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Abstract

A growing body of evidence suggests that the cerebellum is involved in both cognition and

language. Abnormal cerebellar development may contribute to neurodevelopmental disor-

ders such as attention deficit hyperactivity disorder (ADHD), autism, fetal alcohol syndrome,

dyslexia, and specific language impairment. Performance in eyeblink conditioning, which

depends on the cerebellum, can potentially be used to clarify the neural mechanisms under-

lying the cerebellar dysfunction in disorders like these. However, we must first understand

how the performance develops in children who do not have a disorder. In this study we

assessed the performance in eyeblink conditioning in 42 typically developing children

between 6 and 11 years old as well as in 26 adults. Older children produced more condi-

tioned eyeblink responses than younger children and adults produced more than children.

In addition, females produced more conditioned eyeblink responses than males among both

children and adults. These results highlight the importance of considering the influence of

age and sex on the performance when studying eyeblink conditioning as a measure of cere-

bellar development.

Introduction

In eyeblink conditioning an originally neutral conditional stimulus (CS), such as a tone, is fol-

lowed by a reflex eliciting unconditional stimulus (US), such as a puff of air to the cornea. Ini-

tially, the subject will produce an unconditional blink response (UR) to the air puff, but if the

tone and air puff are paired repeatedly the subject will eventually acquire a conditioned blink

response (CR), which begins before the onset of the US and peaks near the expected US. The

CR is adapted in time to the specific CS-US interval used. Several lines of evidence demonstrate

that the cerebellum plays a critical role in the acquisition and expression of adaptively timed

conditioned eyeblink responses [1–8]. This opens up for the possibility that eyeblink condition-

ing can be used as a measure of cerebellar function and, by extension, of cerebellar dysfunction.

An increasing number of studies indicate that the cerebellum is involved in cognition and

language [9–15]. Cerebellar abnormalities have been detected in patients with dyslexia [16],
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Copyright: © 2017 Löwgren et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: We gratefully acknowledge the support

from the Linnaeus centre Thinking in Time:

Cognition, Communication and Learning at Lund

University, financed by the Swedish Research

Council (grant no. 349-2007-8695) (https://www.

vr.se/). G. Hesslow was supported by grants from
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specific language impairment (SLI) [17], and attention deficit hyperactivity disorder (ADHD)

[18]. Autism spectrum disorders (ASD) have also been linked to cerebellar abnormalities

[19–22], although this link has later been contested [23]. Consistent with the pivotal role of

the cerebellum in eyeblink conditioning, children with ADHD [24,25], ASD [26–28], and

dyslexia [29] have displayed atypical timing and learning patterns during eyeblink condition-

ing, although no such effect was found in children with SLI [30,31]. However, the results are

inconsistent concerning studies of individuals with ADHD. Other conditions, such as fetal

alcohol syndrome (FAS) [24,32,33], fragile X syndrome, Down’s syndrome, and schizophr-

enia [34,35], have also been linked to cerebellar deficits and poor performance in eyeblink

conditioning. Rats exposed to alcohol as neonates suffer from loss of cerebellar neurons and

show deficits in eyeblink conditioning as adults [36]. Collectively, these studies constitute

strong evidence that factors that influence the cerebellum also affect performance in eyeblink

conditioning.

Given that the cerebellum, like the rest of the brain, undergoes changes throughout life

[37–39], it is perhaps not surprising that performance in eyeblink conditioning is influenced

by age. Adults 20–50 years old, perform better than children and individuals older than 60

years [40–43]. Yet, no age effects were observed in a study comparing adults, adolescents and

typically developing children older than 9 years [31]. Surprisingly, five month old infants

reach similar levels of CRs as adults, although differences in CR timing remained post training

[44]. The aim of this study was to examine performance in eyeblink conditioning in school

aged children (6–11 years). Our relatively large sample of 46 children and 30 adults allowed us

to correlate age with various CR parameters, including the temporal profile of the CR.

Methods

Ethics statement

The regional ethics committee in Lund, Sweden, approved this study and all associated

procedures.

Participants

A total of 76 subjects, 46 children and 30 adults, participated in the study. The children were

recruited from two local elementary schools in lower middle class to higher middle class socio-

economic areas in southern Sweden. The age of the pupils ranged from 6 to 12 years old. The

adults were recruited mainly from the student population at Lund University. Participants and

legal guardians were informed about the purpose of the study and signed an informed consent

form prior to testing. Three children and four adults were excluded from the analysis due to

technical problems with the registration of eyelid movements. In addition, one child was

excluded due to a non-verbal IQ score below 65 (percentile 1), tested by Raven’s colored pro-

gressive matrices [45]. Thus, the participants included in the analysis were 42 children, 6–11

years old (mean = 8.8, SD = 1.3) and 26 adults (21 students and 5 former students), 20–55

years old (mean = 29.3, SD = 8.6). Among the children 22 were female (mean age = 9.0 years,

SD = 1.4, range 6.8–11.1 years) and 20 were male (mean age = 8.6 years, SD = 1.3, range 6.9–

10.6 years). Among the adults 18 were female (mean age = 30.3 years, SD = 9.3, range 21.6–

55.9 years) and 8 were male (mean age = 26.8 years, SD = 6.8, range 20.6–40.8 years). All par-

ticipants were screened for normal hearing with a modified Hughson-Westlake method (ISO

8253–1), at 20 dB hearing level. The average IQ score on Raven’s colored progressive matrices

was 105, with a standard deviation of 16 points, for the children. The right hand was the domi-

nant hand for 91.3 percent of the participants. The participants had no eye deficit or disease
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and all exhibited normal motor development. None of the children received extra support in

school or used any medication.

Procedure

The test sessions took place in a calm and quiet room (Leq 60 seconds = 45 dB(A) measured

with Brüel & Kjær 2225 sound level meter), away from school or university activity. The condi-

tioning session lasted 35 minutes on average. The participants watched a movie both as dis-

traction from the test situation and as motivation. It also helped to fixate their gaze and eye

position. The children watched a cartoon while the adults watched a classic comedy movie.

