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Whereas no single animal model can reproduce the
complexity of periodontitis, different aspects of the disease
can be addressed by distinct models. Despite their limitations,
animal models are essential for testing the biological
significance of in vitro findings and for establishing cause-
and-effect relationships relevant to clinical observations,
which are typically correlative. We provide evidence that
animal-based studies have generated a durable framework
for dissecting the mechanistic basis of periodontitis. These
studies have solidified the etiologic role of bacteria in
initiating the inflammatory response that leads to periodontal
bone loss and have identified key mediators (IL-1, TNF,
prostaglandins, complement, RANKL) that induce
inflammatory breakdown. Moreover, animal studies suggest
that dysbiosis, rather than individual bacterial species, are
important in initiating periodontal bone loss and have
introduced the concept that organisms previously considered
commensals can play important roles as accessory pathogens
or pathobionts. These studies have also provided insight as to
how systemic conditions, such as diabetes or leukocyte
adhesion deficiency, contribute to tissue destruction. In
addition, animal studies have identified and been useful in
testing therapeutic targets.

Introduction

Animal models for the study of human disease have limita-
tions that are inherent in the very definition of the term “model,”
i.e., an approximation or simulation of a real system that is under
investigation. It is thus obvious that no one single model repro-
duces all aspects of a human disease. However, the strengths of
animal models more than compensate for the simulation. First,
cause-and-effect relationships can be tested conclusively in ani-
mal models but are difficult to prove in human studies.

Moreover, results from animal studies provide initial information
on the safety and potential efficacy of novel therapeutic com-
pounds. Furthermore, animal models have less serious limitations
than in vitro models, which cannot replicate the complexity of
cross-interactions that occur between the immune response, the
microbiome, and the host tissue. The appropriateness of a given
animal model lies in its capacity to test a specific hypothesis
rather than its fidelity to all aspects of disease pathogenesis.
Therefore, different models of the same disease can be used to
test discrete aspects of its pathogenesis.1 In essence, animal mod-
els represent a point on a spectrum of assay systems that span the
more experimentally tractable in vitro models, through the bio-
logical complexity of animals, to clinically valid human studies
(Fig. 1).

The most common periodontitis models involve procedures
for oral gavage and placement of ligatures. The reader is referred
to previous publications for a detailed description of these models
and their successful application in a large number of studies.1-3

Briefly, in the oral gavage model, gingival inflammation and
bone loss can be induced following oral inoculation with bacteria
associated with human periodontitis. In the ligature-induced
periodontitis model, the placement of silk ligatures around poste-
rior teeth facilitates local accumulation of indigenous bacteria
and enhances bacteria-mediated gingival inflammation and bone
loss. Although irrelevant for studying bone loss, the so-called
“chamber” and “abscess” models have been used to study specific
virulence aspects of periodontal organisms in vivo. In the cham-
ber model, bacteria are injected into the lumen of a subcutane-
ously implanted titanium-coil chamber and in vivo bacterial
interactions with recruited inflammatory cells can be assessed
accurately and quantitatively.1,4,5 In the abscess model, bacteria
are injected subcutaneously into the dorsum and then scored for
impact on systemic health or localized abscess characteristics.6,7

It is now well established that periodontitis is triggered by
pathogenic microbial communities forming on subgingival tooth
surfaces while the host response is responsible for the tissue dam-
age in periodontitis; moreover, systemic conditions have an
impact on periodontal disease by affecting pathologic mecha-
nisms and host immune status.8,9 Animal studies have greatly
contributed to these critical principles which have been repro-
duced across several different animal species models demonstrat-
ing a consistency that lends support for the validity of the overall
concept, as well as the utility of animal models to study peri-
odontal disease processes. The latter reflects the enduring useful-
ness of in vivo studies.
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We will review studies that have provided a durable frame-
work for understanding periodontal disease, as well as the most
common and important issues that have been raised over the
years with regard to the relevance of animal models, in particular
mice which are widely used in mechanistic studies. Moreover, we
will discuss whether these models maintain the potential to gen-
erate further knowledge for an in-depth understanding of peri-
odontal disease pathogenesis.

The Role of Bacteria

The concept that bacteria are an important etiologic factor in
periodontal tissue destruction first came from studies of gnotobi-
otic rats and gnotobiotic mice.10,11 The role of bacteria was fur-
ther demonstrated by topical application of antiseptics or
systemic application of antibiotics reducing bone loss in animal

models involving dogs, mice, rats and non-human primates.12-15

The role of bacteria is further supported by findings that osteo-
clastogenesis and alveolar bone resorption are enhanced by the
application of bacteria.16,17 Thus loss of function (gnotobiotic
animals or use of anti-bacterials) and gain of function (the addi-
tion of bacteria) in a number of animal models (non-human pri-
mates, dogs, mice and rats) consistently establish a common role
of bacteria in initiating the disease process.

More recently, mouse models have additionally facilitated a
complete reappraisal of the role of certain organisms, such as
Streptococcus gordonii, which have traditionally been considered
as oral commensals. In vitro evidence indicates that S. gordonii
can contribute to community pathogenicity by providing an
attachment substratum for colonization by P. gingivalis.18 Hence
co-infection with S. gordonii and P. gingivalis in vivo would be
predicted to enhance both P. gingivalis colonization and alveolar
bone loss compared to monoinfection with P. gingivalis. Results

Figure 1. Animal models of periodontitis: characteristics and contributions. Animal models are contrasted with in vitro models and human studies in
terms of their advantages and disadvantages, followed by a summary of key animal model-based contributions to understanding periodontal disease
pathogenesis. It should be noted, however, that animal model-based research benefits from both in vitro models and human studies for obtaining mech-
anistic insights in finer molecular detail and for determining clinical relevance, respectively. The cycle connecting the 3 experimental systems is meant to
demonstrate this interrelationship. For instance, the arrows emanating from “Animal models” and “Human studies” to “In vitro models” indicate the reli-
ance of the former systems on the more tractable in vitro system for dissecting plausible molecular mechanisms. Conversely, the reverse arrows indicate
that in vitro model-based mechanisms depend on animal and human systems for testing potential biological relevance. One of the greatest contribu-
tions of animal models is the testing of cause-and-effect relationships that cannot be typically addressed in human studies, most of which are correlative.
Conversely, candidate drugs identified in animal models require the ultimate test in human clinical trials before they can be validated and enter the
clinic.

