards specific in-

hibition of IL-6 trans-signalling, while decreased sgp130

levels could indicate reduced negative feedback cap-

acity. Unfortunately, studies investigating soluble IL-6

receptors in OA are scarce. Systemically, no differences

were detected in sIL-6R levels in serum of healthy

donors and OA patients [63], and as far as we know

there is no study investigating systemic changes in

sgp130 in OA. In OA SF, both sIL-6R and sgp130 are

present, but a comparison to healthy individuals is lack-

ing [64–66]. Despite high levels of IL-6 production, it

remains unclear if the synovium is a source of sIL-6

receptors in OA. In RA-derived material, cultured SF

mononuclear cells produced sIL-6R, but not cultured

chondrocytes or synovial cells [64]. However, this was

not confirmed in OA. A potential source of sIL-6R in OA

could be the IFP, which was shown to produce both IL-

6 and sIL-6R [58], possibly resulting in IL-6 trans-

signalling.

FIG. 2 Modes of IL-6 signalling

(a) Classic IL-6 signalling involves cells expressing both membrane (m)IL-6R and gp130; free IL-6 binds to mIL-6R,

forming a complex with gp130. (b) IL-6 trans-signalling is activated by pre-formed complexes of IL-6 and soluble IL-

6R (IL-6/sIL-6R) and requires only gp130 expression on target cells. Soluble gp130 (sgp130) acts as a natural inhibitor

of trans-signaling by specifically binding to IL-6/sIL-6R complexes. (c) IL-6 cluster signaling utilizes gp130 on receiv-

ing cells, activated by IL-6/mIL-6R complexes on presenting cells (e.g. dendritic cells). gp130: glycoprotein 130; IL-6:

interleukin-6; IL-6R: IL-6 receptor.
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Direct effects of IL-6 on local joint tissues

Cartilage

As cartilage is the main OA affected tissue, previous

studies mostly focused on identifying IL-6 effects in car-

tilage. However, IL-6 has both catabolic and protective

effects in cartilage, which is still not completely under-

stood. Early studies focused on IL-6 classic signalling

and generally found protective effects of IL-6, such as

production of tissue inhibitor of metalloproteinases

(TIMPs) [67, 68]. Furthermore, IL-6 classic signalling

slightly stimulated proteoglycan synthesis in human OA

chondrocytes [49], and did not affect proteoglycan syn-

thesis of human or bovine chondrocytes [69, 70].

However, detrimental effects of IL-6 classic signalling in

cartilage have also been reported. IL-6 inhibited proteo-

glycan synthesis in human cartilage explants and rabbit

chondrocytes [71–73]. Moreover, IL-6 suppressed colla-

gen type II neo-synthesis and enhanced IL-1b-mediated

proteoglycan degeneration in rabbit chondrocytes [73,

74]. Several studies show that IL-6 induces metallopro-

teinase (MMP)-3, MMP-13 and A Disintegrin and

Metalloproteinase with Thrombospondin motifs

(ADAMTS) enzyme expression, which mediate cartilage

degeneration [75–77]. Besides regulating matrix syn-

thesis and degeneration, IL-6 induces matrix mineral-

ization via formation of basic calcium phosphate

crystals leading to proteoglycan loss [78]. Furthermore,

IL-6 disturbs several other chondrocyte functions,

resulting in decreased proliferation or increased oxida-

tive stress generation [73, 79]. Of note, IL-6 directly

induces SOCS3 expression, which can lead to insulin-

like growth factor 1 desensitization in cartilage [80].

However, enhanced SOCS3 may also be protective as

it restricts pro-inflammatory signalling in chondrocytes

[81]. Altogether, this indicates that the definition of IL-6

classic signalling as only ‘protective’ is probably too

simplified.