The movies were selected to vary as little as possible in sound intensity. The eyeblink condi-

tioning was performed using a Shebot (Neurasmus, The Netherlands). This device consisted of

a computer, air compressor, air-puff generator, sound generator, magnetic distance measure-

ment technique controlling hardware, movie goggles with a circular air puff opening of 1.5

millimeters in diameter, magneto-sensitive sensor, noise excluding circumaural Sennheiser

HD 201 headphones and a helmet that held the goggles and headphones in place. The eyelid

movements were measured with the magnetic distance measurement technique [46]. The sen-

sor was placed on the cheek straight below a magnet (~0.1 g, 5 x 3 x 1 mm) that was attached

to the eyelid, close to the eyelash. The CS, a 1 kHz tone, was presented binaurally through the

headphones at 68 dB SPL during 500 ms. The tone and movie sound were calibrated through

the headphones and a coupler connected to an ISO-TECH SLM52N sound level meter. The

tone was clearly audible to all of the participants through the soft background sound of the

movie of ~41 dB(A), but not strong enough to trigger a blink reflex by itself. The US, a 15 ms

air puff of 1 bar, was released through the movie goggles, placed 1–2 centimeters from the

eyes, towards the left cornea. In a few cases the duration of the US was adjusted (+/- 5 ms at

most), to ensure that it elicited a clear blink reflex, without being perceived as too aversive.

A classical eyeblink conditioning delay paradigm, where the CS and US overlapped in time,

was programmed in National Instruments LabVIEW 2011. Of the 42 children, 22 received a

total of 70 trials (53 paired) while 20 received 100 trials (76 paired). The 26 adults received 80

trials (67 paired). The eyeblink conditioning protocols differed in number of trials since the

children at the two schools and the adults had different amounts of time to spend on the eye-

blink conditioning sessions. Yet, given that the settings were similar and the protocols, up

until a certain time, were nearly identical (Fig 1B), we considered it justified to compare and

combine data from these three groups. The inter-trial interval varied randomly between 15

and 25 seconds. In paired trials the CS preceded the US by 485 milliseconds and the two sti-

muli co-terminated in time (Fig 1A). If a spontaneous blink occurred during the 500 ms pre-

ceding the expected CS onset, the trial started over. As illustrated in Fig 1B, the majority of

the trials in the three protocols were paired trials and the CS alone trials were concentrated

in the last part of the conditioning session, after the first 50 trials. The participants were in-

structed to try to relax, concentrate on the movie and not pay attention to the stimuli or their

own reactions during the experiment. They were informed that the air puffs could feel some-

what stronger in the beginning of the session. Before the conditioning session, the children

were presented with 5–10 trials of paired tones and air puffs to make the test situation more

familiar.

Data analysis

The magnetic distance measurement registrations, sampled at 1 kHz, were stored in a SQL

database (MySQL Server 5.1, MySQL Workbench 5.2 CE). Eyelid movements were analyzed

offline trial-by-trial with a semi-automatic SQL-based visual trial identifier program made
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in National Instruments LabVIEW 2011. A trial was considered invalid if the registration of

the response was too noisy. A CR was defined as an eyeblink with an onset between 100 and

490 ms after the CS onset on paired trials (Fig 1C), or between 100 and 700 ms after CS

onset on CS alone trials. For every valid trial with a CR, the onset latency, peak latency, and

peak amplitude were determined. The CR onset was defined as the earliest point in time

where there was a change in the eyelid position of at least 3 SD, compared to the baseline.

The CR peak was defined as the point in time the first eyelid closure appeared after the CR

onset. CRs with an amplitude less than 15 percent of a participant’s mean UR amplitude

were excluded. The UR was analyzed in terms of onset latency (minimum change of 3 SD

compared to the baseline), peak latency (first maximum eyelid closure), and peak amplitude

(~100 percent eye closure), in paired and US alone trials. Participants blinked before the US

on 2% of the US alone trials.

Statistical analysis

For the statistical analysis, the conditioning session was divided into blocks of ten trials. Since

the protocols differed slightly between the groups after the fifth block (Fig 1B), the analysis was

mainly focused on the first five blocks. Average measures of CRs in CS alone trials after the

fifth block were also used to describe the level of conditioning post training. When referring to

CS alone trials without specifying actual blocks in the result and discussion sections, block 4

and the following blocks until the end of the session were included. CR percentages were used

to investigate the learning during conditioning. While analysis of the CR onset was done in

both paired and CS alone trials, analysis of the peak latency was done only in CS alone trials

since URs often interfered with the peak latency of the CR in paired trials. All the participants

were included in the analyses regardless of level of learning. The statistical analyses were made

in SPSS Statistics 23 (IBM). With repeated measures ANOVAs the CR measures in the first

five blocks as within-subjects factor, and sex and age as between-subjects factors, were ana-

lyzed. Greenhouse-Geisser correction were made whenever the assumption of sphericity was

violated according to Mauchly’s test of sphericity. Post-hoc pairwise comparisons were made

with Bonferroni confidence interval adjustment, with the significance level 0.05. Between-sub-

jects effects were also analyzed with standard linear regression models in different parts of the

session (paired trials in block 1, blocks 2–5, and in CS alone trials post training).

Fig 1. Stimulation protocols and eyeblink responses. (A) Onset, offset, and duration of the CS and US. The offsets of the CS and US co-

terminate 500 ms after CS onset in paired trials. (B) The distribution of the US alone, CS alone, and paired (CS + US) trials in three different

protocols (Child 1 from “School A”, Child 2 from “School B”). (C) Examples of CRs and URs, in paired trials.

https://doi.org/10.1371/journal.pone.0177849.g001
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Results

CR performance

While the rate of learning varied substantially among participants (Fig 2), repeated measures

ANOVAs with percent CRs on successive blocks as within-subjects factors showed that for both

the children and the adults, the rate of CRs increases during training (Children: F(4, 152) = 6.601,

p = 0.000, η2 = 0.148. Adults: F(2.984, 71.625) = 5.656, p = 0.002, η2 = 0.191). Post-hoc pairwise

comparisons show that the initial increase in CRs levels off between the first and the second block

for the children (block 1 vs. 2 p = 0.032, 1 vs. 3 p = 0.037, 1 vs. 4 p = 0.006, 1 vs. 5 p = 0.008), and

between the first block and the third block for the adults (block 1 vs. 2 p = 0.538, 1 vs. 3 p = 0.000,

1 vs. 4 p = 0.017, 1 vs. 5 p = 0.138). There are no differences between the rest of the blocks com-

pared to each other (p = 1.000). When comparing the first block to blocks 2–5 combined, the

CRs increased with 12 percentage points among the children (t41 = 4.269, p = 0.000, 95% CI[1,

17]) and 15 percentage points among the adults (t25 = 5.400, p = 0.000, 95% CI[1, 21]) (Table 1).