230 Volume 6 Issue 3Virulence



from the oral gavage model support these predictions. Moreover,
blocking attachment of P. gingivalis to S. gordonii ameliorates
bone loss, thus opening a new avenue of research into therapeutic
agents in periodontal disease.19,20

In the murine abscess model, bacteria are delivered directly
into the animal without the need for specialized colonization fac-
tors and the alveolar bone is not involved. Despite the limited
applicability for periodontitis, the model does allow assessment
of an organism’s ability to resist immune killing, grow in vivo,
and spread systemically. A recent successful use of the abscess
model was to establish synergistic interactions between S. gordo-
nii and Aggregatibacter actinomycetemcomitans. In vitro, growth of
A. actinomycetemcomitans is enhanced through utilization of L-
lactate produced as a metabolic by-product by S. gordonii.21 In
order for A. actinomycetemcomitans to cross-feed with S. gordonii,
it produces catalase by which it overcomes the adverse effects of
hydrogen peroxide released extracellularly by oral streptococci.
The murine abscess model not only confirmed the importance of
catalase but also established that dispersin B (DspB), an enzyme
that dissolves A. actinomycetemcomitans biofilms, is necessary for
nutritional synergism between A. actinomycetemcomitans and S.
gordonii.22 Specifically, 3D image analysis of the abscess material
revealed that DspB is required for an optimal spatial organization
of A. actinomycetemcomitans cells at >4 mm from S. gordonii cells,
a distance that minimizes exposure to peroxide but allows access
to L-lactate. Hence, provided the experimental questions are
framed to fit the model system, even a rudimentary model such
as abscess formation can provide valuable in vivo verification of
processes identified in vitro.

A potential issue regarding the use of mouse models to study
periodontal disease pathogenesis is that the periodontitis-associated
microbiotas in mice and humans differ considerably. However,
this is not a prohibitive factor for using mouse models since peri-
odontitis is fundamentally a dysbiotic inflammatory disease precip-
itated by disruption of host-microbe homeostasis.9,23 Dysbiosis is
not dependent so much on the particular microbial roster but
rather on the specific gene combinations or collective virulence
activity within the altered microbial community.24,25 This notion
is supported by a recent metatranscriptomic study which showed
that disease-associated microbial communities exhibit conserved
metabolic and virulence gene expression profiles, despite high
inter-patient variability in terms of microbial composition.26

Therefore, a conserved periodontitis-associated microbiota is not a
requirement for the pathogenesis of human periodontitis. This
realization and the fact that periodontitis is not uniquely a human
disease27 and involves common pathogenic mechanisms among
different mammalian species (see above) validates the use of animal
models to study periodontitis. In a similar context, intestinal health
requires maintaining a balance between the colonic epithelium, the
immune system, and the resident microbiota, whereas the break-
down of this homeostatic relationship leads to inflammatory bowel
disease (IBD).28 As with periodontitis, this concept confers rele-
vance to the use of mice as models for IBD pathogenesis despite
the differences between the mouse and human microbiotas.

Animal models can also provide insights into better under-
standing of data from human microbiome studies. A recent study

in the murine oral gavage model has shown that the oral com-
mensal microbiota is absolutely required for induction of inflam-
matory bone loss by P. gingivalis, which has traditionally been
considered a causative agent in human periodontitis.29 Such
commensals can act as pathobionts in a dysbiotic microbial com-
munity,30,31 and in human periodontitis are likely represented
by hitherto underappreciated species that have now been shown
to have as good or better a correlation with disease as P. gingivalis
(or other long-established pathogens).32-35 Therefore, a concept
first established in mice is consistent with and has explanatory
power for results obtained from metagenomic analyses of human
periodontitis. Moreover, the commensal-turned-pathobiont con-
cept is supported by a recent metatranscriptomic study, which
revealed that a plethora of virulence factors upregulated in the
microbiome of periodontitis patients is primarily derived from
the previously underappreciated species that were not tradition-
ally associated with periodontitis.36

The Role of the Host Immune Response

A controversy that has flared from time to time in the annals
of periodontal research involves the role of the host response in
periodontal destruction. That the host response and elements of
innate or adaptive immunity can be protective has been shown
by several studies. For instance, immunization of gnotobiotic rats
against P. gingivalis, protects against bone loss induced by inocu-
lation of this bacterium37 as does immunization in non-human
primates and in mice.38-41 Similar results have been obtained by
adoptive transfer of T-helper lymphocytes.42 Moreover, both
humans and mice that fail to recruit neutrophils to the periodon-
tal tissue (e.g., due to leukocyte-adhesion deficiency) develop an
aggressive form of periodontitis early in life.43 However, animal
models also provide conclusive evidence that the host response is
intimately involved in the destructive process. Both systemic and
topical application of non-steroidal anti-inflammatory drugs that
inhibit prostaglandin synthesis reduce periodontal bone loss in
spontaneously occurring periodontal disease in dogs and in liga-
ture-induced periodontal disease in non-human primates.44,45

Similarly, application of factors that inhibit cytokines, including
tumor necrosis factor [TNF], interleukin [IL]-1, IL-17, comple-
ment, and RANKL reduce periodontal tissue destruction whether
induced by A. actinomycetemcomitans oral gavage or by ligatures
in mice or non-human primates, providing additional evidence
that the host response mediates bone loss.46-55 Moreover, such
studies have offered promising therapeutic targets for the treat-
ment of human periodontitis. In contrast, application of IL-1 or
TNF, or genetic over-expression, enhances bone loss triggered by
bacteria.56-58 Likewise, attenuation of the host response by
genetic ablation generally lessens bacteria-induced bone loss.59-63

Thus, animal studies consistently demonstrate that bacteria alone
are not sufficient to induce periodontal bone loss, a conclusion
that would be difficult to make solely from in vitro studies or
human studies.

Recent studies have questioned the reliability of murine mod-
els for the investigation of human inflammatory disease, a broad
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conclusion which, if validated, would have a significant impact
on the use of mouse models of periodontal disease. Specifically,
gene expression profiling of C57BL/6J mice and humans during
endotoxemia revealed poor correlation between the human genes
and mouse orthologues and vice versa.64 However, this short-
coming in fact does not apply to periodontitis where the same
inflammatory mediators (e.g., prostaglandin E2, TNF, IL-1b,
and IL-17) mediate inflammatory bone loss in various species
including mice, rats, dogs, non-human primates, and
humans.43,46,54,55,63,65-68 Moreover, important innate or adap-
tive immune players implicated in experimental mouse periodon-
titis have been confirmed in higher animals. For instance the
central complement component C3 promotes inflammatory peri-
odontal bone loss in both mice and non-human primates,55

whereas regulatory T cells mediate protection against the same
condition in both mice and dogs.67

When mouse models are used in an appropriate context to
address specific hypotheses in periodontal disease pathogenesis,
the results obtained have been consistent with in vitro observa-
tions using human cells. For instance, studies in the oral gavage
model have confirmed the capacity of P. gingivalis to inhibit the
expression of E-selectin and neutrophil-recruiting chemokines,29

as predicted by the local chemokine paralysis model first estab-
lished in vitro using endothelial and gingival epithelial cells.69,70

