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Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that un-

derlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The

challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic

determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the

mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal

manyQTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources

as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with

a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting archi-

tectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-

dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resour-

ces, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue

that variation of genetic architectures among individuals is as important as population averages. Each of these important

resources has particular merits and specific applications for these individual and population perspectives. Collectively, these

resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information

repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease

models.

[Supplemental material is available for this article.]

Genetics of complex traits and disease

Mutations have been identified inmore than 5000 genes that lead
to monogenic disease in humans (Chen et al. 2013). These discov-
eries have revolutionized the diagnosis of single-gene disorders
and in certain instances have led to new treatments, including
those for hemophilia and leukemia (Ginsburg 2011). However,
identifying the underlying genetic variants for polygenic condi-
tions, which are the predominant source of phenotypic variation
and disease, has not kept pace with their simpler counterparts
(Manolio et al. 2009; Lu et al. 2014). It is hoped that identifying
the genes that underlie these common conditions will lead to
improvements in diagnostic and treatment capabilities similar to
those already achieved for single-gene traits.

Both large- and small-scale studies have sought to discover
the genetic variants responsible for susceptibility to complex dis-
eases such as diabetes, Alzheimer’s disease, and multiple sclerosis
as well as variants that regulate normal trait variation. These ongo-
ing studies have focused on genome and exome sequencing aswell
as on genome-wide association, linkage, and candidate gene ap-
proaches. Although progress has been made with thousands of
genetic variants now associated with complex phenotypes, the
majority of the heritable risk remains unexplained because the
combined action of reported variants generally accounts for a
modest portion of the estimated hereditary component of pheno-
typic variation (Manolio et al. 2009). In addition, a causal role has

not been proven for most of the candidate variants (Chakravarti
et al. 2013).

Several explanations for “missing heritability” have been pro-
posed, including allelic heterogeneity, locus heterogeneity, rare
variants, small effect sizes, epistasis, epigenetics, poor tagging of
causal variants, and overestimates of heritability (Eichler et al.
2010; McClellan and King 2010; Zuk et al. 2012). The relative con-
tribution of each putative explanation to missing heritability may
be trait specific. This is illustrated by the impact of locus heteroge-
neity, which reflects the number of different genes that influence
a trait or disease, on GWAS for height and age-related macular
degeneration. A GWAS of 2172 individuals to detect susceptibility
loci for age-related macular degeneration identified five QTLs that
together accounted for 50% of trait heritability (Maller et al. 2006;
Manolio et al. 2009). In contrast, initial GWAS studies totaling
63,000 individuals for height identified 40 QTLs that together
only accounted for 5% of trait heritability (Visscher 2008;
Manolio et al. 2009). A meta-analysis of 253,288 individuals was
needed to identify 697QTLs that collectively accounted for herita-
bility levels approaching the macular degeneration study that was
based on 100-fold fewer individuals (Wood et al. 2014). The limit-
ed locus heterogeneity coupledwith larger effect sizes are likely the
primary reasons that the risk factors formacular degenerationwere
among the first risk alleles identified with GWAS (Maller et al.
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2006). Conversely, the greater locus heterogeneity coupled with
smaller effect sizes for height led to high estimates of missing her-
itability from the initial GWAS (Visscher 2008). Whether the ge-
netics of other traits will prove more similar to height or to
macular degeneration remains to be seen because few other traits
have sample sizes as large. In addition, despite the large-scale stud-
ies of height, approximately half the heritability continues to
elude discovery. Factors complicating the efforts to further explore
the missing heritability include the many challenges associated
with human studies, including environmental effects, cost and lo-
gistics, phenotypicmeasurements,multigenerational genetic data,
replication, data access, and privacy concerns.

Studies of genetic architecture involve identifying not only
each susceptibility allele and variant gene, but also characterizing
allele frequencies, trait variance, dominance effects, expressivity,
environmental influences, gene–gene and gene–environment in-
teractions, inheritance patterns, and spontaneous mutation rates
(Mackay 2001). A deeper understanding of genetic architecture
should lead to improved diagnostics and therapeutic targets based
on gene sequences, functional networks, and systems properties
(Nadeau and Dudley 2011; Manolio 2013). Given both the impor-
tance of understanding the genetic basis of complex disease and
the substantial challenges with conducting these studies in hu-
mans, considerable investments are being made in model organ-
isms, ranging from studies with single-cell organisms and plants
to invertebrates and vertebrates (Singer et al. 2004; Aylor et al.
2011; Ingvarsson and Street 2011; Huang et al. 2012; Bloom
et al. 2013; Alonso-Blanco andMéndez-Vigo 2014). This review fo-
cuses on studies conducted with mouse models and discusses the
contrasting evidence that has yielded distinct pictures of genetic
architectures for similar traits and disease models when studied
with different genetic resources.

Model organisms

Model organisms have many advantages for studying complex
traits, including control over variables such as genetic background,
diet, stress, bacterial and viral load, and chemical and toxin expo-
sures. Standardized diets enable comparisons among studies con-
ducted in different laboratories at different times. Monitoring for
specific pathogens limits the confounding effects of commensal
organisms and acute infection. Inbreeding provides a level of
genetic control not possible in humans. Planned crosses and ped-
igree information can be used to investigate parental and inherited
epigenetic effects. Detailed phenotyping can be undertaken in
time-course studies. Cells, tissues, and organs can be accessed
that are not available in humans. Results of these studies can
then be used to guide corresponding investigations in humans
(Schughart et al. 2013).

Insights from mouse models

Initially, investigators relied on existing genetic and phenotypic
diversity among the many inbred strains of mice. Thousands and
perhaps millions of DNA sequence variants that differ among
these strains contribute individually and collectively to phenotyp-
ic variation and disease risk (Keane et al. 2011; Grubb et al. 2014).
These naturally occurring variants are thought to more appropri-
ately model the kinds of genetic variants found in humans as op-
posed to engineered or induced loss-of-function mutations in
single genes that are currently being systematically produced and
that are essential for functional, mechanistic, and systems studies

(Bradley et al. 2012; Brown andMoore 2012; Koscielny et al. 2014).
The phenotypic consequences of these naturally occurring vari-
ants are expected to involve subtle regulatory or functional chang-
es, rather than the often severe loss-of-function variants that result
from genetic engineering.

More than 100 years of developing and studying laboratory
mice has led to a wealth of information about the broad range
of phenotypes among these strains (Beck et al. 2000). For example,
C57BL/6J, which is the most commonly used inbred strain in
biomedical research, develops diet-induced obesity, has a high
preference for ethanol, and demonstrates late-onset hearing loss
(McClearn and Rodgers 1961; Surwit et al. 1988; Zheng et al.
1999). These susceptibilities are in contrast to other inbred strains
that are resistant to diet-induced obesity (A/J), have a low prefer-
ence for ethanol (DBA/2J), or do not develop hearing loss (CBA/
CaJ) (Belknap et al. 1993; Black et al. 1998; Zheng et al. 1999).
Other examples of phenotypic variation among inbred strains in-
clude M. tuberculosis infection (susceptible: CBA, DBA/2, C3H,
129/X1; resistant: BALB/c, C57BL/6J) and atherosclerosis (suscep-
tible: DBA/2, C57BL/6J; resistant: BALB/c, C3H) amongmany oth-
ers (http://www.jax.org/phenome) (Paigen et al. 1985;Medina and
North 2001; Grubb et al. 2014).

Despite great promise, early attempts at identifying suscep-
tibility genes for complex traits using inbred strains met with
limited success (Glazier et al. 2002). These studies were largely con-
ducted within individual laboratories and were based primarily on
intercrosses or backcrosses between pairs of inbred strains that
showed contrasting phenotypes. Many QTLs for a wide range of
traits weremapped using this approach. However, few of the causal
genetic variants were identified (Nadeau 2003; Flint et al. 2005). In
fact, estimates of the success rate of gene identification from a
mapped QTL were as low as 1% (Drinkwater and Gould 2012).
Nonetheless, identification of these genetic variants established
the principles and practices that would guide the development
of more sophisticated genetic resources.

Many of these pioneering studies in model organisms also
showed that variants in several genes could act together in a non-
additive manner to yield dramatic phenotypic differences (Mac-
Phee et al. 1995; Mohlke et al. 1999; Ikeda et al. 2002; Buchner
et al. 2003; Floyd et al. 2003; Nadeau 2003). Subsequent studies
in humans reported similar evidence. For example, Bardet-Biedl
syndrome is characterized by obesity, developmental delay, poly-
dactyly, and retinal dystrophy. This syndrome is typically inherit-
ed as an autosomal recessive disorder resulting from mutations
in any of at least 16 different genes (Forsythe and Beales 2013). In-
terestingly, several cases show that a mutation in a second Bardet-
Biedl syndrome gene is required to develop the condition or
to modify the severity of the phenotype (Katsanis et al. 2001,
2002; Badano 2003; Beales et al. 2003; Badano et al. 2006). Hirsch-
sprung’s disease is another classic example of an oligogenic
disease. Affected individuals lack enteric neurons along the gastro-
intestinal tract, leading to constipation or intestinal obstruction.
The penetrance and severity of Hirschsprung’s disease is often de-
termined by interactions between genes within the GDNF/RET
and EDNRB pathways, including an interaction between RET
and NRG1 (Gabriel et al. 2002; Garcia-Barcelo et al. 2009; Wallace
and Anderson 2011; Alves et al. 2013). The key to success for
these genetic studies lies in the important but limited genetic het-
erogeneity of each disorder. Multiple pedigrees with mutations in
the same gene allowed for standard linkage and gene identification
techniques to be applied, as has been done for conditions that
show Mendelian inheritance (Attié et al. 1995; Katsanis et al.
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2000). Despite these and other examples, even the simplest gene
interactions have been notoriously difficult to study, and evidence
beyond pairwise gene interactions is rare (Mackay 2013; Mackay
and Moore 2014).