Generally, chondrocytes are considered to have low

levels of mIL-6R, which may limit STAT3 activation, but

strong evidence for this is missing [32, 82]. In murine

epiphysial chondrocytes, no mIL-6R expression was

observed with flow cytometry [82]. In contrast, expres-

sion of mIL-6R was observed in four donors of OA

human chondrocytes on both mRNA and protein level

[25]. Chondrocyte sensitivity for classic IL-6 signalling is

determined by mIL-6R levels, which can be altered by

hormones, cytokines and epigenetic factors [13]. The

cytokine IL-1b increases mIL-6R expression in chondro-

cytes and hepatocytes [25, 83], which may explain syn-

ergistic effects of IL-1b and IL-6 in mediating cartilage

degradation or collagen breakdown [71, 73, 84].

Cartilage injury induced by blunt trauma also potentiated

IL-6-mediated expression of catabolic markers in bovine

cartilage, but the underlying mechanism was not investi-

gated [59, 85]. On the other hand, TGF-b decreases

mIL-6R expression in chondrocytes, resulting in inhib-

ition of classic IL-6 signalling [25]. Also, mechanical

compression of cartilage, which leads to active TGF-b

signalling [86], inhibited catabolic effects of IL-6 and

TNF-a combined [87]. Changes in mIL-6R expression in

chondrocytes alter their sensitivity towards IL-6 classic

signalling and may partly explain previous discrepancies

regarding IL-6 effects in cartilage.

With respect to IL-6 trans-signalling in cartilage, func-

tional studies also show contradictive results. Most

studies conclude that IL-6 trans-signalling is detrimental

for cartilage, as it inhibits proteoglycan synthesis and

stimulates proteoglycan loss [72, 88]. Moreover, sIL-6R

was required for full activation of JAK1/2 in bovine

chondrocytes, resulting in decreased expression of ma-

trix components and increased levels of cartilage

degrading enzymes [89, 90]. On the other hand, soluble

IL-6R also augmented production of anti-catabolic

TIMPs in chondrocytes [67], which suggests that sIL-6R

stimulates general IL-6 signalling and not only the cata-

bolic response. In conclusion, there is substantial evi-

dence for a direct role of IL-6 in regulating chondrocyte

function and cartilage metabolism. While most studies

report catabolic effects of IL-6 on cartilage, protective

effects are also found. These discrepancies may be

explained by functional differences in IL-6 classic vs

trans-signalling, or disturbed expression of mIL-6R lev-

els on chondrocytes.

Other joint tissues

As OA is a whole joint disease, direct effects of IL-6 on

other joint tissues such as synovium, subchondral bone,

and muscle tissue are also of interest [3]. Comparable

to IL-6 effects in cartilage, mainly IL-6 trans-signalling

was associated with detrimental effects in synovium. In

OA- or RA-digested synovium, both IL-6 classic and

trans-signalling increase production of TIMP, but only

trans-signalling induces expression of ADAMTS4 [67,

68, 91, 92]. Moreover, IL-6 trans- but not classic signal-

ling caused strong proliferation of RA synovial fibro-

blasts that could indicate a role in synovial hyperplasia

or fibrosis [93]. However, in bone this distinction is less

clear. On the one hand, IL-6 trans-signalling promotes

osteoclast formation and consequently bone resorption,

while classic signalling inhibits osteoclastogenesis [39,

94, 95]. On the other hand, IL-6 trans-signalling has

been shown to promote bone formation [96]. The dual

effect of IL-6 trans-signalling on bone resorption and

formation may be explained by variation in levels of the

pro-osteoclastogenic factor receptor activator of nuclear

factor kappa-B ligand (RANKL). While high-levels of

RANKL promote osteoclastogenesis, lower RANKL lev-

els result in inhibition of osteoclast formation [97].

Finally, IL-6 may be directly involved in the process of

OA-related muscle degeneration [98, 99]. Indeed, ele-

vated levels of IL-6 are associated with reduced muscle

endurance in elderly women with knee OA [100].