Moreover, consistent with the requirement of intact C5a receptor
(C5aR) signaling in human leukocytes for successful evasion of
killing by P. gingivalis, the organism fails to colonize the perio-
dontium of C5aR-deficient mice, in contrast to wild-type mice
where P. gingivalis can persist and cause disease.29,71,72 Moreover,
local treatment of P. gingivalis-colonized mice with a C5aR
antagonist essentially eliminates P. gingivalis, reverses its dysbi-
otic effect, and inhibits development of periodontitis.29,71,73 In
line with in vitro evidence that P. gingivalis can escape TLR4 rec-
ognition or activation,74 TLR4-deficient neutrophils display nor-
mal inflammatory responses to P. gingivalis in the chamber
model, comparable with wild-type neutrophils (but not TLR2-
deficient neutrophils which exhibit a poor response).5 Further-
more, the lipid A phosphatase activity of P. gingivalis, which is
required for modulation of lipid A structure and hence evasion of
TLR4,74 was shown to contribute to the capacity of P. gingivalis
for oral colonization and enhancement of the commensal bacte-
rial load in a rabbit model of ligature-induced periodontitis.75

These studies also justify the characterization of P. gingivalis as a
keystone pathogen, a concept that is relevant also in other inflam-
matory dysbiotic diseases.76,77 The consistency between in vivo
animal and in vitro human experimental systems not only confers
biological significance to the in vitro findings but also lends fur-
ther support and validation of these animal models.

One potential limitation of rodent models is that the cells and
effector molecules of the immune system can differ from their
human counterparts as is the case with the neutrophil chemokine
CXCL8/IL-8. Mice and rats do not produce IL-8, but they do
produce functionally equivalent homologs that are controlled by
the transcription factor NF-kB.78-80 P. gingivalis can inhibit neu-
trophil transmigration toward human epithelial cells in vitro81

through production of a serine phosphatase, SerB, that inhibits

NF-kB activation by dephosphorylating its p65 subunit.69,70 An
important test of the relevance of rodent models then was to
assess the functionality of SerB in vivo. In the rat oral gavage
model, a SerB-deficient mutant of P. gingivalis incited greater
neutrophil infiltration in gingival tissues.82 Thus, even though
specific immune effectors may differ between rodents and
humans, similarity in the command and control pathways
ensures that mice and rats can indeed model the human immune
systems in many important ways.

In addition to inducing periodontitis via oral gavage or liga-
ture placement, the disease can develop in mice spontaneously as
a result of the aging process, a factor that also contributes to
human periodontitis.83 The use of the aging-associated periodon-
titis model led to the identification of a novel molecule involved
in periodontal tissue homeostasis, namely the endothelial cell-
derived glycoprotein Del-1.54 Del-1 engages in reciprocal antago-
nistic interactions with IL-17 in terms of their expression and
function in neutrophil recruitment and inflammation. This
reciprocal relationship has been confirmed in humans, with Del-
1 dominating in healthy gingiva and IL-17 prevailing in inflamed
gingiva.54

Importantly, the induction of periodontitis in mice involves
more physiological means as compared to other widely used
mouse models of other human diseases. For instance, chemically-
induced models of IBD have limitations in understanding events
that initiate gut inflammation in human IBD.84 Psoriasis, a T-
cell-mediated chronic inflammatory skin disease, is generally not
seen in animals other than humans, yet, various mouse models
including transgenics and knockouts have been developed that
mimic psoriasis.85 Despite their serious limitations, these models
have established that psoriasis is a T-cell-mediated disease and
have been used to dissect novel pathways of disease pathogenesis.
In experimental autoimmune encephalomyelitis, a model of
human multiple sclerosis, the disease is often induced artificially
after injection of autoantigen emulsified in complete Freund’s
adjuvant. This promotes the induction of CD4C T cell-mediated
autoimmune mechanisms, whereas CD8C T cells prevail in mul-
tiple sclerosis lesions.86 Similarly, collagen-induced arthritis in
mice, a commonly used model of rheumatoid arthritis, is elicited
by immunization with type II collagen formulated in complete
Freund’s adjuvant.87 Nevertheless, imperfect as they may be,
these models have significantly enhanced our understanding of
disease pathogenesis.

Impact of Systemic Disease

It is well documented in human studies that systemic condi-
tions such as diabetes mellitus increase the risk and severity of
periodontal disease.88 Animal models have established a mecha-
nistic basis for this phenomenon. Both type 1 and type 2 diabetic
mice exhibit a greater inflammatory response than normal mice
to the same inoculation of P. gingivalis into connective tis-
sue.89,90 If TNF is blocked in diabetic rats or diabetic mice,
much of the diabetes-enhanced bone resorption is reversed, indi-
cating that diabetes-enhanced inflammation, particularly TNF, is
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problematic.91-93 Interestingly, diabetes appears to cause a partic-
ular problem in the resolution of inflammation which leads to
dysregulation of a number of pathways that both enhance bone
resorption and reduce coupled bone formation.94,95 A number of
factors may enhance inflammation in diabetic animals including
increased formation of advanced glycation end products
(AGEs).8 When AGE signaling is blocked in a periodontal dis-
ease model both diabetes-enhanced TNF levels and periodontal
bone loss are reduced.96 Therefore, human studies have provided
evidence of an association between diabetes, AGEs, inflammation
and periodontal disease, but animal studies with the use of spe-
cific inhibitors provide conclusive evidence of functional relation-
ships between these parameters and identify specific processes
affected. Conversely, the notion that periodontitis exerts an
adverse impact on systemic health is substantiated by mechanistic
animal studies linking periodontitis or periodontal pathogens to
disorders such as atherosclerosis, adverse pregnancy outcomes,
and rheumatoid arthritis.97,98

Conclusion

In summary, whereas no one animal model can recapitulate
the complexity of periodontal disease, different aspects of the dis-
ease can be represented by different models, which have contrib-
uted considerably in dissecting the mechanistic underpinning of
periodontitis. Of course, the synthesis and integration of findings
from all available experimental systems (in vitro, animal, human)
are required for better understanding of disease pathogenesis
(Fig. 1). A good example of the interconnectivity and relevance
of each experimental system is provided by the treatment of peri-
odontitis with local delivery of tetracyclines. Tetracyclines have
been shown to inhibit periodontal disease in rats and to alter the
subgingival microflora in humans.15,99 However, experiments
with germ-free rats demonstrated that tetracyclines can reduce

periodontal breakdown in a non-antimicrobial manner involving
inhibition of matrix metalloproteinases (MMPs).100 This led to a
number of in vitro studies to investigate the precise mechanisms
involved and the development of new drugs that inhibit MMP
activity.100 MMP-blocking drugs first discovered in rat models of
periodontal disease have been subsequently marketed as Peri-
ostat� to prevent periodontitis in humans101 and are being fur-
ther developed for treatments of other tissue-breakdown diseases
including cardiovascular disease.102