Althoughmany disorders, including Bardet-Biedl andHirsch-
sprung’s, are largely determined bymutations in a small number of
genes, most traits in humans, mice, and other species do not share
this genetic simplicity. Large-scale international efforts are under-
way to dissect the genetics of these common conditions (Cornelis
et al. 2010; Sullivan 2010; Ehret et al. 2011; Rivas et al. 2011; Yang
et al. 2012). However, of the thousands of significant associations
between genetic variants and complex traits or disease, most
account for only a modest portion of overall trait variability
(Visscher et al. 2012; Robinson et al. 2014). This has rendered it im-
possible to accurately characterize the genetic architecture of most
complex traits (Agarwala et al. 2013). Progress has been slow
because the methods that worked so well for studying monogenic
and oligogenic traits are poorly suited for multigenic conditions.
As human genetics strives to resolve these fundamental issues,
we can turn tomousemodels to gain insight into the genetic archi-
tecture of complex traits.

Genetic resources for complex traits

New methods and resources were proposed to improve the effi-
ciency of QTL mapping and gene identification. These new re-
sources are beyond the ability of most laboratories to create
because of the substantial scale, logistics, and costs of such an en-
deavor, but once generated, these resources can be shared with in-
terested researchers for their research programs. These resources
included the Collaborative Cross (CC), Outbred Stocks (OS),
the Hybrid Mouse Diversity Panel (HMDP), and Chromosome
Substitution Strains (CSSs) (Nadeau et al. 2000; Churchill et al.
2004; Bennett et al. 2010; Yalcin and Flint 2012). Each is currently
available as a community resource (Table 1).

The nature, strengths, and logistics of each resource are im-
portant considerations. In addition to the theoretical merits in-
volved in their design, each resource has now been used to study
complex traits. As a result, evidence is available about their utility
and the nature of discoveries. The CC, OS, and HMDP resources,
which share the general feature of testing for common genetic ef-
fects across heterogeneous backgrounds, will be discussed first.
CSSs, which test a single chromosome independently of the other
but always on a uniform and defined genetic background, will be
discussed last. These complementary approaches have important
consequences not only for QTL mapping and gene identification,
but they are also leading to strikingly different pictures of the ge-
netic architecture of complex traits.

Collaborative Cross (CC)

The CC sought to improve QTL mapping efficiency by increasing
statistical power, improving mapping resolution, and enhancing
genetic diversity relative to previously available paradigms (Fig.
1A). The CC is based on the principle of Recombinant Inbred
(RI) strains, which have been used for decades for various genetic
studies (Bailey 1971; Justice et al. 1992; Threadgill et al. 2011).
Each RI strain has a unique combination of allelic variants and re-
combinant chromosomes derived from its two inbred progenitor
strains. These recombinant chromosomes have been fixed in the
homozygous state by serial intercrossing. RI strains that are cur-
rently available from The Jackson Laboratory include AXB (n = 16

strains), BXA (n = 14 strains), BXD (n = 89 strains), BXH (n = 13
strains), and CXB (n = 13 strains). These RI panels have been
used to map genes for alcohol preference, bone mineral density,
and hematopoietic stem cell functions among others (Marshall
et al. 1992; Phillips et al. 1994; Klein et al. 1998; Peirce et al.
2004; Bystrykh et al. 2005). The greater relative numbers of BXD
strains have contributed toward them becoming the most com-
monly used RI strain. The BXD strains have been used to map
genes that control metabolism, including the regulation of hypo-
phosphatasia by Alpl (Andreux et al. 2012) and the regulation of
fasting glucose and diabetes susceptibility by Dhtkd1 (Wu et al.
2014). Analysis of the BXD strains has also been elegantly com-
bined with gene knockdown studies in C. elegans to discover that
Mrps5 and other mitochondrial ribosomal proteins regulate lon-
gevity (Houtkooper et al. 2013).

The CC differs from conventional RI panels because eight,
rather than two, strains were used as progenitors, thereby dramat-
ically increasing the genetic and phenotypic diversity of this re-
source. The progenitor strains were A/J, C57BL/6J, 129S1/SvImJ,
NOD/ShiLtJ, NZO/H1LtJ, and the wild-derived strains CAST/EiJ,
PWK/PhJ, and WSB/EiJ. The original plans called for generating
1000 new RI lines, with each strain capturing approximately 135
unique recombination events (Threadgill et al. 2002). Across the
1000CC strains, this exceptional number of recombination events
was intended to provide a mapping resolution of ∼200,000 bp
(Peters et al. 2007). The large sample size was also sufficient for de-
tecting certain kinds of gene–gene and gene–environment interac-
tions (Churchill et al. 2004; Valdar et al. 2006a; Peters et al. 2007).
However, considerable breeding difficulties were encountered
(Philip et al. 2011); and as of January 1, 2015, only 69 strains are
listed as available on the CC website (Table 1) with a current
goal of about 100 strains. Despite these difficulties, investigators
have used these 69 completed strains and other incipient lines to
study the genetics of infection, body weight, food intake, cancer,
albuminuria, and other traits (Aylor et al. 2011; Durrant et al.
2011; Foulds Mathes et al. 2011; Philip et al. 2011; Kelada et
al. 2012, 2014; Thaisz et al. 2012; Ferris et al. 2013; Ferguson

Table 1. Websites providing details for resources to study complex
traits in mice

Panel Websites

OS
Heterogeneous

stock
http://mus.well.ox.ac.uk/mouse/HS/

Commercially
available

Available from various commercial vendors including
Harlan, Charles River, Taconic, among others
(Yalcin and Flint 2012)
http://www.harlan.com/products_and_services/
research_models_and_services/research_models-
outbred-mice

http://www.criver.com/find-a-model?
animal_type=Mice

http://www.taconic.com/find-your-model/non-gems
Diversity
outbred

http://jaxmice.jax.org/strain/009376.html

HMDP http://systems.genetics.ucla.edu
CC http://csbio.unc.edu/CCstatus/index.py
CSS http://www.jax.org/smsr/csstrain.html

http://jaxmice.jax.org/list/cat481361.html
http://www.shigen.nig.ac.jp/mouse/nig/

(CC) Collaborative Cross; (OS) Outbred Stock; (HMDP) Hybrid Mouse
Diversity Panel; (CSS) Chromosome Substitution Strain.
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et al. 2014; Phillippi et al. 2014; Rogala et al. 2014; Rutledge et al.
2014; Vered et al. 2014).

CC mice have also been used by investigators to generate re-
combinant inbred intercross (RIX) strains to extend the mapping
powerandutilityof theCC.RIXmice are generated fromcrosses be-
tweenCC strains so that the offspring are F1hybrids of the parental
CC lines (Zou et al. 2005). These strains have the advantage of gen-
erating additional unique genotypes, extending the phenotypic
diversity, and supporting studies of epigenetic effects (Threadgill
and Churchill 2012). Specialized statistical methods have been de-
veloped to analyze this unique population (Gong and Zou 2012). A
striking example of the power of CC–RIX strains is illustrated by
their markedly different response to infection by a mouse-adapted
strain of the Ebola virus, thus providing among the first and best
mouse models for studying Ebola infection, and in particular the
associated hemorrhagic fever (Rasmussen et al. 2014).

Outbred Stocks (OS)

Outbred Stocks differ from inbred strains in that they are bred
to maximize genetic diversity within a closed population (Chia
et al. 2005). As opposed to mice derived from an inbred strain,
individual mice within an Outbred Stock are not genetically iden-
tical. The increased intra-strain genetic diversity is often accom-
panied with improved health and fertility relative to inbred
strains (Linder and Davisson 2004). Of primary importance for
mapping complex trait genes is the substantial number of recom-
bination events that occur during the normal course of maintain-
ing Outbred Stocks. The accumulation of recombination events
over timemarkedly decreases linkage disequilibrium relative to in-
bred strains, which consequently improves mapping resolution
(Yalcin and Flint 2012). The downside to nonidentical genotypes
within a stock is that each mouse must be genotyped for asso-
ciation studies. However, resources are available to assist with

genotyping including the High-Density
Mouse Universal Genotyping Array
(MegaMUGA) or the upcoming Giga-
MUGA (Didion et al. 2014). Many Out-
bred Stocks are available to study
complex traits (Yalcin et al. 2010).
Among the most commonly used are
the Heterogeneous stock (HS) and the
Diversity Outbred stock (DO) (Mott
et al. 2000; Churchill et al. 2012).