Moreover, increased levels of IL-6, STAT3 and SOCS3

have been detected in muscle tissue of knee OA

patients [101]. However, IL-6 also mediates important

anabolic processes in muscle tissue, such as muscle

growth and myogenic differentiation [102]. This dual role

A roadmap to target interleukin-6 in osteoarthritis
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of IL-6 in muscle tissue might be a result of functional

differences in IL-6 classic- vs trans-signalling, but this is

yet unknown. Thus, IL-6 classic and trans-signalling can

affect joint tissues besides articular cartilage, but their

respective functional effects and role in OA development

remain elusive.

Evidence for a role of IL-6 in OA path-
ology: lessons learned from animal
studies

The role of IL-6 in OA pathophysiology has been

studied in several experimental OA models and mostly

show a destructive role for IL-6 (Table 1). Induction of

the destabilization of the medial meniscus (DMM) model

in IL-6-/- mice resulted in marked reduction of cartilage

destruction compared to wildtype mice [75]. Moreover,

expression levels of MMP-3 and MMP-13 were signifi-

cantly decreased in IL-6-/- mice compared to wildtype,

indicating that IL-6 induces catabolic mediators in OA.

This catabolic role of IL-6 was supported by overex-

pression of HIF-2a in wildtype vs IL-6-/- mice, causing

OA-like cartilage destruction in wildtype but not IL-6-/-

mice. Local injection of IL-6 into the knee joint caused

significantly increased cartilage degeneration and MMP-

3 and -13 expression, revealing direct evidence for

deleterious effects of IL-6 in OA [75]. Strikingly, despite

marked evidence of IL-6 involvement in OA, only one

study blocked IL-6 itself. Both systemic administration

of a neutralizing antibody as well as anti-IL-6 siRNA

resulted in decreased cartilage lesions and subchondral

bone sclerosis in the anterior cruciate ligament transac-

tion (ACLT) OA model [103]. Moreover, systemic treat-

ment with an anti-IL-6-receptor neutralizing antibody

(MR16) in the DMM model ameliorated the extent of

cartilage pathology, synovial inflammation and osteo-

phyte development [105]. This antibody is similar to

tocilizumab, which directly targets the human IL-6R and

is clinically effective in several inflammatory diseases

[11]. Moreover, blocking of the IL-6R using tocilizumab

resulted in cartilage preservation in a mouse model of

ischemic osteonecrosis and significantly increased

bone volume [106].

IL-6 is possibly mainly involved in trauma-related OA,

as both the DMM and ACLT models reflect trauma-

induced OA development. Also, in humans, local IL-6

levels strongly increase upon cartilage trauma and as-

sociate with knee OA progression after previous men-

iscectomy [49, 50]. Systemic IL-6 levels also increase

during natural ageing and are associated with several

age-related diseases [107, 108]. However, there was

no difference in cartilage degradation in wildtype or IL-

6-/- mice after age-related OA development [109]. Male

IL-6-/- mice even developed more cartilage damage,

ectopic bone formation and subchondral bone sclerosis

compared to male wildtype mice, while there was no

difference in pathology of females. This suggests that

IL-6 has no pathological role in age-related murine OA,

and even ameliorates OA pathology in male mice.

Multiple studies show interplay between IL-6 and sex

hormones such as testosterone and oestrogen [110–

112], but it is unclear how sex hormones affect IL-6

function within the joint. Of note, no markable inflam-

mation was detected in these mice including inflamma-

tory infiltrate, exudate or synovitis [109]. This raises the

question whether murine ageing fully reflects human

age-related OA development, in which synovitis is

commonly observed and levels of inflammatory media-

tors, amongst which IL-6, are systemically increased

[5, 53, 107]. Besides age-related OA, there was no dif-

ference in OA pathology caused by collagenase-

induced OA (CiOA) between wildtype or IL-6-/- mice

[109]. Although using conditional IL-6-/- mice, instead

of constitutive knockouts, would more closely resemble

physiological conditions, this suggests that other medi-

ators may cause OA pathology in this model. However,

to really exclude a role for IL-6 in CiOA and age-related

OA, lack of IL-6 effects should be confirmed by inde-

pendent studies. Functional differences in IL-6 classic

vs trans-signalling may explain the contradictive results

obtained in the different OA models. Unfortunately, all

of the employed blocking strategies block both the

classic- and trans-signalling pathway and current stud-

ies do not report sIL-6R levels. Specific inhibition of IL-

6 trans-signalling in OA models might be extremely

helpful to dissect detrimental vs protective effects of

IL-6 in the future.