The CRs increase further, though only among the children, with 8 percentage points (t41 = 3.642,

p = 0.001, 95% CI[3, 12]) from blocks 2–5 to CS alone trials during later parts of the session.

Effects of age and sex on the CR performance. As illustrated in Fig 3, the children pro-

duced on average 20 percentage points fewer CRs than the adults (t48.52 = -3.027, p = 0.003,

95% CI[-34, -7]). The difference is only significant in blocks 2–5. This age effect is also present

when examining only the children. Pearson product-moment correlation coefficient shows

positive correlations between age and percentage of CRs in the first block (r = 0.328, p = 0.034,

n = 42), in blocks 2–5 (r = 0.476, p = 0.001, n = 42), and in the CS alone trials (r = 0.490,

p = 0.001, n = 42) (Fig 4). No such correlation is present among the adults.

Fig 2. Learning curves of CR percentages over block. The three different session length protocol groups and examples of “Good

learners”, “Poor learners” and “Abnormal learning curves” during the first five blocks, with averages in bold.

https://doi.org/10.1371/journal.pone.0177849.g002
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The females produced more CRs than the males (Fig 4). On average, the girls produced

16.6 percentage points more CRs than the boys in blocks 2–5 (t40 = 2.243, p = 0.031, 95% CI

[1.6, 31.5]), and 15.5 percentage points more CRs than the boys in CS alone trials (t40 = 2.031,

p = 0.049, 95% CI[7.8, 31.0]). The women produced 26 percentage points more CRs than the

men in block 1 (t2.536 = 2.502, p = 0.020, 95% CI[4.3, 46.1]), and 29 percentage points more

CRs than the men in blocks 2–5 (t21.403 = 3.302, p = 0.003, 95% CI[10.8, 47.5]). Girls 9 years

(median age) or older reached a similar level of CRs in blocks 2–5 as the women, and boys 9

years or older performed similar to the men (Fig 5). The CR production change from block 1

to blocks 2–5 did not differ significantly between the females and males, neither among chil-

dren nor among adults.

A repeated measures ANOVA, with the test session divided into the first five blocks and age

split by median age (children = 9 years, adults = 28 years), demonstrates an effect of age (F

(1,38) = 10.484, p = 0.003, η2 = 0.216), and a marginal effect of sex (F(1,38) = 3.596, p = 0.066,

η2 = 0.086) on CR percentage among the children, without any significant interaction effect of

age and sex (F(1, 38) = 0.051, p = 0.822). Similarly, there are a between-subjects effect of sex on

the CR percentages among the adults (F(1, 24) = 6.730, p = 0.016, η2 = 0.219). The influence of

the age and sex of the children is also evident in a standard linear regression model with age

and sex as predictors of average CR percentages (Table 2). Together, age and sex account for

29.5% of the variance in the CR percentage in blocks 2–5 (F(2, 39) = 8.144, p = 0.001), and

29.3% of the variance in the CR percentage in CS alone trials (F(2, 39) = 8.074, p = 0.001). In

block 1 there is only an age effect, which explains 10,8% (F(1, 40) = 4.836, p = 0.034) of the

variance. Among the adults, there are some evidence of an effect of sex both in block 1 and in

blocks 2–5, but not in CS alone trials. The regression model accounts for 14,5% (ß = -0.381,

F(1, 24) = 4.075, p = 0.055) of the variance in CR percentages in block 1 and 23.8% (ß = -0.488,

F(1, 24) = 7.492, p = 0.011) of the variance in CR percentages in blocks 2–5.

CR timing

Among the children there was no change in the CR onset latency, or in the CR onset variabi-

lity within the first five blocks (Table 3). By contrast, among the adults the CR onset latency

changed during training (F(2.147, 32.203) = 4.555, p = 0.016, η2 = 0.233). Post-hoc pairwise

comparisons with Bonferroni adjustment show that onset latency increased between block 1

and block 2 (p = 0.022), and between block 1 and block 3 (p = 0.026) but not between the later

blocks. There was also an onset latency increase of 38 ms between block 1 and blocks 2–5 com-

bined (t17 = 2.173, p = 0.044, 95% CI[1,74]), while there was no increase between blocks 2–5

and CS alone trials (Table 4). Statistically significant CR latency differences between children

and adults are not found in any part of the session.

Table 1. Average CR percentages (SD) in paired trials and CS alone trials.

Paired trials CS alone

Block 1 Blocks 2–5 Block 1 Blocks 4–5 Blocks 4–10

Children (n42) 15 (23) 27 (25) 23 (32) 44 (38) 34 (26)

Females (n22) 19 (28) 35 (29) 23 (34) 50 (35) 42 (29)

Males (n20) 11 (16) 18 (18) 23 (30) 39 (42) 26 (19)

Adults (n26) 32 (31) 47 (28) 28 (46) 56 (39) 46 (33)

Females (n18) 40 (33) 56 (28) 35 (49) 73 (34) 52 (33)

Males (n8) 14 (18) 27 (17) 13 (35) 25 (27) 30 (30)

https://doi.org/10.1371/journal.pone.0177849.t001
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Fig 3. CR percentages in blocks 1–5 (mean ± SEM). The results differ between groups based on age and

sex. The adults produced more CRs than the children and the females produced more CRs than the males.