When using animal models, what matters is not only the spe-
cies but primarily the ways in which the chosen model is used.
For instance, whereas non-human primate models are closer to
human periodontitis than any dog, rabbit, or rodent model, no
model can be discounted if used appropriately and the data are
interpreted within the limitations of the model. It is the opinion
of these authors that the dismissal of animal models on the
grounds that they do not faithfully represent all aspects of human
periodontitis does not constitute serious scientific criticism and,
in the absence of better mechanistic alternatives, represents an
impediment to scientific progress. Needless to add, however, that
it is important to strive to optimize existing models or invent
new and improved ones based on new experimental results and
constructive criticism.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

The authors’ research is supported by NIH grants;
DE015254, DE017138, DE021685, DE024716, AI068730
(GH); DE011111, DE012505, DE016690, DE017921,
DE022867, DE023193 (RJL); and DE017732, DE021921
(DTG).

References

1. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajish-
engallis G. The use of rodent models to investigate
host-bacteria interactions related to periodontal dis-
eases. J Clin Periodontol 2008; 35:89-105;
PMID:18199146; http://dx.doi.org/10.1111/j.1600-
051X.2007.01172.xp

2. Baker PJ, Dixon M, Roopenian DC. Genetic control
of susceptibility to Porphyromonas gingivalis-induced
alveolar bone loss in mice. Infect Immun 2000;
68:5864-8; PMID:10992496

3. Abe T, Hajishengallis G. Optimization of the ligature-
induced periodontitis model in mice. J Immunol
Meth 2013; 394:49-54; PMID:23672778; http://dx.
doi.org/10.1016/j.jim.2013.05.002

4. Genco CA, Cutler CW, Kapczynski D, Maloney K,
Arnold RR. A novel mouse model to study the viru-
lence of and host response to Porphyromonas (Bacter-
oides) gingivalis. Infect Immun 1991; 59:1255-63;
PMID:2004807

5. Burns E, Bachrach G, Shapira L, Nussbaum G. Cut-
ting Edge: TLR2 is required for the innate response to
Porphyromonas gingivalis: activation leads to bacterial
persistence and TLR2 deficiency attenuates induced
alveolar bone resorption. J Immunol 2006; 177:8296-
300; PMID:17142724

6. Singh A, Wyant T, Anaya-Bergman C, Aduse-Opoku
J, Brunner J, Laine ML, Curtis MA, Lewis JP. The

capsule of Porphyromonas gingivalis leads to a reduc-
tion in the host inflammatory response, evasion of
phagocytosis, and increase in virulence. Infect Immun
2011; 79:4533-42; PMID:21911459

7. Kastelein P, van Steenbergen TJ, Bras JM, de Graaff J.
An experimentally induced phlegmonous abscess by a
strain of Bacteroides gingivalis in guinea pigs and
mice. Antonie Van Leeuwenhoek 1981; 47:1-9;
PMID:7247390

8. Lalla E, Papapanou PN. Diabetes mellitus and peri-
odontitis: a tale of two common interrelated diseases.
Nat Rev Endocrinol 2011; 7:738-48;
PMID:21709707; http://dx.doi.org/10.1038/nrendo.
2011.106

9. Darveau RP. Periodontitis: a polymicrobial disruption
of host homeostasis. Nat Rev Microbiol 2010; 8:481-
90; PMID:20514045; http://dx.doi.org/; http://dx.
doi.org/10.1038/nrmicro2337

10. Keyes PH, Jordan HV. Periodontal lesions in the
syrian hamster. III. Findings related to an infectious
and transmissible component. Arch Oral Biol 1964;
32:377-400; PMID:14179047; http://dx.doi.org/
10.1016/0003-9969(64)90024-X

11. Rovin S, Costich ER, Gordon HA. The influence of
bacteria and irritation in the initiation of periodontal
disease in germfree and conventional rats. J Periodon-
tal Res 1966; 1:193-204; PMID:4225530; http://dx.
doi.org/10.1111/j.1600-0765.1966.tb01860.x

12. Williams RC, Leone CW, Jeffcoat MK, Nitzan D,
Goldhaber P. Tetracycline treatment of periodontal
disease in the beagle dog. II. The cultivable periodon-
tal pocket flora. J Periodontal Res 1981; 16:666-74;
PMID:6460865; http://dx.doi.org/10.1111/j.1600-
0765.1981.tb01005.x

13. Kenworthy R, Baverel M. Studies of a periodontal tis-
sue lesion in the rat, untreated or treated with chlor-
hexidine digluconate. J Clin Periodontol 1981;
8:349-58; PMID:6947996; http://dx.doi.org/
10.1111/j.1600-051X.1981.tb02044.x

14. Luan Q, Desta T, Chehab L, Sanders VJ, Plattner J,
Graves DT. Inhibition of experimental periodontitis
by a topical boron-based antimicrobial. J Dent Res
2008; 87:148-52; PMID:18218841; http://dx.doi.
org/10.1177/154405910808700208

15. Weiner GS, DeMarco TJ, Bissada NF. Long term
effect of systemic tetracycline administration on the
severity of induced periodontitis in the rat. J Perio-
dontol 1979; 50:619-23; PMID:294476; http://dx.
doi.org/10.1902/jop.1979.50.12.619

16. Samejima Y, Ebisu S, Okada H. Effect of infection
with Eikenella corrodens on the progression of liga-
ture-induced periodontitis in rats. J Periodontal Res
1990; 25:308-15; PMID:2145416

17. Holt S, Ebersole J, Felton J, Brunsvold M, Kornman
K. Implantation of Bacteroides gingivalis in non-
human primates initiates progression of periodontitis.

www.tandfonline.com 233Virulence



Science 1988; 239:55-7; PMID:3336774; http://dx.
doi.org/10.1126/science.3336774

18. Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao
L, Herzberg MC, Shizukuishi S, Lamont RJ. Strepto-
coccus gordonii utilizes several distinct gene functions
to recruit Porphyromonas gingivalis into a mixed
community. Mol Microbiol 2006; 60:121-39;
PMID:16556225; http://dx.doi.org/10.1111/j.1365-
2958.2006.05099.x

19. Daep CA, Novak EA, Lamont RJ, Demuth DR.
Structural dissection and in vivo effectiveness of a pep-
tide inhibitor of Porphyromonas gingivalis adherence
to Streptococcus gordonii. Infect Immun 2011;
79:67-74; PMID:21041492; http://dx.doi.org/
10.1128/IAI.00361-10