Blocking downstream of IL-6: targeting STAT3 in
experimental OA

STAT3 is the most specific downstream mediator of the

IL-6 signalling pathway, but is not solely activated by

IL-6. Therefore, STAT3 activation in OA results from

synergistic actions of several gp130 cytokines [14].

Hypothetically, targeting of STAT3 may be more

successful compared with blocking IL-6, as other

STAT3-activating cytokines also have catabolic and in-

flammatory effects on cartilage [113]. Indeed, repeated

administration of a small molecule inhibitor against

STAT3 (Stattic) in the DMM model resulted in stronger

protection against cartilage degeneration and osteo-

phyte formation compared with blocking IL-6R [105].

This additional effect may result from blockade of both

IL-6 and oncostatin M (OSM) signalling via STAT3,

based on the role of OSM in osteophyte proliferation

and synovial inflammation [104, 114]. Inhibition of JAK2/

STAT3 signalling in the ACLT model using the AG490 in-

hibitor also led to considerable protection against cartil-

age degeneration and subchondral bone sclerosis [103].

However, mesoderm-specific deletion of STAT3 caused

expansion of growth plate hypertrophic chondrocytes

and severe dysregulation of endochondral ossification,

caused by STAT3-mediated activation of Sox9 in chon-

drocytes [115]. This phenotype is not observed in IL-6-/-

animals [116], suggesting that other STAT3-activating

cytokines may cause dysregulation of cartilage and

bone development, such as LIF which is associated

with reduced skeletal growth [117]. Recently, a novel
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gp130-small molecule modulator (RCGD 423) was dis-

covered, which directed gp130 towards proliferative

STAT3/c-Myc signalling, while inhibiting ERK/NF-jb sig-

nalling. Therapeutic administration of the RCGD 423

compound, leading to STAT3 activation, resulted in

reduced cartilage degeneration in a rat partial meniscec-

tomy model [118]. This contradicts the earlier finding

that STAT3 inhibition using Stattic protects against car-

tilage degeneration [105]. It is possible that the prolifera-

tive effect of the RCGD423 inhibitor is caused by the

strong activation of c-Myc, as LIF-driven c-Myc activa-

tion is critical for chondrocyte survival and proliferation

in fetal cartilage [118]. These opposing results indicate

that the ultimate result of STAT3 inhibition, beneficial

or detrimental, is strongly context-dependent and

determined by the integrated signal of multiple gp130

cytokines. While targeting of STAT3 may seem promis-

ing in experimental OA, this might prove difficult in OA

patients due to large differences in severity and inci-

dence of inflammation, and heterogeneity in STAT3-

activating cytokines or growth factors [53]. This makes

it difficult to predict the outcome of STAT3 inhibition in

OA and argues for the simpler approach of directly tar-

geting gp130 cytokines, such as IL-6, upstream of

STAT3.

Under construction: IL-6 targeted therapy
in OA

Currently, multiple therapeutic strategies exist to ef-

fectively target the IL-6 signalling pathway and are

safely applied for the treatment of several inflammatory

diseases. For example, the IL-6R targeting antibody

tocilizumab has been approved for treatment of RA,

juvenile idiopathic arthritis, Castleman’s disease and

recently also for giant cell arteritis [62, 119]. Currently,

no therapies targeting IL-6 signalling are approved for

treatment of OA. This may change in the near future,

as tocilizumab is being tested in a phase 3 randomized

controlled trial in patients with refractory hand OA

(ClinicalTrials.gov NCT02477059).