(A) Adults (n 26) and children (n 42). (B) Girls (n 22) and boys (n 20). (C) Women (n 18) and men (n 8).

https://doi.org/10.1371/journal.pone.0177849.g003
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Effects of age and sex on the CR timing. Older children and adults produced CRs that

were more closely-timed to the US than younger children. Among the children, age correlates

Fig 4. Age and sex influences rate of CRs. (A) Scatterplot illustrating average CR percentage in blocks 2–5 as a function of age of the

children. (B) Boxplots showing the distribution of average CR percentage performed by the children (n 42) and adults (n 26) and (C and D)

divided into groups of females and males.

https://doi.org/10.1371/journal.pone.0177849.g004

Fig 5. CR percentages in blocks 2–5 (mean ± SEM) in blocks 2–5 in younger girls (n 9) and boys (n 11)

younger than 9 years old; older girls (n 13) and boys (n 9) 9 years old or older; women (n 18) and men

(n 8). The females in each age group reached a higher average CR percentage than the males. The older

children’s level of performance is near the adults’.

https://doi.org/10.1371/journal.pone.0177849.g005
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positively with CR onset latency (r = 0.347, p = 0.028, n = 40), and negatively with the variabil-

ity of the CR onset latency (r = -0.398, p = 0.020, n = 34), in blocks 2–5 only (Fig 6). Standard

linear regression analyses, while not repeated measures ANOVA on the first five blocks, show

effects of age on the CR onset latency (ß = 0.347, R2 = 0.121, F(1, 38) = 5.216, p = 0.028), and

on the CR onset variability (ß = -0.398, R2 = 0.159, F(1, 32) = 6.038, p = 0.020), in blocks 2–5.

No correlations between age and any CR latency measure show among the adults.

Standard linear regression analysis, while not repeated measures ANOVA on the first five

blocks, shows an effect of sex on the CR onset latencies in blocks 2–5 (ß = 0.498, R2 = 0.248,

F(1, 24) = 7.923, p = 0.010), where the adult men produced CRs with later onsets than the

women. There is also some effect of sex during CS alone trials on the CR peak latency among

the children (ß = 0.400, R2 = 0.160, F(1, 36) = 6.873, p = 0.013), with later peaks among boys

than girls, and on the CR peak latency variability among the adults (ß = -0.405, R2 = 0.164, F(1,

21) = 4.128, p = 0.055), with less variability among men than women.

UR production and timing

The US consistently elicited URs in both children and adults. While the UR latency was not

affected by training, it was affected by the age of the subjects. Specifically, the children’s URs

started on average 15 ms later (t52.07, p = 0.000, 95% CI[10, 18]), and the children’s UR peaks were

on average 28 ms later (t64.228, p = 0.000, 95% CI[21, 37]), than the adults’ in blocks 2–5 (Table 5).

Moreover, among the children, age correlates negatively with the UR onset (r = -0.303, p = 0.051,

n = 42; ß = -0.303, R2 = 0.092, F(1, 40) = 4.039, p = 0.051), and peak (r = -0.330, p = 0.033, n = 42;

ß = -0.330, R2 = 0.109, F(1, 40) = 4.878, p = 0.033). No effect of sex on the UR latency is found

Table 2. Coefficients in standard linear regression models with centralized age in months and sex as

predictors of the children’s (n = 42) CR percentages.

Paired trials in block 1 Standardized coefficient (ß) p-value

Age 0.328 0.034

Paired trials in blocks 2–5 Standardized coefficient (ß) p-value

Sex -0.264 0.060

Age 0.433 0.003

CS alone trials blocks 4–10 Standardized coefficient (ß) p-value

Sex -0.223 0.096

Age 0.452 0.002

https://doi.org/10.1371/journal.pone.0177849.t002

Table 3. Average CR onset latency mean (SD) and CR onset variability/mean SD (SD) in ms after CS onset in paired trials with CS-US ISI of 485 ms.

Children Adults

All Females Males All Females Males

Block 1 CR onset latency 323 (91) 344 (94) 299 (87) 272 (75) 277 (74) 253 (87)

CR onset mean SD 99 (79) 77 (55) 153 (96) 77 (28) 83 (22) 53 (41)

Block 2 CR onset latency 340 (79) 340 (74) 341 (89) 298 (70) 277 (67) 357 (41)

CR onset mean SD 83 (55) 87 (60) 75 (45) 68 (35) 71 (37) 58 (32)

Block 3 CR onset latency 330 (82) 326 (75) 337 (96) 321 (53) 305 (48) 354 (50)

CR onset mean SD 67 (40) 74 (41) 54 (36) 65 (33) 69 (23) 57 (50)

Block 4 CR onset latency 334 (86) 365 (38) 305 (108) 321(59) 313 (55) 345 (70)

CR onset mean SD 72 (33) 73 (37) 72 (28) 64 (34) 63 (38) 72 (17)

Block 5 CR onset latency 345 (63) 356 (60) 331 (66) 301 (59) 299 (46) 307 (92)

CR onset mean SD 78 (47) 79 (42) 76 (59) 64 (32) 71 (29) 40 (34)

https://doi.org/10.1371/journal.pone.0177849.t003
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among the children. No correlations between age and UR onset or peak latencies, or effects of age

and sex on the UR latencies are found among the adults.

Discussion

This study demonstrates that as children get older their performance in eyeblink conditioning

improves. Older children produced more CRs with better and less variable timing, and they

also had earlier UR onsets and peaks. Adults showed earlier UR onsets and peaks than the chil-

dren. Consistent with earlier results [39], adults reached higher rates of CRs than the children.

Our school aged children never reached the same level as the adults, as infants earlier have

been observed to do [44]. We did not find any effects of age among the adult participants in

our study. Yet, since the majority of the adults in this study were 20–30 years old, this is in line

with results of other studies on adults that have reported a drop in performance in eyeblink

conditioning only above 60 years of age [41–43]. This declining performance in older adults

has been attributed to age related degeneration of the cerebellum [47,48].

In addition to the age effects, our study shows that females produced more CRs than males

both among the children and adults. Sex differences are present in a variety of sensory and

motor tasks [49–52]. Animal studies show that adult females outperform age-matched males

on a number of different learning tasks including classical conditioning [53]. Sexual dimor-

phism of brain development, triggered by sex hormones may potentially contribute to these

Table 4. Average CR onset and peak latency mean and variability/mean SD (SD) in ms after CS onset in paired and CS alone trials.

