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a b s t r a c t

The first attempt to control and mitigate an epidemic outbreak caused by a previously
unknown virus occurs primarily via non-pharmaceutical interventions (NPIs). In case of
the SARS-CoV-2 virus, which since the early days of 2020 caused the COVID-19 pandemic,
NPIs aimed at reducing transmission-enabling contacts between individuals. The effec-
tiveness of contact reduction measures directly correlates with the number of individuals
adhering to such measures. Here, we illustrate by means of a very simple compartmental
model how partial noncompliance with NPIs can prevent these from stopping the spread
of an epidemic.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Faced with an epidemic outbreak caused by a previously unknown virus, effective medication or vaccines are usually not
available. Mitigation therefore tends to primarily rely on non-pharmaceutical interventions (NPIs). This was no different in
case of the SARS-CoV-2 virus, which has caused the COVID-19 pandemic. Most countries applied NPIs aimed at reducing
contacts between infectious and susceptible individuals. Such measures range from social distancing or school closure to
most severe lockdown periods. Reducing most contacts between individuals, NPIs necessarily reduce epidemiologically
relevant contacts, or effective contacts, viz., those between infectious and susceptible individuals during which the virus is
successfully transmitted. The effectiveness of contact reduction measures directly correlates with the number of individuals
actually adhering to the measures(Acu~na-Zegarra et al., 2020). Is it better to have stricter measures followed by a small
fraction of the population or almost universally adopted moderate measures? There is an obvious trade-off. Stricter measures
are more effective in reducing contacts between compliant individuals but are also less likely to be realistically applicable to
many people. Here, we illustrate by means of a very simple mathematical model how partial noncompliance with NPIs can
prevent them from stopping the spread of an epidemic. Though theworking example is the COVID-19 epidemic, specifically in
Germany in late summer/early fall of 2020, the model is generally valid and flexible to be applied to other infectious diseases.
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2. Methods

The core of the model used in this note extends the known S-E-I-R (susceptibleseexposedeinfectederecovered) model for
disease dynamics (Brauer et al., 2019). The ordinary differential equations (ODEs) approach that we use assumes that the
population is homogeneous andwell-mixedwithin a region. Individuals are classified according to their status with respect to
the virus spread in the community. Susceptible individuals (S) can be infected. The time between exposure to the virus
(becoming infected) and symptom onset, commonly known as “exposed phase” or incubation period is divided in three stages
(Ej, j¼ 1, 2, 3), the last being presymptomatic and contagious. Besides allowing for the presymptomatic infectious period to be
fixed as the last stage of the incubation period, splitting the exposed phase into three consecutive stages results in its duration
being gamma distributed which is more realistic than the exponential distribution corresponding to a single compartment.

Infections might be reported (I) or remain undetected (U). The compartment I also accounts for severe infections, which
might lead to death, the assumption being that all severe cases will be detected. Deceased (D) and recovered (R) individuals
are removed from the chain of transmission, assuming long lasting immunity upon recovery. Susceptible individuals can be
infected via contacts with presymptomatic (transmission rate bE), undetected (transmission rate bU), or detected (bI) infec-
tious individuals. We assume that presymptomatic and undetected infectious persons, lacking knowledge about being in-
fectious, do not restrict their contacts to others, and therefore have higher transmission rates than detected infected
individuals (bE, bU > bI) who are expected to quarantine or isolate themselves at least to some degree. Further we include
behavioral heterogeneity in the population. We assume that while everyone adheres to moderate restrictions being in place
throughout the period under consideration, a certain fraction of the population might not comply with stricter measures as
these are applied. Hence, we split the population into two groups, called compliant (subscript c) and noncompliant (subscript
n), respectively. As a simplifying assumptionwe take the compliant group to perfectly adhere to prescribed contact reductions
while the noncompliant group maintains its original contact level, regardless of imposed measures, be it because they do not
accept such measures or because they are not able to implement them.