HSmicewere derived from an eight-
way cross between C57BL, BALB/c, RIII,
AKR, DBA/2, I, A, and C3H/2 in the
1980s. The stock has been maintained
formore than 60 generations, with an av-
erage distance between recombination
events <4 Mb (Mott et al. 2000). One of
the first demonstrations of the power
of OS mice for mapping complex trait
genes involved a large study of 1904 HS
mice and 298 of their parents (Valdar
et al. 2006b). More than 800 QTLs were
mapped to an average 95% confidence
interval of 2.8 Mb.

TheDOmicewere derived from ran-
dom outcrosses among 160 of the com-
pleted and incipient CC strains derived

from a different eight-way cross (Fig. 1C). These mice are main-
tained by continued randommating to avoid inbreeding and to re-
tain maximal genetic and phenotypic diversity (Svenson et al.
2012). This mating strategy maintains a high level of heterozygos-
ity, allowing for studies of dominance effects (allele interactions).
Generating the DO mice from CC strains further increases the es-
timated number of recombination events to an average of 390 per
mouse (Churchill et al. 2012). DO mice are currently bred at The
Jackson Laboratory, and new cohorts ofmice are available for ship-
ment approximately three times per year. Analysis of just 200 DO
mice is 90% powered to identify a QTL that explains >20% of the
phenotypic variance, whereas to obtain 90% power to identify a
QTL that explains 5% of the variance would require 1000 mice
(Gatti et al. 2014). Mapping a QTL for serum cholesterol levels
on mouse Chromosome 3 provides an early example of the utility
of the DO panel (Svenson et al. 2012).

Hybrid Mouse Diversity Panel (HMDP)

The HMDP comprises approximately 100 inbred strains, includ-
ing “classic” inbred strains such as C57BL/6J, SJL/J, NOD/ShiLtJ,
and BALB/cJ as well as RI lines from the BXD, CXB, BXA/AXB,
and BXH panels (Fig. 1D; Ghazalpour et al. 2012). The number
of strains utilized can be selected based on experimental needs
with recent studies using 100 strains to investigate behavioral
traits (Park et al. 2011), 96 strains to study bone mineral density
(Farber et al. 2011), and 114 strains phenotyped for metabolic
traits (Ghazalpour et al. 2012). Future plans are to increase the
HMDP to 260 total strains to allow for even greater flexibility
(Ghazalpour et al. 2012). In contrast to the RI strains developed
for the CC and DO resources, wild-derived strains are not included
in the panel, thereby reducing somewhat the genetic diversity
within the HMDP. However, reduced genetic variation can sim-
plify QTL mapping and gene identification by increasing the rela-
tive phenotypic effect of each variant (Ghazalpour et al. 2012). As

Figure 1. The genetic composition of mouse resources for studying complex traits. The genetic make-
up of a typical mouse strain is shown for the Collaborative Cross (A), Chromosome Substitution Strains
(B), Outbred Stocks (C), and the Hybrid Mouse Diversity Panel (D). Two sets of chromosomes are shown
for the Hybrid Mouse Diversity Panel because it is comprised of both inbred and recombinant inbred
strains. Each rectangle represents a chromosome, and each color represents the genetic contribution
from a different mouse strain. Mitochondria are not shown.
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with the CC and CSSs, but not the OS resources, detailed genotype
information is publically available for each strain (Ghazalpour
et al. 2012). In addition, all HMDP strains are inbred and therefore
represent a renewable resource that is currently available from The
Jackson Laboratory. As with the other resources, QTL mapping is
based on an association-based approach (Bennett et al. 2010).

The HMDP panel was used as the backbone for an integra-
tive approach combining phenotype and gene expression data
to identify Asxl2 as a regulator of bone mineral density and osteo-
clastogenesis in mice (Farber et al. 2011). Other studies focused on
diet-induced obesity, hearing, atherosclerosis, cholesterol, and
many other traits (Bennett et al. 2010; Farber et al. 2011; Park
et al. 2011; Smolock et al. 2012; Davis et al. 2013; Parks et al.
2013; Ghazalpour et al. 2014; Hartiala et al. 2014; Kang et al.
2014).

Chromosome Substitution Strains (CSSs)

CSSs (also referred to as consomics) carry an entire chromosome
from a donor strain on a genetic background that is otherwise
completely derived from a host strain (Fig. 1B; Nadeau et al.
2000, 2012). A CSS panel is generated through selective breeding
during repeated backcrosses of the donor strain to the host strain
while selecting for the desired nonrecombinant chromosome.
Because CSS panels are derived from just two inbred strains, they
have less allelic diversity relative to the CC, HMDP, and OS. The
entire genome is minimally covered with 22 strains, correspond-
ing to 22 statistically independent QTL tests, one for each of the
19 autosomal chromosomes, one each for the X and Y chromo-
somes, and one for mitochondria. The first completed panel of
22 strains was made for A/J (donor) and C57BL/6J (host) (Singer
et al. 2004). A second panel was derived from PWD (donor) and
C57BL/6J (host), but consists of 28 strains. Difficulties were en-
countered with several chromosomes (10, 11, and X) that could
not be substituted intact. These chromosomes are included as
smaller, subchromosomal segments in several congenic strains
(Gregorová et al. 2008). A third panel with 29 strains was derived
from MSM (donor) and C57BL/6J (host) that similarly used con-
genic strains to span Chromosomes 2, 6, 7, 12, 13, and X that
were not substituted intact (Takada et al. 2008). Other partial pan-
els are based on the following strain combinations: (donor:host)
C57BL/6ByJ:129P3/J, C57BL/6J:129S1/SvImJ, 129P3/J:C57BL/
6ByJ, 129S1/SvImJ:C57BL/6J, MOLF/Ei:129S1/SvImJ, C57BL/6J:
C3H/HeJ, and NZM2328/NOD among others. These partial panels
are available from The Jackson Laboratory as are the complete

C57BL/6J.A/J and C57BL/6J.PWD panels (Table 1). The complete
C57BL/6J.MSM panel is available from the National Institute of
Genetics in Japan (Table 1).

The basis of QTL mapping with CSSs differs greatly from that
of the CC, OS, andHDMP resources. For these resources,many loci
segregate simultaneously and each genotype–phenotype associa-
tion is tested for significance across a heterogeneous background.
QTL effectsmay therefore change drastically or disappear altogeth-
er depending on the genomic context, impeding their detection
while implicitly focusing onQTLs that act in an additive and inde-
pendent manner, with negligible epistasis. In contrast, CSS analy-
sis focuses on a single chromosome on a defined and uniform
genetic background. Thus, QTL effects will tend to remain cons-
tant, and therefore easier to detect, within the mapping popula-
tion. Any phenotypic difference between a CSS and the host
strain implicates at least one QTL on the substituted chromosome.

A major limitation of the CSS paradigm is that the number
and location of QTLs on the substituted chromosome is uncertain,
with further work needed to resolve these issues, sometimes with
CSS crosses but more often with CSS-derived congenic strains
(Fig. 2; Shao et al. 2010; Yazbek et al. 2011; DeSantis et al. 2013;
Kato et al. 2014; Winawer et al. 2014; Zhu and Matin 2014). The
CSSs and congenic strains derived from CSSs have been used to
map QTLs and identify causal genetic variants for traits such as
body weight, glucose homeostasis, anxiety, hearing loss, bone
morphology, blood clotting, liver fibrosis, energy expenditure,
seizure susceptibility, among others (Singer et al. 2004; Singer
2005; Winawer et al. 2007; Gregorová et al. 2008; Sa et al. 2008;
Shao et al. 2008; Boell et al. 2011; DeSantis et al. 2013; Spiezio
et al. 2014; Street et al. 2014).

Meta-analysis

To evaluate progress, we reviewed the complete literature for the
four resources and found a total of 57 publications, 11 for the
CC, 10 for OS, nine for the HMDP, and 27 for CSSs (Table 2;
Supplemental Table 1). Each report was evaluated according to
the following criteria. First, results were included only for the
CC, OS, HMDP, and CSSs, excluding ancillary evidence fromback-
crosses and intercrosses. Then, all QTLs with statistically sig-
nificant effects were included, but those with suggestive effects
were not, following the authors’ assessment of significance.
Expression QTLs (eQTLs) and tests specifically designed to detect
epigenetically inherited QTLs were not considered. Finally, each
trait was considered independently from all other traits both

Table 2. Summary of QTL mapping studies with OS, HMDP, CC, and CSS

Panel
Number
of traits

Number
of

studies
QTLs

identified
QTLs per
traita

Average
sample
size

(number
of mice)

QTLs per
trait per
1000
mice

QTLs per
multigenic

trait

Traits
with
no

QTLS
(%)

Traits
with 1 -2
QTLS (%)

Traits
with 3+
QTLs
(%)

Total number
of strong
candidate
genes

identifiedb

OS 273 10 876 2.0 449 3.4 8.6 48 33 19 11
HMDP 365 9 347 1.6 615 3.2 4.8 35 42 23 8
CC 176 11 53 1.3 190 6.1 7.0 34 57 9 4
CSS 368 36 1572 5.0 562 16.7 6.4 10 20 70 15

(CC) Collaborative Cross; (OS) Outbred Stock; (HMDP) Hybrid Mouse Diversity Panel; (CSS) Chromosome Substitution Strain; (QTL) Quantitative
Trait Loci.
aCalculated with each study represented equally to avoid bias from a single large study.
bSee Table 3 for the complete list of genes.
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within and among studies. If a genomic interval showed a signifi-
cant association with more than one trait, no matter the develop-
mental or physiological relatedness of the traits, each significant
association was counted as a single QTL. This final consideration
was incorporated because each genomic interval usually carries
several genes, leading to ambiguity about genotype–phenotype re-
lations. In addition, objective and standardized rules for consis-
tently consolidating traits into single QTLs are not available.