Onset paired trials (blocks 2–5) Onset CS alone trials Peak CS alone trials

Latency Mean SD Latency Mean SD Latency Mean SD

Children 331 (69) 89 (35) 333 (70) 78 (34) 545 (128) 129 (69)

Females 340 (51) 89 (25) 327 (60) 79 (36) 500 (93) 125 (74)

Males 321 (84) 88 (45) 339 (82) 76 (33) 602 (146) 134 (64)

Adults 315 (45) 75 (25) 311 (59) 86 (33) 523 (100) 117 (73)

Females 300 (34) 78 (27) 301 (55) 82 (31) 512 (109) 134 (77)

Males 348 (51) 69 (20) 342 (66) 97 (38) 558 (61) 69 (22)

https://doi.org/10.1371/journal.pone.0177849.t004

Fig 6. The older the children, the larger the delay and the smaller the variability of their CR onsets. (A) Scatterplot illustrating the mean

onset latency in blocks 2–5 as a function of age. (B) Scatterplot illustrating the mean SD of the onset latency in blocks 2–5 as a function of age.

https://doi.org/10.1371/journal.pone.0177849.g006
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differences [54–56], although other factors, including genetic, social, and environmental fac-

tors, could also influence learning and consequently contribute to our results [53,55,57]. In

humans, cerebellar white and gray matter develop at different rates in girls and boys during

childhood up to pre-puberty [58]. Developmental processes, whichever their causes, could

potentially explain the fact that the older (9 years or older) girls in our sample performed simi-

lar to the women and the older boys performed similar to the men, whereas the younger

(below 9 years old) girls and boys produced fewer CRs. However, even though the females

showed greater CR production, the increase during the session compared to the first block was

not significantly greater among any of the sexes. Above this, the adult men had better timed

CRs than the women during later parts of the acquisition. Post training, the boys showed later

CR peaks than the girls, and the men showed less CR peak variability than the women. Sensi-

tivity to the UR might be one factor that has an effect on the acquisition, and that perhaps dif-

fers between the sexes.

Limitations

It is legitimate to ask if the participants were properly conditioned. After training the children

produced CRs on ~30% of the trials and the adults reached ~50% CRs. While this is low, these

levels are above chance and they are similar to those reported in other studies on humans

[40,41,59–61]. A longer training period would probably have resulted in more CRs. However,

to sit still for long sessions of eyeblink conditioning is generally hard, especially for young chil-

dren. Another option would be to split the training into several shorter sessions, which has

been observed to result in more CRs, for adults and for infants [44]. On the other hand, in this

and other studies, much of the learning occurs in the first block [62]. Extra training might

have caused the age and sex effects to level out. Indeed, male rats, despite their initial disadvan-

tage, perform on par with females after a few days of training [53]. Some caution about the sex

effects among the adults is also warranted since we only tested eight adult men.

The learning curves and percentage of CRs reached by different participants were highly

variable. While some individuals produced close to 100% CRs, others barely produced any

CRs at all. Similarly, some individuals showed incremental numbers of CRs, while others had

flat, or even negative learning curves. In other words, the relatively smooth learning curves, in

this and other studies, is often not representative of the individuals in different groups.

The background sound of the movie, although soft, may have affected individuals differ-

ently, and could easily have been omitted to better control the test situation. Though, perhaps

not without any impact on the concentration or motivation for some of the participants. A

Table 5. Average UR onset latency mean (SD) and UR peak latency mean (SD) in ms after CS onset in paired trials with CS-US ISI of 485 ms.

Children Adults

All Females Males All Females Males

Block 1 UR onset latency 542 (11) 542 (13) 543 (8) 527 (13) 528 (16) 526 (5)

UR peak latency 596 (25) 591 (27) 601 (22) 568 (23) 567 (27) 570 (12)

Block 2 UR onset latency 539 (10) 539 (10) 538 (9) 525 (8) 525 (10) 526 (5)

UR peak latency 592 (22) 589 (26) 596 (17) 563 (14) 561 (15) 567 (12)

Block 3 UR onset latency 540 (11) 541 (12) 539 (8) 528 (10) 529 (12) 526 (5)

UR peak latency 594 (21) 591 (26) 596 (15) 567 (16) 567 (18) 569 (13)

Block 4 UR onset latency 542 (10) 545 (9) 539 (10) 527 (8) 526 (10) 529 (2)

UR peak latency 595 (17) 595 (19) 594 (15) 567 (14) 563 (12) 577 (12)

Block 5 UR onset latency 540 (10) 541 (12) 538 (6) 526 (10) 527 (12) 523 (4)

UR peak latency 597 (19) 595 (21) 599 (16) 565 (14) 563 (17) 569 (6)

https://doi.org/10.1371/journal.pone.0177849.t005
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disadvantage in this study is that not all children were trained with identical protocols. How-

ever, despite protocol variations we did not find any statistical differences in percentage of CRs

in either paired or CS alone trials between children trained with different protocols. We there-

fore considered grouping of the children justified although we cannot rule out potential impact

on the results.

Conclusions

Our results demonstrate that performance in eyeblink conditioning improves during develop-

ment in childhood. This suggests that it may be possible to use performance in eyeblink condi-

tioning as a measure of cerebellar maturity, or at least brain maturity. Moreover, our results

indicate that sex is an important variable when it comes to eyeblink conditioning in humans.

If our goal is to use eyeblink conditioning to explore cerebellar dysfunction in at-risk groups

such as ADHD, ASD, FAS and SLI, disorders that are often more prevalent in males [63–65],

it is important to consider the age and sex effects demonstrated here. Above that, we must be

careful not to misinterpret immaturity as a disorder.
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14. Paquier PF, Mariën P. A synthesis of the role of the cerebellum in cognition. Aphasiology. 2005; 19

(1):3–19.