An overview of the model variables is given in Table 1. The dynamics of the model shown in Fig. 1 is given by the following
system of differential equations:

_Sm ¼ �lmðtÞSm
_E1;m ¼ lmðtÞSm � gEE1;m
_Ei;m ¼ gEEi�1;m � gEEi;m ; i2f2;3g
_Um ¼ ð1� tmÞgEE3;m � ðgU þ hmÞUm
_Im ¼ tmgEE3;m þ hmUm � gI Im
_Rm ¼ ð1� dÞgI Im þ gUUm
_Dm ¼ dgI Im;

(1)
for m, k 2{c, n}, and with

lm ¼
X
k¼c;n

�
bkm;EE3;k þ bkm;UUk þ bkm;I Ik

�
(2)
The force of infection, lm, is determined by the specific transmission rates

bkm;X ¼ b0mXaksm (3)

between the infectious compartment X 2{E3,k, Ik, Ukrk 2{n, c}}, and the susceptible class Sm, m 2{c, n}. Here b0 denotes a
basic transmissibility rate specific to the virus, ak is the specific infectiousness of population k (determined by their social
behavior, in particular compliance with restriction rules), sm the specific susceptibility of the susceptibles Sm (determined by
their behavior), and mX is the specific weight of infectiousness for stage X of the infection. Disease progression through the
different infectious stages is given by the rates gX, that is, 1/gX is the average duration of the stage X. The incubation time 3/gE
is split equally among the three compartments Ej. Detection may occur with probability tm by the end of the incubation
Table 1
Model variables.

Notation Description

Sc/n compliant/noncompliant susceptible individuals
Ei,c/n compliant/noncompliant exposed individuals in stage i ¼ 1, 2 (not yet contagious)
E3,c/n compliant/noncompliant exposed individuals in stage 3 (already contagious)
Uc/n compliant/noncompliant undetected infectious individuals
R recovered individuals
D deceased individuals
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Fig. 1. Model structure for the transmission dynamics of an infectious disease with contact restrictions and partial compliance. Black arrows indicate
transition from one compartment to another, red/blue arrows indicate new infections by virus transmission due to contact with infectious individuals. Upon
infection, susceptible (S) individuals enter the exposed phase (E), divided into three consecutively passed stages, E1, E2, E3, but represented here as a single stage
for better clarity. After symptom onset, infections may be detected (I) or remain undetected (U). Severe cases potentially leading to death are assumed to be
always detected. Infected individuals who recovered (R) or died (D) upon infections, are removed from the chain of transmission. All individuals who are relevant
to the disease transmission dynamics are classified as compliant (Sc, Ec, Uc, Ic) or noncompliant (Sn, En, Un, In), depending on their behavior response to imposed
contact restrictions.
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period. Later detection, when individuals are already in compartment Um, may depend on the compliant/noncompliant
status, m, of the infectious person and occurs with rate hm. Detected individuals might die with probability d.

For the simulations shown below we set the total population N to approximately 83 million, roughly Germany's popu-
lation. A list of values for the other model parameters can be found in Appendix D.

2.1. The basic reproduction number R0 for the pre-intervention phase

As in the pre-intervention phase both the compliant and the noncompliant group are assumed to behave the same, for
easiness of notationwe omit the compliant/noncompliant index in the following computation. To employ the next generation
matrix (NGM) approach for calculation of the basic reproduction number R0 (Diekmann et al., 1990), we split the com-
partments into infected (x ¼ ðE1; E2; E3;U; IÞT ) and non-infected (y ¼ (S,R,D)T) and write system (1) as

x
0 ¼ Fðx; yÞ � Vðx; yÞ
y

0 ¼ gðx; yÞ
where F captures the inflow of new individuals into x from the non-infected compartments,
Fðx; yÞ ¼ ðlS;0;0;0;0ÞT ;
while V collects the progression within the infected compartments as well as the outflow (recovery, deaths). Linearizing the� �

equation for x about the disease free equilibrium (DFE) x ¼ 0, y ¼ ðN;0;0Þ, we obtain

x0zFx� Vx

where
V ¼

0
BBBB@

gE 0 0 0 0
�gE gE 0 0 0
0 �gE gE 0 0
0 0 �ð1� tÞgE gU þ h 0
0 0 �tgE �h gI

1
CCCCA ; and F ¼

0
BBBB@

0 0 bE bU bI
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA;

are the Jacobians of F and V, respectively, evaluated at the DFE. For the DFE to be locally asymptotically stable, all eigenvalues
�1
of F � Vmust lie in the left half plane, or equivalently, the dominant eigenvalue of FV must be smaller than 1. The dominant

eigenvalue being the first entry of FV�1, corresponds indeed to the basic reproduction number R0 (Diekmann et al., 1990).
Short computation leads to