We used several measures to assess the contribution of each
resource to complex trait analysis. The first measure counted the
number (and percentage) of monomorphic traits (no significant
QTLs per trait), monogenic and digenic traits (one or two QTLs
per trait), and multigenic traits (three or more QTLs per trait).
The second measure was the average number of QTLs per multi-
genic trait for each of the four resource populations. The thirdmea-
surewas the efficiency ofQTL detection as reflected by the number
of QTLs mapped relative to the sample size. The third was effect
size, although this was not reported inmost QTL studies; however,
when reported, it was typically measured either as the fraction (%)
of the total phenotypic variation (e.g., Durrant et al. 2011; Philip
et al. 2011; Kelada et al. 2014) or the fraction (%) of the phenotypic
difference between the progenitor strains (e.g., Shao et al. 2008;
Spiezio et al. 2012). Finally, we counted the number of QTLs for
which compelling evidence is available that the underlying genet-
ic variant has been identified.

Mapped QTLs

Mapping QTLs is usually the first step in complex trait analysis.
Because of the unique genetic constitution of CSSs, the same
QTL is expected to have substantially higher heritability, and the
statistical threshold to claim significant evidence is less stringent
relative to other resources (Belknap 2003; Singer et al. 2004). As a
result, CSSs can detect weaker and hencemoreQTLs than other re-
sources given similar sample sizes. A striking example involves re-
sults from two recent studies (Logan et al. 2013; Spiezio et al.
2014). One study focused on behavioral traits in DO mice and
the other on metabolic traits in CSSs. Similar numbers of traits
were analyzed, and comparable sample sizes were used. The
Logan et al. study reported a total of seven QTLs across 35 traits
(283 mice total), for an average of 0.2 QTLs per trait. In contrast,
the Spiezio et al. (2014) study reported 297 QTLs across 35 traits
(385 mice total = 191 females + 194
males), for an average of 8.5 QTLs per
trait, a value that is similar to other CSS
reports (Table 2).

More generally, CSSs consistently
revealed the most QTLs (Table 2), with
an average of 5.0 QTLs per trait, whereas
the CC (1.3 QTLs per trait), OS (2.0
QTLs per trait), and HMDP (1.6 QTLs
per trait) reported two- to fourfold fewer.
CSSs consistently showed the most mul-
tigenic traits (three or more QTLs per
trait), with the CC showing 9%, OS
19%, HMDP 23%, and CSSs 70% (Table
2). However, direct comparison is diffi-
cult because different sample sizes lead
to variable statistical power among the
traits and studies (Belknap 1998, 2003;
Klein et al. 1998; Singer et al. 2004; Chia
et al. 2005; Valdar et al. 2006a; Bennett

et al. 2010; Churchill et al. 2012). We therefore normalized the
numberofQTLs to sample size (numberofmice),whichalso rough-
ly correlates with study cost. Again, CSSs (16.7 QTLs per trait per
1000 mice) detected three- to fivefold more QTLs than other ap-
proaches (CC: 6.1; OS: 3.4; HMDP: 3.2 QTLs per trait per 1000
mice).

Although CSSs detect substantially more QTLs than other re-
sources, the size of QTL intervals differs greatly. CSSs map QTLs to
an entire chromosome, whereas the other methods provide much
higher initial mapping resolution. CSSs should therefore have a
great disadvantage for identifying the causal genetic variants.
However, this has not been the case, because studies have used
CSSs as starting material to quickly make congenic strains that
each contain a smaller segment of the substituted chromosome
and that can be used to dissect the original QTLs (Youngren et al.
2003; Shao et al. 2010; Babaya et al. 2014; Zhu and Matin 2014).
With aCSS,making a congenic strain can take <1 yr and is thus fea-
sible within the training period of a typical graduate student or
postdoctoral fellow (Youngren et al. 2003; Hill et al. 2006; Yazbek
et al. 2011). This compares favorably with the 2–3 yr to generate
congenics or 15–18 mo to generate speed congenics, which also
both require more mice and are more costly (Markel et al. 1997).

Phenotyping a panel of congenic strains that together span a
QTL interval has consistently revealed additional genetic complex-
ity, with multiple sub-QTLs typically found within the original
QTL (Fig. 2). Remarkably, similar numbers of sub-QTLs are identi-
fied within QTLs that were entire chromosomes or only several
Mb (Youngren et al. 2003; Shao et al. 2008; Millward et al. 2009;
Yazbeket al. 2011;Kato et al. 2014; ZhuandMatin2014). For exam-
ple, a congenic panel of nine strains for a plasma cholesterol QTL
that initially spanned Chromosome 10 found four sub-QTLs
(Shao et al. 2008). A congenic panel of seven strains spanning a
body weight QTL that spanned Chromosome 17 found three sub-
QTLs (Fig. 2C,D; Millward et al. 2009). A panel of 15 congenic
strains spanning a body weight QTL spanning Chromosome
6 found four sub-QTLs (Shao et al. 2008). Three of the
Chromosome 6 sub-QTLs for body weight were each further dis-
sected with panels totaling 12 subcongenic strains, which collec-
tively identified eight sub-QTLs (Fig. 2A; Yazbek et al. 2011;
Buchner et al. 2012). One of these sub-QTLs, which spanned just
3 Mb, was mapped to even higher resolution with a panel of eight
subsub-congenic strains, which identified three subsub-QTLs

Figure 2. QTL intervals frequently contain multiple sub-QTLs. High-resolution mapping of QTL inter-
vals with CSS, congenic, subcongenic, and subsub-congenic strains identified multiple sub-QTLs within
QTLs at each level of genetic resolution. QTLs and sub-QTLs were mapped for body weight (A), activity
(B), plasma cholesterol (C), bodyweight (D), and testicular germ cell tumors (TGCT) (E). QTL intervals are
represented by horizontal black lines.
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(Yazbeket al. 2011). Thus, theQTLsdetectedwithCSSs as aprimary
screen are readily augmented with follow-up studies that identify
many additional QTLs. The substantial number of QTLs detected
with congenic, subcongenic, and subsub-congenic strains suggests
thatmany additional QTLs could be systematically detected by fur-
ther increasing the number of congenic strains (Shao et al. 2010;
Yazbek et al. 2011). Evidence from other species such as yeast,
rats, and humans also shows that QTLs harbor multiple tightly
linked sub-QTLs and causative genetic variants (Steinmetz et al.
2002; Nejentsev et al. 2007; Lango Allen et al. 2010; Ehret et al.
2012; Flister et al. 2013; Mell et al. 2015).

A strategic and logistical consideration involves the decision
tomake a few ormany congenic strains from aCSS. The answer de-
pends in part on the model of genetic architecture and in part the
goals of the study. If the trait model or prior evidence suggests oli-
gogenic control, then a small number of congenic strains may suf-
fice. However, this approach can encounter problems such as lost
QTLs (Legare et al. 2000). In addition, the goal may be to simply
identify a few genes involved in a particular process, in which
case identification of a few QTLs suffices. However, if the control
is multigenic or unknown, or if the goal is a full enumeration of
the genetic, functional, and systems control, then a large panel
of many congenic strains would be a more conservative approach,
in which the QTL content of the substituted chromosome can be
fully explored, regardless of the underlying genetic complexity
(Youngren et al. 2003; Yazbek et al. 2011).

Identified QTLs

Traditional backcrosses or intercrosses can be performed with CSSs
for higher resolution mapping, thus allowing for only the segre-
gation of alleles on the substituted chromosome as opposed to
throughout the entire genome (Matin et al. 1999; Burrage et al.
2010). This reduces the amount of genetic variation within the
cross, allowing for a greater signal from the causal gene(s) on the
substituted chromosome. ACSS cross successfully identified an en-
dogenous retroviruswithin the SWR/J allele of the noncoding RNA
Rubie that causes vestibular malformation in mice (Roberts et al.
2012). However, the Matin et al. and Burrage et al. studies also
showed that congenic strains had more power than crosses to lo-
cate QTLs, in part because relatively few mice with a recombinant
chromosome are detected in these crosses, and boundaries are
known with certainty (based on sequence differences) with con-
genic strains but statistically (95% confidence intervals) with
crosses (see also Matin et al. 1999; Youngren et al. 2003). CSSs to-
gether with congenic strains have consistently led to successful
gene identification, including Cntnap2 in diet-induced obesity
and Slc35b4 in gluconeogenesis (Yazbek et al. 2011; Buchner
et al. 2012).