15. Stoodley CJC. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum.

2012; 11:352–65. https://doi.org/10.1007/s12311-011-0260-7 PMID: 21373864

16. Stoodley CJ, Stein JF. Cerebellar function in developmental dyslexia. Cerebellum. 2013; 12:267–76.

https://doi.org/10.1007/s12311-012-0407-1 PMID: 22851215

17. Hodge SM, Makris N, Kennedy DN, Caviness VS, Howard J, McGrath L, et al. Cerebellum, Language,

and Cognition in Autism and Specific Language Impairment. J Autism Dev Disord. 2010; 40:300–16.

https://doi.org/10.1007/s10803-009-0872-7 PMID: 19924522

18. Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Dev

Disabil Res Rev. 2002; 9:184–95.

19. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, De Zeeuw CI, et al. Shared synaptic Patho-

physiology in syndromic and nonsyndromic rodent models of autism. Science. 2012; 338:128–32.

https://doi.org/10.1126/science.1224159 PMID: 22983708

20. Fatemi SH. Cerebellum and autism. Cerebellum. 2013; 12:778–79. https://doi.org/10.1007/s12311-

013-0484-9 PMID: 23605188

21. Sears LL, Finn PR, Steinmetz JE. Abnormal Classical Eye-Blink Conditioning in Autism. J Autism Dev

Disord. 1994; 24:737–51. PMID: 7844097

22. Wang SSH, Kloth AD, Badura A. The Cerebellum, Sensitive Periods, and Autism. Neuron. 2014;

83:518–32. https://doi.org/10.1016/j.neuron.2014.07.016 PMID: 25102558

23. Haar S, Berman S, Behrmann M, Dinstein I. Anatomical Abnormalities in Autism? Cereb Cortex (New

York, NY: 1991). 2014.

Eyeblink conditioning, age and sex

PLOS ONE | https://doi.org/10.1371/journal.pone.0177849 May 18, 2017 13 / 15

http://www.ncbi.nlm.nih.gov/pubmed/6953427
http://www.ncbi.nlm.nih.gov/pubmed/10802300
http://www.ncbi.nlm.nih.gov/pubmed/21227228
http://www.ncbi.nlm.nih.gov/pubmed/8280385
http://www.ncbi.nlm.nih.gov/pubmed/6701513
http://www.ncbi.nlm.nih.gov/pubmed/6508904
https://doi.org/10.1016/j.cub.2014.08.056
http://www.ncbi.nlm.nih.gov/pubmed/25283776
https://doi.org/10.1159/000102927
http://www.ncbi.nlm.nih.gov/pubmed/17627124
http://www.ncbi.nlm.nih.gov/pubmed/21227232
https://doi.org/10.1044/1058-0360(2011/10-0096)
http://www.ncbi.nlm.nih.gov/pubmed/21821822
http://www.ncbi.nlm.nih.gov/pubmed/1638157
https://doi.org/10.1007/s12311-011-0260-7
http://www.ncbi.nlm.nih.gov/pubmed/21373864
https://doi.org/10.1007/s12311-012-0407-1
http://www.ncbi.nlm.nih.gov/pubmed/22851215
https://doi.org/10.1007/s10803-009-0872-7
http://www.ncbi.nlm.nih.gov/pubmed/19924522
https://doi.org/10.1126/science.1224159
http://www.ncbi.nlm.nih.gov/pubmed/22983708
https://doi.org/10.1007/s12311-013-0484-9
https://doi.org/10.1007/s12311-013-0484-9
http://www.ncbi.nlm.nih.gov/pubmed/23605188
http://www.ncbi.nlm.nih.gov/pubmed/7844097
https://doi.org/10.1016/j.neuron.2014.07.016
http://www.ncbi.nlm.nih.gov/pubmed/25102558
https://doi.org/10.1371/journal.pone.0177849


24. Coffin JM, Baroody S, Schneider K, O’Neill J. Impaired cerebellar learning in children with prenatal alco-

hol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex.

2005; 41:389–98. PMID: 15871603

25. Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, et al. Timing of conditioned

eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res.

2010; 201:167–76. https://doi.org/10.1007/s00221-009-2020-1 PMID: 19777220

26. Oristaglio J, West SH, Ghaffari M, Lech MS, Verma BR, Harvey JA, et al. Children with autism spectrum

disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning. J

Neuroscience. 2013; 248:708–18.

27. Radell M, Mercado E. Modeling possible effects of atypical cerebellar processing on eyeblink condition-

ing in autism. Cogn Affect & Behav Neurosci. 2014; 14:1142–64.

28. Sears LL, Finn PR, Steinmetz JE. Abnormal Classical Eye-Blink Conditioning in Autism. J Autism Dev

Disord. 1994; 24(6):737–51. PMID: 7844097

29. Nicolson RI, Daum I, Schugens MM, Fawcett AJ, Schulz A. Eyeblink conditioning indicates cerebellar

abnormality in dyslexia. Exp Brain Res. 2002; 143:42–50. https://doi.org/10.1007/s00221-001-0969-5

PMID: 11907689

30. Hardiman MJ, Hsu HJ, Bishop DVM. Children with specific language impairment are not impaired in the

acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response. Brain

Lang. 2013; 127:428–39. https://doi.org/10.1016/j.bandl.2013.08.001 PMID: 24139661

31. Steinmetz AB, Rice ML. Cerebellar-dependent delay eyeblink conditioning in adolescents with Specific

Language Impairment. J Neurodevelop Disord. 2010; 2:243–51.

32. Jacobson SW, Stanton ME, Dodge NC, Pienaar M, Fuller DS, Molteno CD, et al. Impaired delay and

trace eyeblink conditioning in school-age children with fetal alcohol syndrome. Alcohol Clin Exp Res.

2011; 35(2):250–64. https://doi.org/10.1111/j.1530-0277.2010.01341.x PMID: 21073484

33. Jacobson SW, Stanton ME, Molteno CD, Burden MJ, Fuller DS, Hoyme HE. Impaired eyeblink condi-

tioning in children with fetal alcohol syndrome. Alcohol Clin Exp Res. 2008; 32(2):365–72. https://doi.

org/10.1111/j.1530-0277.2007.00585.x PMID: 18162064

34. Koekkoek SKE, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJH, Maex R, et al. Deletion of

FMR1 in Purkinje Cells Enhances Parallel Fiber LTD, Enlarges Spines, and Attenuates Cerebellar Eye-

lid Conditioning in Fragile X Syndrome. Neuron. 2005; 47:339–352. https://doi.org/10.1016/j.neuron.