R0 ¼ RI þRU þRE;

with
RI ¼
bIððhþ gUÞtþ hð1� tÞÞ

ðhþ gUÞgI
¼ bIðhþ tgUÞ

ðhþ gUÞgI
; RU ¼ bUð1� tÞ

hþ gU
; RE ¼ bE

gE
: (4)
Let us now go back to the distinction into compliant and noncompliant groups. We shall assume that strict control
measures are introduced in a very early phase of the outbreak (whenwe are very close to the DFE) and denote by r the fraction
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of individuals that comply with the measures. That is we introduce one infectious individual in an entirely susceptible
population split into compliant, Sc(0)¼ rN, and noncompliant, Sn(0)¼ (1� r)N, group. Compliance corresponds to a reduction
of effective contacts to a fraction r 2 [0, 1] of the original value. With these notations the initial controlled reproduction
number would be

Rc ¼ ð1�ð1� rÞrÞR0: (5)
The straightforward but somewhat lengthy derivation is given in the appendix. In Fig. 6b we show the ratio between Rc

and R0 in dependence of r and r. The trivial limit cases are (i) r ¼ 0 and r ¼ 1, that is full compliance and reduction to zero
contacts, yielding Rc ¼ 0, and (ii) r ¼ 1, that is no intervention, or r ¼ 0, no compliance, yielding Rc ¼ R0.

3. Results

The simulations that we show below are not calibrated on any specific time series but parametrized in a way to
approximately reproduce the COVID-19 dynamics in different phases of the pandemic. We start the simulations with initial
low incidence undermoderate control measures, such that the resulting reproduction number is slightly larger than one. For a
certain initial period, both the compliant and the noncompliant group behave the same, that is, the two subpopulations have
the same transmission rates (bkm,J ¼ blp,J, for all k, l, m, p 2{c, n}, J 2{E, U, I}). After this initial phase we assume that
transmission rates, hence the reproduction number, slightly increase over time. In the context of COVID-19, this setting might
mimic the transition from the controlled situation in the summer 2020 to the fall 2020 in Germany and other European
countries. We suppose that stricter intervention measures aiming at the reduction of transmission are introduced when a
daily incidence of z 20, 000 cases is reached. As an effect of these control measures, contacts in the population should
significantly decrease and, if the whole population was behaving in compliance with the prescribed measures, contact rates
would be reduced to a certain fraction r < 1 of their value before intervention. Upon the introduction of stricter control
measures the compliant and noncompliant groups start behaving differently: noncompliants maintain their behavior (ac-
tivity and susceptibility). In other words, if the whole populationwas noncompliant, the reproduction number would remain
the same as before intervention. By a slight abuse of notation we shall denote by R0 the reproduction number before the
modeled intervention. Here we set R0z1:5, approximately the value estimated for COVID-19 in late summer/early fall 2020
in Germany (Robert Koch Institute Coronavirus Disease 2019 (COVID-19), 2019). This value being already affected by some
control measures, it is indeed significantly smaller than the uncontrolled reproduction number of SARS-CoV-2, mostly
estimated above 2 (Kucharski et al., 2020; Zhao et al., 2020).

3.1. Scenarios for different contact reduction and compliance levels

In the following we show different scenarios for the dynamics of the outbreak under the variation of two major unknown
factors:

1. Reduction of contacts. We assume that in accordance with control measures contacts would be reduced by a factor 75%,
50%, or 20% of the level previous interventions. This would lead, in case of perfect compliance, to a reduction to 25%, 50%, or
80% of the reproduction number R0 before interventions, corresponding to r ¼ 0.25, 0.5, or 0.8, respectively.
Fig. 2. Scenario 1: Rc ¼ 0:25R0. The upper left panel in (a) shows the incidence before the intervention. For different compliant fractions (r) of the total
population we show (a) the evolution in time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the currently known
active cases (Ic þ In, continuous curves) and susceptible individuals (Sc þ Sn, dashed curves). The vertical dashed line shows the time of intervention. The effect of
contact reduction is not immediately evident since new infections are not detected until several days later. Notice that the daily new cases in (a) are shown as 7-
day moving average, meaning that weekly oscillations due to lower reporting rates on weekends are smoothed over and do not show in the plots.
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Fig. 3. Scenario 2: Rc ¼ 0:5R0. The upper left panel in (a) shows the incidence before the intervention. For different compliant fractions (r) of the total
population we show (a) the evolution in time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the currently known
active cases (Ic þ In, continuous curves) and susceptible individuals (Sc þ Sn, dashed curves). The vertical dashed line shows the time of intervention. The effect of
contact reduction is not immediately evident since new infections are not detected until several days later.
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2. Compliant fraction of the population. We vary the fraction r 2 [0, 1] of the population complying with restriction
measures. We assume that the differentiation into compliant/noncompliant individuals occurs only once, namely at the
time of intervention, and that individuals do not switch to the opposite behavior (noncompliant/compliant) for the entire
course of the simulations.