Unlike CSSs, the CC, OS, and HMDP mapping does not iso-
late the QTL interval of interest on a defined genetic background,
and theQTLs are based on confidence intervals rather than known
boundaries from congenic strains. However, follow-up studies can
be performed that include additional crosses with the phenotypi-
cally divergent strains of interest, gene expression profiling, epige-
netic surveys, genetic engineering, studies of knockout (KO) mice,
and integrative studies. For example, expression profiling in the
HMDP was combined with siRNA validation to demonstrate that
Cmc2 (2310061C15Rik) regulates the inflammatory response of
macrophages (Orozco et al. 2012). Gene expression data generated
from theHMDPwas similarly combinedwith expression data from
other RI lines and studies of KO mice to identify a role for Bicc1 in

determining bone mineral density (Mesner et al. 2014). The CC
was used to show that resistance to influenza A virus infection
was largely due to variants in Mx1 (Ferris et al. 2013). The CC-
RIXmicewere used to identify an association between Tek and sus-
ceptibility to Ebola infection (Rasmussen et al. 2014). Tek expres-
sion was decreased in Ebola susceptible mice relative to Ebola
resistant mice and was therefore hypothesized to influence Ebola
susceptibility by regulating vascular integrity (Rasmussen et al.
2014). OS mice were used to fine-map a QTL for anxiety that led
to the identification that Rgs2 regulates anxiety behavior (Yalcin
et al. 2004). Given the difficulty associated with formal proof for
a candidate gene, the 38 candidate genes listed in Table 3 represent
a partial list of genes associatedwith complex traits for which there
is particularly compelling evidence if not definitive proof.

In addition to using each of the CSS, CC, OS, and HMDP re-
sources independently, data can be combined for additional pow-
er. For example, a meta-analysis combining seven HMDP studies
and 10 RI studies identified 26 QTLs for which gene–environment
interactions governed HDL cholesterol levels, most of which were
not discovered in any of the individual studies (Kang et al. 2014).
Additionally, these resources can complement each other when
used for follow-up and validation studies, with the important cave-
at that a failure to validate does not necessarily imply an initial
false positive result, but rather may be due to genetic background
differences between strains. The C57BL/6J.AJ CSSs were used to
validate QTLs for cocaine-induced locomotor activation onmouse
Chromosomes 5 and 18 and voluntary alcohol consumption on
mouse Chromosomes 2 and 15 that were originally identified in
the AXB/BXA RI lines (Boyle and Gill 2008, 2009). Similarly, anal-
ysis of 26 RI strains identified a singleQTL onmouseChromosome
10 for a cone photoreceptor number that was then validated in the
Chromosome 10 substitution strain derived from C57BL/6J and
A/J (Whitney et al. 2011). Kas et al. (2009) used the CSSs to identify
a single QTL on mouse Chromosome 1 for motor activity levels.
Higher resolution mapping was then performed analyzing F2 off-
spring from theChromosome1CSS strain aswell as integrating ex-
isting mapping data from the HS mice. These integrative analyses
reduced the QTL interval to a 312 kb interval that contained only
one gene, Fam124b (Kas et al. 2009).

Effect sizes

The measures of effect size differ considerably between CSSs and
the other resources. In particular, a CSS survey does not provide
an estimate of the total phenotypic variation within the study
population because each CSS is genetically and phenotypically in-
dependent of the other strains in the panel (Belknap 2003; Singer
et al. 2004). As a result, variance and effect size can be estimated for
each CSS-host strain comparison but not systematically across the
panel. In contrast, total phenotypic variation and hence the vari-
ance attributable to each QTL is readily measured with conven-
tional methods in other resource populations (Belknap 1998;
Valdar et al. 2006b). An alternative measure was therefore devel-
oped to assess effect sizes in CSS surveys. Here, the phenotypic dif-
ference (in measured units) between the CSS and the host strain is
expressed as a fraction (%) of the phenotypic difference between
the two CSS progenitor strains (Shao et al. 2008; Spiezio et al.
2012). Although not ideal, this measure provides a reasonable as-
sessment of QTL effects, with the expectation that these effects
will usually be small, additive, and elusive.

Effect sizes in CC, OS, and HMDP resources tend to be in-
termediate between those in humans and in CSSs. GWAS in
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Table 3. Complex trait candidate genes in mice identified using CC, OS, HMDP, and CSS resources

Panel
Gene
Symbol Gene name Phenotype/function Complementary resources used Reference

CC Kitl Kit ligand White head spotting Gene ontology, literature searches Aylor et al. (2011)
Mx1 Myxovirus resistance 1 Influenza A virus resistance Sequence analysis, literature searches Ferris et al. (2013)
Zfp30 Zinc finger protein 30 Neutrophilic airway

inflammation
Transcriptome analysis, gene expression Rutledge et al.

(2014)
Tek Endothelial-specific receptor

tyrosine kinase
Ebola resistance CC-RIX, transcriptome analysis, literature

searches
Rasmussen et al.

(2014)
OS Rgs2 Regulator of G-protein signaling 2 Anxiety F2 crosses, sequence analysis,

complementation testing
Yalcin et al.

(2004)
Hectd2 HECT domain containing 2 Prion disease incubation

time
Prior mapping information, sequence

analysis, gene expression, human
association studies

Lloyd et al. (2009)

Comtl Catechol-O-methyltransferase Exploration behavior Sequence analysis, literature searches,
gene expression

Kember et al.
(2010)

Rarb Retinoic acid receptor, beta Prion disease incubation
time

Sequence analysis, gene expression Grizenkova et al.
(2010)

Cpne8 Copine VIII Prion disease incubation
time

F2 cross, sequence analysis, gene
expression, literature searches

Lloyd et al. (2010)

H2-Ea Histocompatibility 2, class II antigen
E alpha

CD4+:CD8+ lymphocyte
ratio

Sequence analysis, transgenics, literature
searches

Yalcin et al.
(2010)

Cf1 Cofilin 1, nonmuscle Anxiety Gene ontology, knockouts Goodson et al.
(2012)

Man1a2 Mannosidase, alpha, class 1A,
member 2

Body weight (parent-of-
origin effect)

Knockouts Mott et al. (2014)

H2-ab1 Histocompatibility 2, class II antigen
A, beta 1

Percentage of CD4+ T
cells (parent-of-origin
effect)

Knockouts Mott et al. (2014)

Hydin HYDIN, axonemal central pair
apparatus protein

Thermal pain response Bioinformatics, gene expression Recla et al. (2014)

Apobec1 Apolipoprotein B mRNA editing
enzyme, catalytic polypeptide 1

atherosclerotic lesion size Gene expression, literature searches, RI
mapping studies, functional studies

Smallwood et al.
(2014)

HMDP Asxl2 Additional sex combs like 2 Bone mineral density Transcriptome analysis, knockouts,
knockdown

Farber et al.
(2011)

Cmc2 COX assembly mitochondrial
protein 2

Inflammatory response in
macrophages

Transcriptome analysis, knockdown Orozco et al.
(2012)

Zbtb16 Zinc finger and BTB domain
containing 16

Body weight, body fat
content

Transcriptome analysis, functional
studies

Plaisier et al.
(2012)

Fmo3 Flavin containing
monooxygenase 3

Plasma trimethylamine-N-
oxide levels

Functional studies, gene expression Bennett et al.
(2013)

Lpin1 Lipin 1 Adiposity Knockouts, cell biology, gene expression Csaki et al. (2014)
Lpin3 Lipin 3 Adiposity Knockouts, cell biology, gene expression Csaki et al. (2014)
Bicc1 Bicaudal C homolog 1 Bone mineral density F2 crosses, transcriptome analysis,

mutant mice, gene expression,
human association studies

Mesner et al.
(2014)

Abcc6 ATP-binding cassetter, sub-family C,
member 6

Cardiac fibrosis Sequence analysis, knockouts,
transgenics

Rau et al. (2015)

CSS Sf1 Splicing factor 1 Testicular cancer Transcriptome analysis, knockout Zhu et al. (2007,
2010)

Adcy8 Adenylate cyclase 8 Avoidance behavior CSS-F2, human association studies, gene
expression, pharmacology

de Mooij-van
Malsen et al.
(2009)

Tnfaip8 Tumor necrosis factor, alpha
induced protein 8

S. aureus susceptibility Transcriptome analysis, backcross,
knockdown

Ahn et al. (2010)

Seh1l SEH1-like S. aureus susceptibility Transcriptome analysis, backcross,
knockdown

Ahn et al. (2010)

Ly6a Lymphocyte antigen 6 complex,
locus A

Motor activity CSS-F2, transcriptome analysis,
knockouts

De Jong et al.
(2011)

Slc35b4 Solute carrier family 35, member B4 Obesity, glucose
homeostasis

Congenics, gene expression, knockdown Yazbek et al.
(2011)