20. Wright CJ, Wu H, Melander RJ, Melander C,
Lamont RJ. Disruption of heterotypic community
development by Porphyromonas gingivalis with small
molecule inhibitors. Mol Oral Microbiol 2014;
PMID:24899524

21. Ramsey MM, Rumbaugh KP, Whiteley M. Metabo-
lite cross-feeding enhances virulence in a model poly-
microbial infection. PLOS Pathog 2011; 7:e1002012;
PMID:21483753

22. Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP,
WhiteleyM. Bacterial fight-and-flight responses enhance
virulence in a polymicrobial infection. Proc Natl Acad
Sci U S A 2014; 111:7819-24; PMID:24825893;
http://dx.doi.org/10.1073/pnas.1400586111

23. Hajishengallis G. Immunomicrobial pathogenesis of
periodontitis: keystones, pathobionts, and host response.
Trends Immunol 2014; 35:3-11; PMID:24269668;
http://dx.doi.org/10.1016/j.it.2013.09.001

24. Hajishengallis G, Lamont RJ. Beyond the red com-
plex and into more complexity: The Polymicrobial
Synergy and Dysbiosis (PSD) model of periodontal
disease etiology. Mol Oral Microbiol 2012; 27:409-
19; PMID:23134607; http://dx.doi.org/10.1111/
j.2041-1014.2012.00663.x

25. Knights D, Lassen KG, Xavier RJ. Advances in
inflammatory bowel disease pathogenesis: linking host
genetics and the microbiome. Gut 2013; 62:1505-10;
PMID:24037875; http://dx.doi.org/10.1136/gutjnl-
2012-303954

26. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli
N, Whiteley M. Metatranscriptomics of the human
oral microbiome during health and disease. MBio
2014; 5:e01012-14; PMID:24692635; http://dx.doi.
org/10.1128/mBio.01012-14

27. Page RC, Schroeder HE. Periodontitis in man and
other animals—a comparative review. Basel, Switzer-
land: Karger; 1982.

28. Nell S, Suerbaum S, Josenhans C. The impact of the
microbiota on the pathogenesis of IBD: lessons from
mouse infection models. Nat Rev Microbiol 2010;
8:564-77; PMID:20622892; http://dx.doi.org/
10.1038/nrmicro2403

29. Hajishengallis G, Liang S, Payne MA, Hashim A, Jot-
wani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood
KL, Lambris JD, et al. Low-abundance biofilm species
orchestrates inflammatory periodontal disease through
the commensal microbiota and complement. Cell Host
Microbe 2011; 10:497-506; PMID:22036469; http://
dx.doi.org/10.1016/j.chom.2011.10.006

30. Hajishengallis G, Lamont RJ. Breaking bad: manipula-
tion of the host response by Porphyromonas gingivalis.
Eur J Immunol 2014; 44:328-38; PMID:24338806;
http://dx.doi.org/10.1002/eji.201344202

31. Jiao Y, Darzi Y, Tawaratsumida K,Marchesan JT, Hase-
gawa M, Moon H, Chen GY, Nunez G, Giannobile
WV, Raes J, et al. Induction of bone loss by pathobiont-
mediated nod1 signaling in the oral cavity. Cell Host
Microbe 2013; 13:595-601; PMID:23684310; http://
dx.doi.org/10.1016/j.chom.2013.04.005

32. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu
WH,LakshmananA,WadeWG.The humanoralmicro-
biome. J Bacteriol 2010; 192:5002-17; PMID:20656903;
http://dx.doi.org/10.1128/JB.00542-10

33. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson
JA, Strausbaugh LD, Gamonal J, Diaz PI. The sub-
gingival microbiome in health and periodontitis and
its relationship with community biomass and inflam-
mation. ISME J 2013; 7:1016-25; PMID:23303375;
http://dx.doi.org/10.1038/ismej.2012.174

34. Griffen AL, Beall CJ, Campbell JH, Firestone ND,
Kumar PS, Yang ZK, Podar M, Leys EJ. Distinct and
complex bacterial profiles in human periodontitis and
health revealed by 16S pyrosequencing. ISME J 2012;
6:1176-85; PMID:22170420; http://dx.doi.org/
10.1038/ismej.2011.191

35. Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moesch-
berger ML, Griffen AL. Changes in periodontal health
status are associated with bacterial community shifts as
assessed by quantitative 16S cloning and sequencing. J
Clin Microbiol 2006; 44:3665-73; PMID:17021095;
http://dx.doi.org/10.1128/JCM.00317-06

36. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang
X, Krishnan K, Frias-Lopez J. Community-wide tran-
scriptome of the oral microbiome in subjects with and
without periodontitis. ISME J 2014; 8:1659-72;
PMID:24599074; http://dx.doi.org/10.1038/ismej.
2014.23

37. Klausen B, Evans RT, Ramamurthy NS, Golub LM,
Sfintescu C, Lee JY, Bedi G, Zambon JJ, Genco RJ.
Periodontal bone level and gingival proteinase activity
in gnotobiotic rats immunized with Bacteroides gingi-
valis. Oral Microbiol Immunol 1991; 6:193-201;
PMID:1687484; http://dx.doi.org/10.1111/j.1399-
302X.1991.tb00477.x

38. Persson GR, Engel D, Whitney C, Darveau R, Wein-
berg A, Brunsvold M, Page RC. Immunization against
Porphyromonas gingivalis inhibits progression of
experimental periodontitis in nonhuman primates.
Infect Immun 1994; 62:1026-31; PMID:8112836

39. Gonzalez D, Tzianabos AO, Genco CA, Gibson FC,
3rd. Immunization with Porphyromonas gingivalis
capsular polysaccharide prevents P. gingivalis-elicited
oral bone loss in a murine model. Infect Immun
2003; 71:2283-7; PMID:12654858; http://dx.doi.
org/10.1128/IAI.71.4.2283-2287.2003

40. O’Brien-Simpson NM, Pathirana RD, Paolini RA,
Chen YY, Veith PD, Tam V, Ally N, Pike RN,
Reynolds EC. An immune response directed to
proteinase and adhesin functional epitopes protects
against Porphyromonas gingivalis-induced peri-
odontal bone loss. J Immunol 2005; 175:3980-9;
PMID:16148146; http://dx.doi.org/10.4049/
jimmunol.175.6.3980

41. Gibson FC, 3rd, Genco CA. Prevention of Porphyro-
monas gingivalis-induced oral bone loss following
immunization with gingipain R1. Infect Immun
2001; 69:7959-63; PMID:11705986; http://dx.doi.
org/10.1128/IAI.69.12.7959-7963.2001

42. Yamashita K, Eastcott JW, Taubman MA, Smith DJ,
Cox DS. Effect of adoptive transfer of cloned Actino-
bacillus actinomycetemcomitans-specific T helper
cells on periodontal disease. Infect Immun 1991;
59:1529-34; PMID:1825991