It is yet unclear howmany secondary cases of COVID-19 result from presymptomatic transmission, with estimates ranging
from 6.4% (Wei et al., 2020) to 46% (Ferretti et al., 2020; He et al., 2020), or even above 50% (Ganyani et al., 2020). It is however
widely accepted that almost half the infections are transmitted from pre- or asymptomatic infectious individuals (Buitrago-
Garcia et al., 2020; Johansson et al., 2021). If we further assume that detected cases are well isolated and significantly reduce
their contacts, these individuals will contribute only marginally to disease transmission. We therefore fix the relative
infectiousness parameters (mX, X 2{E, U, I}) in the definition of bkm,X such that

RU⪆RE[RI ;

that is, individuals in U contribute slightly more to R0 than those in E3, and the contribution of individuals in I is dwarfed by
both of them. Given the other parameters listed in Appendix D, we achieve (i) RI barely contributing by choosing mI ¼ 0.1mU
and (ii) RE accounting for a little less than 40% of R0 by fixing mE ¼ 1.5mU.

For the following scenarios we furthermore consider two possible assumptions for the time of detection. We show as next
the late detection setting, with t ¼ 0.1 (corresponding to 10% of cases detected by symptom onset) and h ¼ 0.6gU (z38% of U
detected) at low prevalence. This leads to approximately 45% detection as long as the prevalence is sufficiently small. We
Fig. 4. Scenario 3: Rc ¼ 0:8R0. The upper left panel in (a) shows the incidence before the intervention. For different compliant fractions (r) of the total
population we show (a) the evolution in time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the currently known
active cases (Ic þ In, continuous curves) and susceptible individuals (Sc þ Sn, dashed curves). The vertical dashed line shows the time of intervention. The limited
effect of contact reduction is not stopping the increase in daily new cases and there is no qualitative difference between full compliance (r ¼ 1) and full
noncompliance (r ¼ 0).
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Fig. 5. Scenario 2′: Rc ¼ 0:5R0. If infections are detected in an early stage, the case incidence follows closely the true incidence of new infections. The upper left
panel in (a) shows the incidence before the intervention. For different compliant fractions (r) of the total population we show (a) the evolution in time of daily
cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the currently known active cases (Ic þ In, continuous curves) and susceptible
individuals (Sc þ Sn, dashed curves). The vertical dashed line shows the time of intervention. Notice (panel (a)) the drop in incident cases at 70% compliance,
followed by a slow increase. The reasons for this rebound will be discussed in Appendix C. Due to the shorter detection delay, the number of active detected cases
drops (in case of high compliance) faster than in the corresponding settings in Fig. 3a.

Fig. 6. (a) Required reduction of transmission among compliant individuals in order to achieve stagnation (blue) or a desired reduction within five weeks to 25%
(red) or 50% (black) of case incidence compared to the value at the time of intervention. (b) Ratio between the control reproduction number, Rc , and the pre-
intervention reproduction number, R0, according to (5). Notice that reaching Rc ¼ 1 from R0 ¼ 1:5 implies a ratio of 2/3 and that the corresponding level set
(dashed line) is indeed very similar to the curve of required reductions for achieving stagnating incidence in (a). This level set being shifted to the left reflects the
fact that the simulations do not operate at the DFE.
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further assume that the detection rate decreases in the face of large numbers of (undetected) cases due to finite testing
capacity, e.g.,

h ¼ h
� K

Uc þ Un þ aE3;c þ aE3;n þ K
(6)

for some constant K and a maximal detection rate h
�
. As long as the total number of undetected infectious individuals is small

as compared to K, the correction factor is close to one, hzh
�
, but as the prevalence approaches the order of K, an increasing
proportion of infections goes undetected. A similar discussion applies to t which is similarly composed of t
� ¼ 0:1 and a

similar correction factor as derived for h. We remark that this nonlinearity does not affect the calculation ofR0 orRc but may
well affect the reproduction number Rt far away from the disease free equilibrium. This makes intuitive sense: Since detected
infectious individuals are assumed to (self-) isolate and produce few secondary infections after being detected, any reduction
in detection rates will accelerate the spread of the epidemic while at the same time making reported case numbers appear
smaller. A motivation for the precise shape of the correction factor is given in the appendix. An early detection setting, with
t ¼ 0.3 (corresponding to 30% of cases detected by symptom onset), h