Cntnap2 Contactin associated protein-like 2 Obesity Congenics, sequence analysis, functional
studies

Buchner et al.
(2012)

Tcfap2a Transcription factor AP-s, alpha Physical activity Congenics, CSS-F2, gene expression,
sequence analysis, pathway analysis,
functional studies

Yang et al. (2012)

Tll2 Tolloid-like 2 Avoidance behavior CSS-F2, human association studies de Mooij-van
Malsen et al.
(2013)

Noxo1 NADPH oxidase organizer 1 Alcohol-induced liver
injury

Congenics, sequence analysis, gene
expression

DeSantis et al.
(2013)

(continued)

Buchner and Nadeau

782 Genome Research
www.genome.org



humans tend to showQTL effects that individually and collective-
ly account for a small fraction of overall phenotypic variation
(Lander 2011), with several notable exceptions (Maller et al.
2006; Galarneau et al. 2010; Fritsche et al. 2013). The CC, OS,
and HMDP tend to show a somewhat different picture. A QTL
study using the DO strains identified seven QTLs that each ac-
counted for 11%–14% of the variance for behavioral tests related
to open-field, light-dark box, tail suspension, and a visual cliff
(Logan et al. 2013). These effects are considerably larger than those
found in humans. However, 85% of the heritability for each trait
eluded discovery, a number in line with human studies (Logan
et al. 2013). A similar result was found with the CC, including a
QTL (Chr 16) for wheel running distance that accounted for
17.0% of the variance, a QTL (Chr 12) for food intake during exer-
cise that accounted for 17.6% of the variance, and a QTL (Chr 4)
for body weight that explained 18.6% of the variance (Aylor
et al. 2011; Foulds Mathes et al. 2011). Somewhat larger QTL ef-
fects, ranging from 10% to 49%, were detected for influenza-asso-
ciated phenotypes andhematologicalmeasures (Kelada et al. 2012;
Ferris et al. 2013). The largest effects among these individual QTLs
explained 42% of the variance in influenza-associated weight loss
and 49%of the variance inmean corpuscular volume (MCV). Each
of these QTLs had been previously identified in the CC parental
strains as due to mutations in Mx1 (influenza) or Hbb (MCV), re-
spectively (Gilman 1976; Popp et al. 1982; Staeheli et al. 1988).
In addition to the effects of Mx1 mutations on weight loss, a phe-
notypically related QTL was identified that explained 9.7% of the
variance, with 49% of the variance not explained by the two QTLs
detected. The average effect size reported across studies using the
CC (n = 7 studies), the HMDP (n = 1 study), and the OS (n = 3 stud-
ies) was 19% (Supplemental Table 1). However, it should be noted
that with the exception of the CC, a minority of studies reported
effect sizes, and often only the largest effect sizes were reported.
Thus, this average value is likely biased upward. Nonetheless, it
is clear that QTLs identified for each trait contributed to a larger
fraction of the total phenotypic variation compared to most hu-
man studies, but collectively these QTL effects did not account
for the majority of the phenotypic variation.

The unexplained variation in GWAS and other mouse re-
sources is in striking contrast to results emerging from CSSs and
their congenic strains. Perhaps the most unexpected discovery
with CSSs is their remarkably large phenotypic effects (Shao
et al. 2008; Spiezio et al. 2012). For example, the averageQTL effect
for plasma sitosterol levels was 79% of the phenotypic difference

between the parental strains (n = 12 C57BL/6J.ChrA/J CSSs). The
average for each QTL that regulates diet-induced obesity was
75% (n = 16 C57BL/6J.ChrA/J CSSs). Far from being outliers,
these two traits were typical of the multigenic traits that have
been studied with the C57BL/6J.ChrA/J CSSs that on average
each accounted for 76% of the parental effect (Shao et al. 2008).
Similar results were found with CSSs whose progenitor strains de-
rived from genetically divergent subspecies, including C57BL/6J.
ChrPWD CSSs (153%) and C57BL/6J.ChrMSM CSSs (47%) (Spiezio
et al. 2012).

The large effect sizes inCSSs relative to other resources are cor-
related with larger QTL intervals. Thus, a potential explanation for
the larger effects is simply that the CSS QTLs are composites of
multiple sub-QTLs with smaller effects. The prediction is that if
these sub-QTLs were studied in isolation, their effect sizes would
be in line with those observed with other resources. Indeed, as de-
scribed above, the CSS QTLs do contain multiple sub-QTLs (Table
2). However, a surprising finding was that the effect sizes of the
sub-QTLs remained on average larger than those detected with
the OS, HMDP, and CC (Yazbek et al. 2011). For example, eight
sub-QTLs for body weight within the Obrq1, Obrq2a, and Obrq3
loci on Chromosome 6 averaged 1.9 ± 0.4 Mb in size and account-
ed for 43 ± 4% of the parental effect (Yazbek et al. 2011; Buchner
et al. 2012). For comparison, a body weight QTL on Chromosome
4 identified with the CC, Bwq14, was 7 Mb in size and accounted
for 18.6% of the trait variance (Aylor et al. 2011). Eighteen QTLs
for body weight were mapped using OS mice; the average QTL in-
terval was 2.3 ± 0.3 Mb and explained 2.0 ± 0.1% of the variance
(Valdar et al. 2006b). Therefore, the QTL intervals identified with
CSS-derived congenic strains are similar in size to those discovered
with OS and CC mice and yet their effect sizes on average are
larger.

Collectively, these mouse resources typically did not detect
QTLs that explained <1% of trait variation as is typically found
in humans. However, the small sample sizes mean that most of
the published mouse studies were not adequately powered to
detect such small effects. The lone exceptionwas theQTL study in-
volving more than 2000 OS mice that identified many QTLs with
effect sizes near 1% (Valdar et al. 2006b). Additionally, a highly
nonrandom distribution of trait values was found among the
CSSs where no statistically significant QTL was detected (Shao
et al. 2008; Spiezio et al. 2012). These studies suggest that QTLs
with small, currently nonsignificant effects could be detected
with increased sample sizes.

Table 3. Continued

Panel Gene
Symbol

Gene name Phenotype/function Complementary resources used Reference

Nlrc4 NLR family, CARD domain
containing 4

Alcohol-induced liver
injury

Congenics, sequence analysis, gene
expression

DeSantis et al.
(2013)

Srp9 Signal recognition particle 9 Febrile seizures CSS-F2, transcriptome analysis,
knockdown, human gene expression

Hessel et al.
(2014)

Dusp3 Dual specificity phosphatase 3 S. aureus susceptibility CSS-F2, transcriptome analysis, human
gene expression, knockdown,
functional studies

Yan et al. (2014)

Psme3 Proteaseome activator subunit 3 S. aureus susceptibility CSS-F2, transcriptome analysis, human
gene expression, knockdown,
functional studies

Yan et al. (2014)

Tyr Tyrosinase Ocular angiogenesis RI strains, CSS-F2, knockouts Rogers et al.
(2013)

(CC) Collaborative Cross; (OS) Outbred Stock; (HMDP) Hybrid Mouse Diversity Panel; (CSS) Chromosome Substitution Strain.
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Epistasis

We next reviewed the evidence for epistasis. Combining several
substituted chromosomes together in a single CSS has been used
to test whether QTLs act in a nonadditive manner. For example,
a double CSS, which combined substituted Chromosomes 2 and
6, synergistically increased airway hyperresponsiveness (Acker-
man et al. 2005). Another example involves noise-induced hearing
loss in CSSs and congenic strains derived from 129S6/SvEvTac and
CBA/CaJ (Street et al. 2014). Although QTLs were mapped to
Chromosomes 4 and 17 with CSSs, subsequent studies with con-
genic strains and CSS crosses revealed both inter- and intrachro-
mosomal epistatic interactions that regulated hearing loss.

A particularly instructive example involves a QTL (Obrq3b)
that regulates body weight due to variants in the Cntnap2 gene on
Chromosome 6 (Buchner et al. 2012). The A/J-derived allele of
Obrq3b causes a 15% body weight reduction in mice fed a high-fat
diet when on a C57BL/6J background, but it causes a 15% body
weight increase when the A/J-derived allele of a second QTL
(Obrq2) is alsopresent in thesamegeneticbackground.Thus, theac-
tion of Obrq3b has opposing effects on body weight as determined
by an interaction with a second QTL (Obrq2). In fact, a CSS inter-
cross with the Chromosome 6 substitution strain failed to detect
Obrq2 because of its close linkage to Obrq3b, even though Obrq2
showed the strongest QTL effect on Chromosome 6 in congenic
strains (Shao et al. 2008; Burrage et al. 2010). This again highlights
the inherent difficulty in identifying QTL effects when influenced
by unlinked segregating loci as found in theCC,HMDP, andOS, or
in CSS crosses. A genetic marker near Cntnap2would be associated
with profoundly different effects on body weight in a segregating
cross and would therefore appear to have no consistent effect.
For this reason, it is striking that a GWAS study for obesity-rel-
ated traits in humans identified a SNP (rs4549702) in CNTNAP2
that was associated with increased body weight in an African-
American population but decreased body weight in a Hispanic
population (Velez Edwards et al. 2012). Had the populations not
been stratified, the effect of this SNP may have been overlooked.