43. Moutsopoulos NM, Konkel J, Sarmadi M, Eskan
MA, Wild T, Dutzan N, Abusleme L, Zenobia C,
Hosur KB, Abe T, et al. Defective neutrophil recruit-
ment in leukocyte adhesion deficiency type I disease
causes local IL-17–driven inflammatory bone loss. Sci
Transl Med 2014; 6:229ra40; PMID:24670684;
http://dx.doi.org/10.1126/scitranslmed.3007696

44. Williams R, Jeffcoat M, Kaplan M, Goldhaber P,
Johnson H, Wechter W. Flurbiprofen: a potent inhib-
itor of alveolar bone resorption in beagles. Science
1985; 227:640-2; PMID:3969553; http://dx.doi.org/
10.1126/science.3969553

45. Li KL, Vogel R, Jeffcoat MK, Alfano MC, Smith MA,
Collins JG, Offenbacher S. The effect of ketoprofen
creams on periodontal disease in rhesus monkeys. J
Periodontal Res 1996; 31:525-32; PMID:8971650;
http://dx.doi.org/10.1111/j.1600-0765.1996.
tb00516.x

46. Assuma R, Oates T, Cochran D, Amar S, Graves D.
IL-1 and TNF antagonists inhibit the inflammatory
response and bone loss in experimental periodontitis.
J Immun 1998; 160:403-9; PMID:9551997

47. Delima A, Oates T, Assuma R, Schwartz Z, Cochran
D, Amar S, Graves D. Soluble antagonists to interleu-
kin-1 (IL-1) and tumor necrosis factor (TNF) inhibits
loss of tissue attachment in experimental periodonti-
tis. J Clin Periodontol 2001; 28:233-40;
PMID:11284536; http://dx.doi.org/10.1034/j.1600-
051x.2001.028003233.x

48. Tomofuji T, Ekuni D, Irie K, Azuma T, Endo Y, Tam-
aki N, Sanbe T, Murakami J, Yamamoto T, Morita M.
Preventive effects of a cocoa-enriched diet on gingival
oxidative stress in experimental periodontitis. J Perio-
dontol 2009; 80:1799-808; PMID:19905949; http://
dx.doi.org/10.1902/jop.2009.090270

49. Ekuni D, Tomofuji T, Irie K, Kasuyama K, Uma-
koshi M, Azuma T, Tamaki N, Sanbe T, Endo Y,
Yamamoto T, et al. Effects of periodontitis on aortic
insulin resistance in an obese rat model. Lab Invest
2010; 90:348-59; PMID:20065945; http://dx.doi.
org/10.1038/labinvest.2009.141

50. Endo Y, Tomofuji T, Ekuni D, Irie K, Azuma T, Tam-
aki N, Yamamoto T,MoritaM. Experimental periodon-
titis induces gene expression of proinflammatory
cytokines in liver and white adipose tissues in obesity. J
Periodontol 2010; 81:520-6; PMID:20367095; http://
dx.doi.org/10.1902/jop.2009.090574

51. Teng Y, Nguyen H, Gao X, Kong Y, Gorczynski R,
Singh B, Ellen R, Penninger J. Functional human T-
cell immunity and osteoprotegerin ligand control alve-
olar bone destruction in periodontal infection. J Clin
Invest, 2000; 106:R59-67; PMID:10995794; http://
dx.doi.org/10.1172/JCI10763

52. Han X, Kawai T, Eastcott JW, Taubman MA. Bacterial-
responsive B lymphocytes induce periodontal bone resorp-
tion. J Immunol 2006; 176:625-31; PMID:16365458;
http://dx.doi.org/10.4049/jimmunol.176.1.625

53. Jin Q, Cirelli JA, Park CH, Sugai JV, Taba M, Jr.,
Kostenuik PJ, Giannobile WV. RANKL inhibition
through osteoprotegerin blocks bone loss in experi-
mental periodontitis. J Periodontol 2007; 78:1300-8;
PMID:17608585; http://dx.doi.org/10.1902/jop.
2007.070073

54. Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH,
Liang S, Ciero PA, Krauss JL, Li F, Rauner M, et al.
The leukocyte integrin antagonist Del-1 inhibits IL-
17-mediated inflammatory bone loss. Nat Immunol
2012; 13:465-73; PMID:22447028; http://dx.doi.
org/10.1038/ni.2260

55. Maekawa T, Abe T, Hajishengallis E, Hosur KB, DeAn-
gelis RA, Ricklin D, Lambris JD, Hajishengallis G.
Genetic and intervention studies implicating comple-
ment C3 as a major target for the treatment of periodon-
titis. J Immunol 2014; 192 6020-7; PMID:24808362;
http://dx.doi.org/10.4049/jimmunol.1400569

56. Koide M, Suda S, Saitoh S, Ofuji Y, Suzuki T, Yoshie
H, Takai M, Ono Y, Taniguchi Y, Hara K. In vivo
administration of IL-1 beta accelerates silk ligature-
induced alveolar bone resorption in rats. J Oral Pathol
Med 1995; 24:420-34; PMID:8537916; http://dx.
doi.org/10.1111/j.1600-0714.1995.tb01212.x

57. Gaspersic R, Stiblar-Martincic D, Osredkar J, Skaleric
U. Influence of subcutaneous administration of
recombinant TNF-alpha on ligature-induced peri-
odontitis in rats. J Periodontal Res 2003; 38:198-203;
PMID:12608915; http://dx.doi.org/10.1034/j.1600-
0765.2003.01395.x

58. Dayan S, Stashenko P, Niederman R, Kupper TS.
Oral epithelial overexpression of IL-1alpha causes
periodontal disease. J Dent Res 2004; 83:786-90;
PMID:15381720; http://dx.doi.org/10.1177/
154405910408301010

59. Baker P, Evans R, Roopenian D. Oral infection with
Porphyromonas gingivalis and induced alveolar bone
loss in immunocompetent and severe combined
immunodeficient mice. Arch Oral Biol 1994;

234 Volume 6 Issue 3Virulence



39:1035-40; PMID:7717884; http://dx.doi.org/
10.1016/0003-9969(94)90055-8

60. Baker P, Dixon M, Evans R, Dufour L, Johnson E,
Roopenian D. CD4(C) T cells and the proinflamma-
tory cytokines gamma interferon and interleukin-6
contribute to alveolar bone loss in mice. Infect Immun
1999; 67:2804-9; PMID:10338484

61. Chiang C, Kyritsis G, Graves D, Amar S. Interleukin-
1 and tumor necrosis factor activities partially account
for calvarial bone resorption induced by local injection
of lipopolysaccharide. Infection and Immunity 1999;
67:4231-6; PMID:10417196