Previous studies showed that levels of IL-6 in SF

can vary between different joints, which could direct

future IL-6 targeted therapy towards relevant patient

subgroups. For example, levels of IL-6 were strikingly

higher in knee OA SF compared with carpometacarpal

joint fluid [120]. Moreover, more IL-6 was detected in

post-traumatic wrist OA compared with knee OA

patients [121]. As inflammation is strongly linked to

structural damage in hand OA patients [122–124], this

patient group may be very suitable to study the conse-

quences of blocking pro-inflammatory cytokines, such

as TNF-a [125] and IL-1b [7] and now IL-6. Besides

stratification of patients based on joint location, treat-

ment choice could also be based on OA subtypes.

Post-traumatic OA is a common form of OA, develop-

ing after joint injury (e.g. anterior cruciate ligament or

meniscus injury) [126]. In these patients, there may be

a therapeutic window after injury, in which targeting of

inflammatory mediators may prevent the development

of further damage. During joint injury, such as anterior

cruciate ligament rupture, levels of IL-6 in SF are high-

ly increased up to 1000-fold [127, 128], and a sudden

increase in IL-6 levels has also been found after focal

cartilage damage [49, 50]. This suggests that inhibition

of IL-6 shortly after joint injury may be a promising

treatment strategy to prevent the development of post-

traumatic OA; however, the optimal therapeutic win-

dow to prevent further damage is still unknown.

Due to the success of tocilizumab, novel IL-6 pathway

inhibitors have been developed, such as biologics tar-

geting IL-6R (vobarilizumab, satralizumab, sarilumab),

IL-6 (siltuximab, olokizumab, sirukumab, clazakizumab

and MEDI 5117), IL-6 trans-signalling (olamkicept), or

small molecule inhibitors directed against JAKs or

STAT3 [129]. Multiple inhibitors have been developed

and clinically tested that target JAK-kinases or STAT3

directly [11]. Although some of these compounds are

clinically effective in RA, such as tofacitinib and bariciti-

nib (pan-JAK inhibitors), they have not been tested in

OA patients [130]. Yet, there are pre-clinical indications

that JAK/STAT inhibition could be effective in OA. For

instance, tofacitinib inhibited cytokine-induced proteo-

glycan loss and restored collagen type II synthesis in

bovine cartilage explants [131]. In addition, animal stud-

ies indicate protective effects of JAK/STAT inhibition in

experimental OA [103, 105]. However, targeting of JAK/

STAT signalling also results in inhibition of multiple cyto-

kines including IL-10, IL-4 and IGF-1, which have a

beneficial role in joint biology and OA development [14,

132, 133]. As OA is a very heterogeneous disease with

large differences in severity of inflammation and cytokine

profile [53], it will be difficult to predict outcome of JAK/

STAT inhibition in OA patients. Therefore, the simpler

approach of targeting one cytokine, like IL-6, might be a

safer strategy. As several therapeutics have been devel-

oped that target IL-6 signalling via a different mechan-

ism, the comparison of these treatments will greatly

enhance knowledge about the role of IL-6 in disease.

Tocilizumab, for instance, blocks all IL-6 signalling path-

ways (classic and trans-signalling, and potentially also

cluster-signalling [37]), because it inhibits IL-6 binding to

both mIL-6R and sIL-6R (Fig. 3) [134]. In contrast, olam-

kicept specifically targets the IL-6/sIL-6R complex,

thereby only inhibiting IL-6 trans-signalling and not clas-

sic signalling. Olamkicept is a fusion protein consisting

of two soluble human gp130 proteins fused with the Fc

region of human IgG (sgp130Fc) [129]. Accordingly,

olamkicept blocks pro-inflammatory events of IL-6

trans-signalling, while simultaneously allowing homeo-

static effects of IL-6 classic signalling. Olamkicept was

already successfully used in treating experimental

Crohn’s disease and is now in clinical trials for inflam-

matory bowel disease and active ulcerative colitis [11,

135]. Specific inhibition of IL-6 trans-signalling could be

a preferred future treatment strategy, as several side

effects of tocilizumab have already been reported that

may result from inhibition of IL-6 classic signalling, such

Renske Wiegertjes et al.
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as impairment of the acute phase response [129].