2005.07.005 PMID: 16055059

35. Reeb-Sutherland B, Fox N. Eyeblink Conditioning: A Non-invasive Biomarker for Neurodevelopmental

Disorders. J Autism Dev Disord. 2015; 45(2):376–94. https://doi.org/10.1007/s10803-013-1905-9

PMID: 23942847

36. Green JT, Johnson TB, Goodlett CR, Steinmetz JE. Eyeblink classical conditioning and interpositus

nucleus activity are disrupted in adult rats exposed to ethanol as neonates. Learn Mem. 2002; 9

(5):304–20. https://doi.org/10.1101/lm.47602 PMID: 12359839

37. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic

resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol.

1994; 51(9):874–87. PMID: 8080387

38. Gerber AJ, Peterson BS, Giedd JN, Lalonde FM, Celano MJ, White SL, et al. Anatomical Brain Mag-

netic Resonance Imaging of Typically Developing Children and Adolescents. J Am Acad Child Adolesc

Psychiatry. 2009; 48(5):465–70. https://doi.org/10.1097/CHI.0b013e31819f2715 PMID: 19395901

39. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010; 20:327–48. https://

doi.org/10.1007/s11065-010-9148-4 PMID: 21042938

40. Cheng DT, Meintjes EM, Stanton ME, Desmond JE, Pienaar M, Dodge NC, et al. Functional MRI of cer-

ebellar activity during eyeblink classical conditioning in children and adults. Hum Brain Mapp. 2014;

35:1390–1403. https://doi.org/10.1002/hbm.22261 PMID: 23674498

41. Finkbiner RG, Woodruff-Pak DS. Classical eyeblink conditioning in adulthood: effects of age and inter-

stimulus interval on acquisition in the trace paradigm. Psychol Aging. 1991; 6:109–17. PMID: 2029359

42. Solomon PR, Pomerleau D, Bennett L, James J, Morse DL. Acquisition of the classically conditioned

eyeblink response in humans over the life span. Psychol Aging. 1989; 4:34–41. PMID: 2803610

43. Woodruff-Pak DS, Thompson RF. Classical conditioning of the eyeblink response in the delay paradigm

in adults aged 18–83 years. Psychol Aging. 1988; 3:219–29. PMID: 3268262

44. Herbert JS, Eckerman CO, Stanton ME. The ontogeny of human learning in delay, long-delay, and

trace eyeblink conditioning. Behav Neurosci. 2003; 117(6):1196–1210. https://doi.org/10.1037/0735-

7044.117.6.1196 PMID: 14674840

45. Raven J. Manual for Coloured Progressive Matrices and Crichton Vocabulary Scale. UK: NCS Pear-

son Inc; 2008.

Eyeblink conditioning, age and sex

PLOS ONE | https://doi.org/10.1371/journal.pone.0177849 May 18, 2017 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/15871603
https://doi.org/10.1007/s00221-009-2020-1
http://www.ncbi.nlm.nih.gov/pubmed/19777220
http://www.ncbi.nlm.nih.gov/pubmed/7844097
https://doi.org/10.1007/s00221-001-0969-5
http://www.ncbi.nlm.nih.gov/pubmed/11907689
https://doi.org/10.1016/j.bandl.2013.08.001
http://www.ncbi.nlm.nih.gov/pubmed/24139661
https://doi.org/10.1111/j.1530-0277.2010.01341.x
http://www.ncbi.nlm.nih.gov/pubmed/21073484
https://doi.org/10.1111/j.1530-0277.2007.00585.x
https://doi.org/10.1111/j.1530-0277.2007.00585.x
http://www.ncbi.nlm.nih.gov/pubmed/18162064
https://doi.org/10.1016/j.neuron.2005.07.005
https://doi.org/10.1016/j.neuron.2005.07.005
http://www.ncbi.nlm.nih.gov/pubmed/16055059
https://doi.org/10.1007/s10803-013-1905-9
http://www.ncbi.nlm.nih.gov/pubmed/23942847
https://doi.org/10.1101/lm.47602
http://www.ncbi.nlm.nih.gov/pubmed/12359839
http://www.ncbi.nlm.nih.gov/pubmed/8080387
https://doi.org/10.1097/CHI.0b013e31819f2715
http://www.ncbi.nlm.nih.gov/pubmed/19395901
https://doi.org/10.1007/s11065-010-9148-4
https://doi.org/10.1007/s11065-010-9148-4
http://www.ncbi.nlm.nih.gov/pubmed/21042938
https://doi.org/10.1002/hbm.22261
http://www.ncbi.nlm.nih.gov/pubmed/23674498
http://www.ncbi.nlm.nih.gov/pubmed/2029359
http://www.ncbi.nlm.nih.gov/pubmed/2803610
http://www.ncbi.nlm.nih.gov/pubmed/3268262
https://doi.org/10.1037/0735-7044.117.6.1196
https://doi.org/10.1037/0735-7044.117.6.1196
http://www.ncbi.nlm.nih.gov/pubmed/14674840
https://doi.org/10.1371/journal.pone.0177849


46. Koekkoek SKE, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI, et al. Monitoring Kinetic and Fre-

quency-Domain Properties of Eyelid Responses in Mice Withe Magnetic Distance Measurement Tech-

nique. J Neurophysiol. 2002; 88:2124–2133. PMID: 12364534

47. Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, et al. Research Report: Correlation of

cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical

degeneration. Brain Res. 2008; 1198:73–84. https://doi.org/10.1016/j.brainres.2008.01.034 PMID:

18262502

48. Woodruff-Pak DS. Aging and classical conditioning: parallel studies in rabbits and humans. Neurobiol

Aging. 1988; 9:511–22. PMID: 3062462

49. Flatters I, Hill LJB, Williams JHG, Barber SE, Mon-Williams M. Manual control age and sex differences

in 4 to 11 year old children. PLoS One. 2014; 9:1–12.