62. Graves D, Oskoui M, Volejnikova S, Naguib G, Cai S,
Desta T, Kakouras A, Jiang Y. Tumor necrosis factor
modulates fibroblast apoptosis, PMN recruitment, and
osteoclast formation in response to P. gingivalis infec-
tion. J Dent Res 2001; 80:1875-9; PMID:11706944;
http://dx.doi.org/10.1177/00220345010800100301

63. Garlet GP, Cardoso CR, Campanelli AP, Ferreira BR,
Avila-Campos MJ, Cunha FQ, Silva JS. The dual role
of p55 tumour necrosis factor-alpha receptor in Acti-
nobacillus actinomycetemcomitans-induced experi-
mental periodontitis: host protection and tissue
destruction. Clin Exp Immunol 2007; 147:128-38;
PMID:17177972

64. Seok J, Warren HS, Cuenca AG, Mindrinos MN,
Baker HV, Xu W, Richards DR, McDonald-Smith
GP, Gao H, Hennessy L, et al. Genomic responses in
mouse models poorly mimic human inflammatory
diseases. Proc Natl Acad Sci U S A 2013; 110:3507-
12; PMID:23401516; http://dx.doi.org/10.1073/
pnas.1222878110

65. Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ,
Shen S, Orraca L, Gonzalez-Martinez J, Burgos A, Gon-
zalez OA. Cytokine Gene Expression Profiles during Ini-
tiation, Progression and Resolution of Periodontitis. J
Clin Periodontol 2014; 41:853-61; PMID:24975876;
http://dx.doi.org/10.1111/jcpe.12286

66. Graves D. Cytokines that promote periodontal tissue
destruction. J Periodontol 2008; 79:1585-91; PMID:
18673014

67. Glowacki AJ, Yoshizawa S, Jhunjhunwala S, Vieira
AE, Garlet GP, Sfeir C, Little SR. Prevention of
inflammation-mediated bone loss in murine and
canine periodontal disease via recruitment of regula-
tory lymphocytes. Proc Natl Acad Sci U S A 2013;
110:18525-30; PMID:24167272; http://dx.doi.org/;
http://dx.doi.org/10.1073/pnas.1302829110

68. Noguchi K, Ishikawa I. The roles of cyclooxygenase-2
and prostaglandin E2 in periodontal disease. Perio-
dontol 2000 2007; 43:85-101; PMID:17214837;
http://dx.doi.org/10.1111/j.1600-0757.2006.00170.x

69. Darveau RP, Belton CM, Reife RA, Lamont RJ. Local
chemokine paralysis, a novel pathogenic mechanism
for Porphyromonas gingivalis. Infect Immun 1998;
66:1660-5; PMID:9529095

70. Takeuchi H, Hirano T, Whitmore SE, Morisaki I,
Amano A, Lamont RJ. The serine phosphatase SerB
of Porphyromonas gingivalis suppresses IL-8 produc-
tion by dephosphorylation of NF-kB RelA/p65.
PLOS Pathog 2013; 9:e1003326; PMID:23637609

71. Abe T, Hosur KB, Hajishengallis E, Reis ES, Ricklin
D, Lambris JD, Hajishengallis G. Local complement-
targeted intervention in periodontitis: proof-of-con-
cept using a C5a receptor (CD88) antagonist. J
Immunol 2012; 189:5442-8; PMID:23089394;
http://dx.doi.org/10.4049/jimmunol.1202339

72. Wang M, Krauss JL, Domon H, Hosur KB, Liang S,
Magotti P, Triantafilou M, Triantafilou K, Lambris
JD, Hajishengallis G. Microbial hijacking of comple-
ment-toll-like receptor crosstalk. Sci Signal 2010; 3:
ra11; PMID:20159852

73. Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafi-
lou M, Triantafilou K, Hashim A, Hoch S, Curtis
MA, Nussbaum G, et al. Porphyromonas gingivalis
manipulates complement and TLR signaling to
uncouple bacterial clearance from inflammation and
promote dysbiosis. Cell Host Microbe 2014; 15:768-

78; PMID:24922578; http://dx.doi.org/10.1016/j.
chom.2014.05.012

74. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge
BW, To TT, Goodlett DR, Ernst RK, Darveau RP.
Human Toll-like receptor 4 responses to P. gingivalis are
regulated by lipid A 1- and 4’- phosphatase activities.
Cell Microbiol 2009; 11:1587-99; PMID:19552698;
http://dx.doi.org/10.1111/j.1462-5822.2009.01349.x

75. Zenobia C,Hasturk H, Nguyen D, Van Dyke TE, Kant-
arci A, Darveau RP. Porphyromonas gingivalis lipid A
phosphatase activity is critical for colonization and increas-
ing the commensal load in the rabbit ligaturemodel. Infect
Immun2014; 82:650-9; PMID:24478080; http://dx.doi.
org/10.1128/IAI.01136-13

76. Stecher B, Maier L, Hardt WD. ’Blooming’ in the gut:
how dysbiosis might contribute to pathogen evolution.
Nat RevMicrobiol 2013; 11:277-84; PMID:23474681;
http://dx.doi.org/10.1038/nrmicro2989

77. Hajishengallis G, Darveau RP, Curtis MA. The key-
stone-pathogen hypothesis. Nat Rev Microbiol 2012;
10:717-25; PMID:22941505; http://dx.doi.org/
10.1038/nrmicro2873

78. Ohmori Y, Fukumoto S, Hamilton TA. Two structur-
ally distinct kappa B sequence motifs cooperatively
control LPS-induced KC gene transcription in mouse
macrophages. J Immunol 1995; 155:3593-600;
PMID:7561058

79. Tateno N, Matsumoto N, Motowaki T, Suzuki K,
Aratani Y. Myeloperoxidase deficiency induces MIP-2
production via ERK activation in zymosan-stimulated
mouse neutrophils. Free Radic Res 2013; 47:376-85;
PMID:23438680; http://dx.doi.org/10.3109/
10715762.2013.778990

80. Chandrasekar B, Smith JB, Freeman GL. Ischemia-
reperfusion of rat myocardium activates nuclear fac-
tor-KappaB and induces neutrophil infiltration via
lipopolysaccharide-induced CXC chemokine. Circu-
lation 2001; 103:2296-302; PMID:11342480; http://
dx.doi.org/10.1161/01.CIR.103.18.2296

81. Madianos PN, Papapanou PN, Sandros J. Porphyro-
monas gingivalis infection of oral epithelium inhibits
neutrophil transepithelial migration. Infect Immun
1997; 65:3983-90; PMID:9316996

82. Bainbridge B, Verma RK, Eastman C, Yehia B, Rivera
M, Moffatt C, Bhattacharyya I, Lamont RJ, Kesavalu L.
Role of Porphyromonas gingivalis phosphoserine phos-
phatase enzyme SerB in inflammation, immune
response, and induction of alveolar bone resorption in
rats. Infect Immun 2010; 78:4560-9; PMID:20805334;
http://dx.doi.org/10.1128/IAI.00703-10

83. Hajishengallis G. Aging and its impact on innate immu-
nity and inflammation: implications for periodontitis. J
Oral Biosci 2014; 56:30-7; PMID:24707191; http://dx.
doi.org/10.1016/j.job.2013.09.001

84. Barnett M, Fraser A. Animal models of colitis: lessons
learned, and their relevance to the clinic. In:
O’Connor M, ed. Ulcerative colitis—treatments, spe-
cial populations and the future. Rijeka, Croatia;
Shangai, China: InTech, 2011:161-78.