Olamkicept might also be a promising therapy for OA,

as several studies demonstrated catabolic and pro-

inflammatory effects of IL-6 trans-signalling in cartilage

and synovial tissue [72, 88, 92, 93]. Thus, even if tocili-

zumab does not prove effective in hand OA, specific in-

hibition of IL-6 trans-signalling may hold additional

promise. Nonetheless, additional pre-clinical research

will first be needed as the relevance of IL-6 trans-

signalling in experimental OA has not yet been

demonstrated.

Conclusions and future perspectives

In this review, we focus on the unique ability of IL-6 to

signal via the classic- and trans-signalling pathway, and

discuss the opposing effects of these signalling routes

in OA pathophysiology and treatment. Levels of IL-6 are

increased in SF and serum of OA patients, and relate to

disease incidence and pathology. In contrast, regulation

of sIL-6R in OA, which controls activation of IL-6 trans-

signalling, has been overlooked until now and warrants

further research. In local joint tissues such as cartilage,

synovium and bone, IL-6 classic signalling results mainly

in protective effects, while trans-signalling leads to pro-

inflammatory and catabolic effects. However, it is highly

likely that local regulation of IL-6R levels also determines

IL-6 outcome to a great extent. Current evidence of IL-6

blockade in experimental OA shows that therapeutic tar-

geting of the IL-6 pathway could be a promising treat-

ment strategy to reduce cartilage damage, synovial

inflammation and subchondral bone pathology in OA

patients. Moreover, we propose that specific blockade

of IL-6 trans-signalling could be a superior treatment

FIG. 3 Current IL-6 targeting strategies

Anti-IL-6 monoclonal antibodies (e.g. siltuximab) directly target IL-6, thus blocking both classic and IL-6 trans-

signaling. IL-6R targeting antibodies (e.g. tocilizumab) block binding of IL-6 to the IL-6R (both mIL-6R as well as

sIL-6R), thereby inhibiting IL-6 classic and trans-signaling pathways. The sgp130Fc fusion protein (e.g. olamki-

cept) was developed to specifically target IL-6 trans-signaling, and only binds to the IL-6/sIL-6R complex.

Sgp130Fc does not bind to membrane IL-6R or free IL-6, therefore allowing classic IL-6 signaling to continue.

IL-6: interleukin 6; mIL-6R: membrane IL-6 receptor; sgp130: soluble glycoprotein 130; sIL-6R: soluble IL-6

receptor.

A roadmap to target interleukin-6 in osteoarthritis

https://academic.oup.com/rheumatology 2689



strategy, which may result in inhibition of deleterious

IL-6 effects in OA, while maintaining protective IL-6 sig-

nalling via the classic pathway.

Search strategy

Articles were selected using the PubMed search engine.

To select articles regarding IL-6 in OA, we used follow-

ing search terms present in title or abstract [tiab]: ‘inter-

leukin-6’ in combination with search terms covering the

topics in this review including ‘osteoarthritis’, ‘cartilage’,

‘synovium’, ‘bone’, ‘muscle’, ‘infrapatellar fat pad’ and

‘therapy’. Relevant synonyms were included using

MeSH terms. Title and abstract of articles were

screened for relevant topics as listed in this review.

Non-English articles, and articles in which IL-6 was only

used as a marker of inflammation were excluded. In

addition, reference lists of cited articles and articles in

our personal databases were screened for eligibility.

Search includes articles published up to January 2020.

Funding: This study was supported by ReumaNederland

(Dutch Arthritis Society, with grant number: 15–2-404

and 19–1-204).

Disclosure statement: The authors have declared no

conflicts of interest.
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