50. Nanova P, Lyamova L, Hadjigeorgieva M, Kolev V, Yordanova J. Gender-specific development of audi-

tory information processing in children: An ERP study. Clin Neurophysiol. 2008; 119:1992–2003.

https://doi.org/10.1016/j.clinph.2008.05.002 PMID: 18579438

51. Ruff RM, Parker SD. Gender- and age-specific changes in motor speed and eye-hand coordination in

adults: normative values for the finger tapping and grooved pegboard tests. Percept Mot Skills. 1993;

76:1219–30. https://doi.org/10.2466/pms.1993.76.3c.1219 PMID: 8337069

52. Sugiyama T, Kashiwagura E, Ohsaga A, Yuze H, Tada H. Life-long development and gender difference

in endogenous eyeblinks from three-month infants to 93 year-old aged. Int J Psychophysiol. 2008;

69:232.

53. Dalla C, Shors TJ. Sex differences in learning processes of classical and operant conditioning. Physiol

Behav. 2009; 97:229–38. https://doi.org/10.1016/j.physbeh.2009.02.035 PMID: 19272397

54. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. Sexual dimorphism of

brain developmental trajectories during childhood and adolescence. Neuroimage. 2007; 36:1065–73.

https://doi.org/10.1016/j.neuroimage.2007.03.053 PMID: 17513132

55. Hodges GE, Shors TJ. Distinctive stress effects on learning during puberty. Horm Behav. 2005;

48:163–71. https://doi.org/10.1016/j.yhbeh.2005.02.008 PMID: 15885691

56. Ivkovich D, Paczkowski CM, Stanton ME. Ontogeny of delay versus trace eyeblink conditioning in the

rat. Dev Psychobiol. 2000; 36:148–60. PMID: 10689285

57. Davies W, Wilkinson LS. It is not all hormones: Alternative explanations for sexual differentiation of the

brain. Brain Res. 2006; 1126:36–45. https://doi.org/10.1016/j.brainres.2006.09.105 PMID: 17101121

58. Wu KH, Chen CY, Shen EY. The cerebellar development in Chinese children–a study voxel-based vol-

ume measurement of reconstructed 3D MRI scan. Pediatr Res. 2010; 69:80–3.

59. Thürling M, Kahl F, Maderwald S, Stefanescu RM, Schlamann M, Boele HJ,et al. Cerebellar Cortex and

Cerebellar Nuclei Are Concomitantly Activated during Eyeblink Conditioning: A 7T fMRI Study in

Humans. J Neurosci. 2015; 35:1228–39. https://doi.org/10.1523/JNEUROSCI.2492-14.2015 PMID:

25609637

60. Timmann D, Gerwig M, Frings M, Maschke M, Kolb FP. Eyeblink conditioning in patients with hereditary

ataxia: a one-year follow-up study. Exp Brain Res. 2005; 162:332–345. https://doi.org/10.1007/s00221-

004-2181-x PMID: 15586270

61. Wolf OT, Minnebusch D, Daum I. Stress impairs acquisition of delay eyeblink conditioning in men and

women. Neurobiol Learn Mem. 2009; 91:431–6. https://doi.org/10.1016/j.nlm.2008.11.002 PMID:

19049887

62. Parker KL, Andreasen NC, Liu D, Freeman JH, Boles Ponto LL, O’Leary DS. Eyeblink Conditioning in

Healthy Adults: A Positron Emission Tomography Study. Cerebellum. 2012; 11(4):946–56. https://doi.

org/10.1007/s12311-012-0377-3 PMID: 22430943

63. Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD. Sex and age differences in attention-deficit/hyper-

activity disorder symptoms and diagnoses: implications for DSM-V and ICD-11. J Am Acad Child Ado-

lesc Psychiatry. 2010; 49:217–28.e1–3. PMID: 20410711

64. Ross L, Del Bene VA, Molholm S, Frey HP, Foxe JJ. Sex differences in multisensory speech processing

in both typically developing children and those on the autism spectrum. Front Neurosci. 2015; 9(185):1–

13.

65. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2013;

26:146–53. https://doi.org/10.1097/WCO.0b013e32835ee548 PMID: 23406909

Eyeblink conditioning, age and sex

PLOS ONE | https://doi.org/10.1371/journal.pone.0177849 May 18, 2017 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/12364534
https://doi.org/10.1016/j.brainres.2008.01.034
http://www.ncbi.nlm.nih.gov/pubmed/18262502
http://www.ncbi.nlm.nih.gov/pubmed/3062462
https://doi.org/10.1016/j.clinph.2008.05.002
http://www.ncbi.nlm.nih.gov/pubmed/18579438
https://doi.org/10.2466/pms.1993.76.3c.1219
http://www.ncbi.nlm.nih.gov/pubmed/8337069
https://doi.org/10.1016/j.physbeh.2009.02.035
http://www.ncbi.nlm.nih.gov/pubmed/19272397
https://doi.org/10.1016/j.neuroimage.2007.03.053
http://www.ncbi.nlm.nih.gov/pubmed/17513132
https://doi.org/10.1016/j.yhbeh.2005.02.008
http://www.ncbi.nlm.nih.gov/pubmed/15885691
http://www.ncbi.nlm.nih.gov/pubmed/10689285
https://doi.org/10.1016/j.brainres.2006.09.105
http://www.ncbi.nlm.nih.gov/pubmed/17101121
https://doi.org/10.1523/JNEUROSCI.2492-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25609637
https://doi.org/10.1007/s00221-004-2181-x
https://doi.org/10.1007/s00221-004-2181-x
http://www.ncbi.nlm.nih.gov/pubmed/15586270
https://doi.org/10.1016/j.nlm.2008.11.002
http://www.ncbi.nlm.nih.gov/pubmed/19049887
https://doi.org/10.1007/s12311-012-0377-3
https://doi.org/10.1007/s12311-012-0377-3
http://www.ncbi.nlm.nih.gov/pubmed/22430943
http://www.ncbi.nlm.nih.gov/pubmed/20410711
https://doi.org/10.1097/WCO.0b013e32835ee548
http://www.ncbi.nlm.nih.gov/pubmed/23406909
https://doi.org/10.1371/journal.pone.0177849