A similar example of intrachromosomal interactions involves
susceptibility to spontaneous testicular germ cell tumors (TGCTs)
in panels of congenic strains derived from 129.ChrMOLF19, the first
autosomal CSS made in mice (Matin et al. 1999; Youngren et al.
2003; Zhu and Matin 2014). Multiple QTLs on the substituted
chromosome affect TGCT susceptibility, but these act in an addi-
tive or epistatic manner, with enhancer or suppressor activity, de-
pending on the combination of host and donor strain alleles on
the substituted chromosome. As with the Obrq2-Obrq3 example,
QTL effects were highly context-dependent.

Detecting epistasis is limited by the greatly reduced statistical
power in systematically testing themultiway interactions between
combinations of genetic markers and phenotypes across the ge-
nome (Van Steen 2012). Shao et al. (2008) and Spiezio et al.
(2012) used a unique method by taking advantage of the limited
number of independent CSS tests that are needed for a genome
scan. If QTLs act in an additive manner, the sum of their signed
phenotypic effects should not exceed 100%, whereas a sum signi-
ficantly >100% is strong evidence for epistasis. This method of de-
tecting epistasis avoids restricting analyses to pairwise interactions,
is independent of the number of interacting QTLs, and avoids the
limited statistical power related to testing multiple hypotheses
(Balding 2006). In fact, the QTLs detected for 41 multigenic traits
surveyed in the C57BL/6J.ChrA/J CSS panel accounted for signifi-
cantly >100%, with only a single exception (Shao et al. 2008).

The average cumulative effect was >800%of the phenotypic differ-
ence between the parental strains. For example, nine differentCSSs
each explained nearly 100% of the parental difference between
C57BL/6J and A/J in cholesterol levels. A/J mice have all nine of
these chromosomes, yet its cholesterol level is not different from
strains with just one of these A/J-derived chromosomes (Shao
et al. 2008). Together, these studies suggest that epistasis is both
pervasive and strong.

The pervasive nature of epistasis in complex traits is reminis-
cent of the frequent occurrence of genetic modifiers of Mendelian
traits in humans, mice, and many other species (Nadeau 2001,
2003; Kearney 2011; Lehner 2013). However, despite these exam-
ples in mice and evidence for oligogenic traits, such as Bardet-
Beidel and Hirschprung in humans, finding evidence of epistasis
in complex traits and human disease remains challenging
(Mackay and Moore 2014). Recent studies of the much simpler
phenotype of gene expression levels are nowbeginning to identify
regulatory epistatic interactions in humans (Brown et al. 2014;
Hemani et al. 2014). The ubiquitous nature of genetic modifiers
is additional evidence that epistasis may be common in humans
(Nadeau 2001, 2003).

Epigenetic inheritance

Epigenetic inheritance occurs when phenotypic variation is trans-
mitted across generations in the absence of cosegregating DNA se-
quence differences. Distinguishing inherited epigenetic changes
from conventional genetic variants and environmental factors is
usually a substantial challenge. However, three studies utilizing
CSSs, congenic strains, or OS mice illustrate the ways that mouse
resources discussed can be used for pioneering discoveries about
epigenetic inheritance.

CSSs offer control of genetic background and the ability to ar-
range simple crosses with tests and controls for epigenetic inheri-
tance. An experiment involving CSSs tested whether QTLs on the
Y chromosome induced epigenetic inheritance among daughters
who do not inherit their father’s Y chromosome. The test com-
pared inbred strains and the related CSS-Y, so that the two paternal
strains were identical except for the Y chromosome. Their daugh-
ters were genetically identical and differed only in the identity of
the paternal Y chromosome, which they did not inherit. An exten-
sive panel of traits ranging from plasma triglycerides to bone min-
eral density and anxiety was examined (Nelson et al. 2010). Of the
63 traits tested, 17 (27%) exhibited transgenerational inheritance.
A second experiment involved an obesity-resistant congenic strain
derived from C57BL/6J.Chr6A/J that was chosen at random to test
whether the QTL effect was mediated by epigenetic changes
(Yazbek et al. 2010). Through a series of simple crosses, the QTL
was found to exhibit transgenerational epigenetic inheritance for
at least three generations, specifically through the paternal germ
line (Yazbek et al. 2010). Analysis of 97 traits in the HSmice found
evidence for parental effects in 93% of traits surveyed (Mott et al.
2014). Among the 837 previously mapped autosomal QTLs for
these traits (Valdar et al. 2006b), 304 showed evidence of parent-
of-origin effects at a false discovery rate of 25% (Mott et al. 2014).

In all cases, heritable epigenetic effects were as strong as QTLs
with conventional inheritance patterns, suggesting that the con-
tribution of epigenetic effects to human quantitative traits may
be greatly underestimated (Nelson et al. 2010; Yazbek et al. 2010;
Mott et al. 2014). Thus, a growing body of evidence supports an
important role for epigenetics in phenotypic variation and disease
(Kilpinen and Dermitzakis 2012; Grossniklaus et al. 2013; Duncan
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et al. 2014; Heard and Martienssen 2014; Somer and Thummel
2014).

Emerging models of genetic architecture

Genetic studies of these mouse resources present contrasting pic-
tures of the genetic architecture of complex traits (Table 4). The
CC, OS, and HMDP typically find many genes with small effects
that collectively explain only a fraction of the total heritability.
This is similar to what most studies of complex traits have found
in humans (Visscher et al. 2012). In contrast, CSSs find many
more genes, larger effects size, and pervasive epistasis. Collectively,
these findingsmean that rather thanhaving “missingheritability,”
CSS genetics show “excess heritability.” Therefore, key questions
are, “Why does the apparent genetic architecture of complex traits
depend on the method of study?” and “Can the differences in ap-
parent genetic architecture in different mouse genetic reference
populations provide insight into the genetic architecture of com-
mon human phenotypes such as height and intelligence, and dis-
eases such as diabetes and Alzheimer’s?” We speculate about the
biological reasons underpinning the differences between these
two models and what the implications are for human genetics.
Clearly, more similarities are found between the human GWAS
data and the data generated from studies with the CC, DO, and
HMDP resources relative to the CSS data as these approaches are
leftwithmissingheritability. Perhaps this shouldnot be surprising,
because the genetic structure of those mouse populations are con-
siderably more similar to humans than the genetic structure of the
CSS panel. Both human and the CC, DO, and HMDP strains have
relatively higher levels of genetic diversity with heterogeneous ge-
netic backgrounds. Therefore, QTL effects are estimated across a
heterogeneous genetic background with context-dependent ef-
fects lost in the average. This is in contrast to theCSSs and congenic
strains, which have a relatively limited amount of genetic diversity
that is localized to a single genomic locus. CSSs therefore measure
QTL effects on a fixed genetic background, generally independent
of other QTL effects. For this reason, although the CC, DO, and
HMDPappear to better reflect the genetic architecture in genetical-
ly heterogeneous human populations, one could argue that this is
simply because these resources suffer from the same experimental
difficulties that are found in human populations. These difficulties
include what is perhaps the most limiting factor for identifying
QTLs in a genetically heterogeneous population, namely, the
lack of statistical power for detecting epistasis (Zuk et al. 2012). In
contrast, the CSSs and congenic strains focus on a single locus at
a time, in the context of a single fixed genetic background and in-
dependently of other chromosomes from the donor strain. This
greatly reduces the enormous number of genetic combinations
that are presentwhen thousands of alleles are segregating through-

out the genome. Additionally, because the effects of each QTL are
independent, their cumulative effects can be summed, and multi-
locus interactions can be assessed within the combined effects for
all variants on a substituted chromosome.

A similar approach of reducing the genetic variation in hu-
man studies by focusing on isolated populations has facilitated
the identification of disease genes for complex traits, including a
nonsense mutation in TBC1D4 with an allele frequency of 17%
in the Greenlandic population that increased the risk of diabetes
by tenfold (Moltke et al. 2014). Studies of 132 immune-related
traits in a Sardinian population identified 35 traits for which
>50% of the variance was explained and four traits for which
>80% of the variance was explained. Three SNPs individually ac-
counted for >15% of the variance, with a single SNP within the in-
tron of ENTPD1 (rs11517041) accounting for 61% of the variance
in the levels of CD39+ activated CD4+ Tregs (Orrù et al. 2013).
These studies suggest that reducing the complexity of the genetic
background can facilitate identification of genes with large effects
and perhaps epistasis. Whether this is due to reducing the total
trait variance or decreasing the number of potentially confound-
ing epistatic interactions remains unclear. Regardless, the amount
of heritability detected is increased and the genetic architecture is
more closely approximated by the CSSs.