85. Gudjonsson JE, Johnston A, Dyson M, Valdimarsson
H, Elder JT. Mouse models of psoriasis. J Invest Der-
matol 2007; 127:1292-308; PMID:17429444; http://
dx.doi.org/10.1038/sj.jid.5700807

86. t Hart BA, Gran B, Weissert R. EAE: imperfect but
useful models of multiple sclerosis. Trends Mol Med
2011; 17:119-25; PMID:21251877; http://dx.doi.
org/10.1016/j.molmed.2010.11.006

87. BrandDD, LathamKA, Rosloniec EF. Collagen-induced
arthritis. Nat Protoc 2007; 2:1269-75; PMID:17546023;
http://dx.doi.org/10.1038/nprot.2007.173

88. Chapple IL, Genco R, working group 2 of the joint
EFPAAPw. Diabetes and periodontal diseases: consen-
sus report of the Joint EFP/AAP workshop on peri-
odontitis and systemic diseases. J Periodontol 2013;
84:S106-12; PMID:23631572; http://dx.doi.org/
10.1902/jop.2013.1340011

89. Naguib G, Al-Mashat H, Desta T, Graves D. Diabe-
tes prolongs the inflammatory response to a bacterial

stimulus through cytokine dysregulation. J Invest Der-
matol 2004; 123:87-92; PMID:15191547; http://dx.
doi.org/10.1111/j.0022-202X.2004.22711.x

90. Graves DT, Naguib G, Lu H, Leone C, Hsue H, Krall
E. Inflammation is more persistent in Type 1 diabetic
mice. J Dent Res 2005; 84:324-8; PMID:15790737;
http://dx.doi.org/10.1177/154405910508400406

91. Al-Mashat HA, Kandru S, Liu R, Behl Y, Desta T,
Graves DT. Diabetes enhances mRNA levels of proa-
poptotic genes and caspase activity, which contribute
to impaired healing. Diabetes 2006; 55:487-95;
PMID:16443785; http://dx.doi.org/10.2337/
diabetes.55.02.06.db05-1201

92. Liu R, Bal HS, Desta T, Behl Y, Graves DT. Tumor
necrosis factor-alpha mediates diabetes-enhanced apopto-
sis of matrix-producing cells and impairs diabetic healing.
Am J Pathol 2006; 168:757-64; PMID:16507891;
http://dx.doi.org/10.2353/ajpath.2006.050907

93. Pacios S,Kang J,Galicia J,GluckK,PatelH,Ovaydi-Man-
del A, Petrov S, Alawi F, Graves DT. Diabetes aggravates
periodontitis by limiting repair through enhanced inflam-
mation. FASEB J 2012; 26:1423-30; PMID:22179526;
http://dx.doi.org/10.1096/fj.11-196279

94. Pacios S, Andriankaja O, Kang J, Alnammary M, Bae
J, de Brito Bezerra B, Schreiner H, Fine DH, Graves
DT. Bacterial infection increases periodontal bone
loss in diabetic rats through enhanced apoptosis. Am J
Pathol 2013; 183:1928-35; PMID:24113454; http://
dx.doi.org/10.1016/j.ajpath.2013.08.017

95. Kang J, de Brito Bezerra B, Pacios S, Andriankaja O, Li
Y, TsiagbeV, SchreinerH, FineDH,Graves DT. Aggre-
gatibacter actinomycetemcomitans infection enhances
apoptosis in vivo through a caspase-3-dependent mecha-
nism in experimental periodontitis. Infection and immu-
nity 2012; 80:2247-56; PMID:22451521; http://dx.
doi.org/10.1128/IAI.06371-11

96. Lalla E, Lamster IB, Feit M, Huang L, Spessot A, Qu
W, Kislinger T, Lu Y, Stern DM, Schmidt AM.
Blockade of RAGE suppresses periodontitis-associated
bone loss in diabetic mice. J Clin Invest 2000;
105:1117-24; PMID:10772656; http://dx.doi.org/
10.1172/JCI8942

97. Slocum C, Coats SR, Hua N, Kramer C, Papadopou-
los G, Weinberg EO, Gudino CV, Hamilton JA, Dar-
veau RP, Genco CA. Distinct lipid A moieties
contribute to pathogen-induced site-specific vascular
inflammation. PLOS Pathog 2014; 10:e1004215;
PMID:25010102

98. Maresz KJ, Hellvard A, Sroka A, Adamowicz K, Bie-
lecka E, Koziel J, Gawron K, Mizgalska D, Marcinska
KA, Benedyk M, et al. Porphyromonas gingivalis
facilitates the development and progression of destruc-
tive arthritis through its unique bacterial peptidylargi-
nine deiminase (PAD). PLOS Pathog 2013; 9:
e1003627; PMID:24068934

99. Slots J, Rosling BG. Suppression of the periodonto-
pathic microflora in localized juvenile periodontitis by
systemic tetracycline. J Clin Periodontol 1983;
10:465-86; PMID:6579058; http://dx.doi.org/
10.1111/j.1600-051X.1983.tb02179.x

100. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNa-
mara TF, Kaplan R, Ramamurthy NS. Minocycline
reduces gingival collagenolytic activity during diabe-
tes. Preliminary observations and a proposed new
mechanism of action. J Periodontal Res 1983;
18:516-26; PMID:6315909; http://dx.doi.org/
10.1111/j.1600-0765.1983.tb00388.x

101. Caton J, Ryan ME. Clinical studies on the manage-
ment of periodontal diseases utilizing subantimicro-
bial dose doxycycline (SDD). Pharmacol Res 2011;
63:114-20; PMID:21182947; http://dx.doi.org/
10.1016/j.phrs.2010.12.003

102. Iyer RP, Patterson NL, Fields GB, Lindsey ML. The
history of matrix metalloproteinases: milestones,
myths, and misperceptions. Am J Physiol Heart Circ
Physiol 2012; 303:H919-30; PMID:22904159;
http://dx.doi.org/10.1152/ajpheart.00577.2012

www.tandfonline.com 235Virulence