A genetic architecture composed of genes with large pheno-
typic effects could be encouraging from a therapeutic perspective
because it suggests that targeting a single gene identified by
GWAS may have a larger effect on phenotype than would be indi-
cated by the human genetics data. The potential benefits from a
personalized therapeutic intervention could bemasked because ef-
fect sizes are measured as population averages, then effects are ex-
trapolated frompopulations to individuals. However, it is not clear
that we know how to accurately extrapolate from a population to
the individual that is ultimately the unit of diagnosis and treat-
ment. For example, the SNP rs11591147 encodes an R46L mis-
sense mutation in PCSK9 and accounts for 1.2% of the variance
in LDL cholesterol levels (Sanna et al. 2011). The PCSK9 variant ex-
plained the secondhighest amount of variance for LDL levels, after
only variants in APOE (3.3% of variance). Previous studies of the
effect of the R46L allele on LDL cholesterol have shown an 11%–

21% reduction in carriers of the 46L allele relative to noncarriers
(Kotowski et al. 2006; Benn et al. 2010). When clinical trials
were completed with a monoclonal antibody blocking the func-
tion of PCSK9, LDL cholesterol levels were consistently decreased
by 50%–60% across a variety of populations with elevated LDL
cholesterol levels (Dadu and Ballantyne 2014). Whether the re-
markably strong effect of the antibody therapy was due to better
functional reduction by the antibody or whether the impact of
the R46L mutation on LDL levels is underestimated by the vari-
ance estimates remains unclear.

Table 4. Summary of findings from the CC, OS, HMDP, and CSS for the genetic architecture of complex traits

Panel

Number
of QTLs
identified

QTL mapping
resolution

Heritability
explained Effect size

Detects
epistasis

Detects
epigenetics

Detects
system
effects

Gene
identification

Similarity
to humans

CC Good Better Less Smaller Uncertain Uncertain Yes Yes Yes
OS Good Better Less Smaller Uncertain Yes Yes Yes Yes
HMDP Good Better Less Smaller Uncertain Uncertain Yes Yes Yes
CSS Better Good More Larger Yes Yes Yes Yes No

(CC) Collaborative Cross; (OS) Outbred Stock; (HMDP) Hybrid Mouse Diversity Panel; (CSS) Chromosome Substitution Strain; (QTL) Quantitative
Trait Loci.
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Implications of genetic architecture

on the validity of mouse models

If the genetic architecture found with CSSs is a general property of
complex traits and disease, it would have broad implications for
the use of mice in biomedical research. The architecture observed
with CSSs resembles that of a fractal, which is a self-similar pattern
that repeats itself independently of scale. Fractals are often found
in nature including in coastlines, mountains, clouds, and plants
(Barnsley et al. 1988). In regard to the fractal nature of the genetic
architecture discovered with CSSs, multiple sub- and subsub-QTLs
are found within parental QTLs at each level of genetic resolution,
with effect sizes that do not scale proportionally to their size or
QTL number (Fig. 2). This surprising finding that strong QTLs
are found with high frequency but a context-dependent manner
throughout the genome has several practical implications for con-
ducting research using mouse models. Phenotypic differences
attributed to a specific gene could instead be due to genetic back-
ground effects if the background is not rigorously controlled.
These types of experimental vagaries differ from the recent calls
to improve upon experimental reproducibility in science as the
discrepancy is not due to small numbers, experimenter bias, care-
less phenotyping, statistical fluctuations, or fraud (Macleod 2011;
Prinz et al. 2011; Collins and Tabak 2014). Rather, the improper
control of genetic background is a fundamental problem in the ex-
perimental design that will result in an incorrect interpretation of
the data.

Studies of both transgenic and KOmice carry similar risks for
misinterpreting data due to such phenotypic artifacts. The most
likely possibility is that the host cell (either fertilized egg or ES
cell) does not match the genetic background of the mice that will
be used to maintain the mouse line by backcrossing. For example,
KO mice have historically been made using 129-derived ES cells
because of their high success rate for gene targeting and germline
transmission (Ledermann 2000). However, the most popular
choice of strain for backcrossing has remained C57BL/6J. This has
led to the generation of many KO mice that are effectively
C57BL/6J in every region of the genome, except for the congenic
interval surrounding the targeted mutation, where they carry
129-derived sequence.Dependingon thenumberof backcross gen-
erations, the size of this congenic interval is expected to range from
40 Mb (20 cM) after 10 backcross generations to 8 Mb (4 cM) after
50 backcross generations, unless mice carrying closely flanking re-
combinationevents are selectedduringbreeding (Silver 1995). This
represents a considerable interval thatmayharbormultiple genetic
variants from the 129-derived host cell that strongly influence the
respective phenotype of study. Fortunately, recent improvements
in genome engineering with zinc finger nucleases, TALENs, and
the CRISPR/Cas system have simplified using a single inbred strain
for both genetic manipulation and the maintenance of the modi-
fied allele in live mice (Gaj et al. 2013). It will be of interest to see
how many newly generated mouse models of disease have diver-
gent, and presumably more accurate, phenotypes from previously
generated models that suffered from poor control of closely linked
genetic background.

Practical considerations for choosing

an experimental resource

The typical process for identifying the genetic variants involved in
complex traits and diseases involves mapping a QTL(s), followed

by candidate gene evaluation. Under certain circumstances, the
mapping studies may involve multiple rounds of sequentially
higher resolution mapping to reduce the size of the QTL interval
to a point at which it becomes practical to evaluate candidate
genes. There are a number of considerations for deciding which
reference mouse population will best meet the desired study goals.
As all resources are currently public resources, it is important to
consider these options prior to undertaking a new study (Table
1). Among the most important criteria may be the desired scale
and time frame of the project, whether one seeks to identify a
fewormanyQTLs, andwhether one is interested in studying inter-
actions among QTLs.

Mapping complex trait genes with CSSs requires the least
amount of upfront effort and cost. The entire genome can be tested
with CSSs by phenotyping just 22 CSS strains and one control
strain. In contrast, the CC and HMDP typically require phenotyp-
ing of 50–150 strains, and the OS typically requires hundreds or
thousands of mice. The smaller effort associated with using CSSs
nonetheless results in the identification of substantially more
QTLs (Table 2).

At this point, the amount of effort and cost required for each
approach is typically reversed. Initial mapping studies using the
CC, HMDP, and OS typically result in a QTL mapping resolution
of just a fewMb, whereas a CSS survey results in a mapping resolu-
tion of an entire chromosome. Mapping a QTL to within a fewMb
may allow researchers to immediately begin evaluating specific
candidate genes, in part depending on the number of geneswithin
the QTL interval and whether biologically plausible candidate
genes are identified.Mapping aQTL to a chromosomewill likely re-
quire higher resolutionmapping to reach the point atwhich candi-
date gene analysis is feasible, either with additional crosses or by
generating congenic and subcongenic panels. Analysis of subcon-
genic panels are most likely to lead to gene identification when
the interval they span is just a few Mb (Shao et al. 2008; Millward
et al. 2009; Bhatnagar et al. 2011; Yazbek et al. 2011; Buchner
et al. 2012). Generating and phenotyping subcongenic panels at
this level of resolution requires approximately 1500mice per panel
(Yazbek et al. 2011; Buchner et al. 2012). However, the additional
time and expense of studying congenic strains typically reveals ad-
ditional QTLs beyond those identified in the original screen. The
newly developed congenic strains, together with the appropriate
controls, also leave the investigatorwith genetically definedand re-
producible resources for subsequent functional studies (Shao et al.
2010; Yazbek et al. 2011). Thus, on average, the CSSs and congenic
strains requiremore time, effort, and cost, but are likely to provide a
more complete picture of the genes contributing to a complex trait
relative to the CC, HMDP, and OS, including the identification of
context-dependent QTLs. However, if an individual laboratory is
not prepared to follow up multiple QTL intervals, then candidate
genes can be more readily identified with considerably less invest-
ment using the CC, HMDP, and OS (Fig. 3).

The future of large-scale community mouse

resources for studying complex traits

The development of disruptive technologies and resources is often
a driving factor in research breakthroughs, but these discoveries
usually generate many more questions than answers. The same
has been true in genetics, as new innovations in genotyping and
DNA sequencing have allowed for unprecedented definition of
the human genome and its genetic variation. However, much
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remains to be learned about the architecture of complex traits.
Mouse models provide an exceptional opportunity for acquiring
such knowledge. The CC, OS, HMDP, and CSS resources have col-
lectively identified new genes and pathways that regulate pheno-
typic variation and shed light onto the framework genetic
architecture of such traits, but we are just beginning to discover
what these resources can teach us. A generally neglected aspect
of many of these resources is characterizing systems properties,
namely, the ways that mRNAs, proteins, and phenotypes covary
in networks of functional interactions. By using genetic variants
as causal perturbations, inferring functional relationships, net-
work features, and systems properties should be possible to identi-
fy with both surveys and experiments in these resources (Nadeau
et al. 2003; Civelek and Lusis 2014). Additionally, the molecular
changes at each QTL that account for gene–gene interactions,
gene–environment interactions, incomplete penetrance, and epi-
genetic inheritance remain largely mysterious. These resources
will continue to be pivotal in exploring the genetic architecture
of complex traits with additional studies involving new phenotyp-
ic assays, newly derived strains, systems approaches combining
physiological and genomic data, and the integration of these
data to guide studies in human genetics.
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