� ¼ 0:25gU (corresponding to 20% of U detected),
yielding a comparable total detection ratio, was also considered, but simulations are shown or discussed only when differ-
ences with the late detection setting are significant.
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3.1.1. Scenario 1: Rc ¼ 0:25R0 at full compliance
The first scenario considered is a prescribed contact reduction that would lead to a control reproduction numberRc being

at 25% ofR0. Assuming an initialR0z1:5, this would lead toRcz0:375. The results are shown in Fig. 2.We observe that at full
compliance (100% of the population, r ¼ 1), the incidence would indeed quickly decrease. For lower levels of compliance, the
decrease is expectedly slower. However, if only half the population adheres to the measures (50% compliance), this contact
reduction is only sufficient to stall the rising incidence. This happens because the effective reproduction number Rt, resulting
from transmission rates of compliant and noncompliant populations under the implemented control measures, approaches
values close to 1 about two weeks after intervention. Fig. 2a evidences that the 50% noncompliant individuals make up way
more than 50% of the cases. At even lower compliance, the measures may help to slow down the increase but are no longer
sufficient to stop it.

In Fig. 2b, the red curve (r ¼ 0) indicates the course of the epidemic with no compliance at all with the NPIs introduced in
week 13. This corresponds to a situationwithout any new interventionmeasures, and fiveweeks after the (non-)intervention,
already some 25% of the population would have been infected (cf. the dashed curve for the susceptible population). The
number of detected cases does not rise as quickly as the loss of susceptibles would suggest. This is due to the limited test
capacity, cf. (6), and the decreasing detection ratio as the prevalence becomes too large.

3.1.2. Scenario 2: Rc ¼ 0:5R0 at full compliance
The second scenario, shown in Fig. 3, assumes that at 100% compliance, the transmission rates and hence the control

reproduction number would be cut in half, leading to Rcz0:75 atR0 ¼ 1:5. Still, at perfect compliance, the incidence would
start falling several days after the intervention but now even 70% compliance would not be sufficient to prevent the case
numbers from rising.

3.1.3. Scenario 3: Rc ¼ 0:8R0 at full compliance
The implementation of moderate measures, reducing the transmission rate among compliant individuals by only 20%,

leads to a reproduction number of Rcz1:2 at perfect compliance. As shown in Fig. 4, this is not sufficient to stop the
increasing case numbers even if the whole population would adhere to the measures. The effect is due to the limited efficacy
of the control measures (reducing the reproduction number from 1.5 to at best 1.2), rather than to the level of compliance.

3.1.4. Scenario 20: Rc ¼ 0:5R0 at full compliance, with early detection
The assumptions on the reproduction numbers are the same as in Scenario 2, but here we consider the case of earlier

detection (t ¼ 0.3, h ¼ 0.25gU). Qualitatively, the results shown in Fig. 5 are the same as in Scenario 2 (cf. Fig. 3), that is, for
compliance levels below 50% the daily new cases keep increasing. Due to early case detection, however, the incidence of
detected cases follows more closely the time course of “actual” new daily infections (gE(E3,c þ E3,u)). A consequence of this
effect is that for 50% compliance, for which Rt is rather close to 1, after an initial drop the incidence increases again after a few
days. The initial brief drop reflects transiently falling new infections. In case of late detection (cf. Fig. 2a, compliance 50%) this
effect is smoothed out and not visible in the daily incidence time series.
3.2. Reduction levels necessary to either significantly reduce incidence or afford stagnation

So far, we have seen how the incidence of new detected cases progresses at different compliance levels if a given reduction
of effective contacts among compliant individuals is prescribed. Let us now take a different point of view. For a given
compliance level we ask how strong the reduction in transmission among compliant individuals needs to be in order to

(i) reduce the incidence to 25% or 50% of the value at intervention time within 5 weeks after intervention, or
(ii) reach permanent stagnation of incidence, meaning that after 3 weeks post intervention the incidence shall not increase
anymore beyond a small tolerance of 0.25% over the last 10 days of the simulated period.

To this end, we performed simulations for 201 compliance levels (0% through 100% in steps of 0.5 percentage points) and
screened for the reduction levels sufficient to achieve either of the goals (i) or (ii). Results are shown in Fig. 6. Since we start
with a reproduction number R0 (pre-intervention) of about 1.5, hence rising incidence, it is not surprising that for low
compliance even the complete elimination of contacts among compliant individuals (bcc z 0) is not sufficient to achieve
either one of the above goals. The population of susceptible noncompliant individuals is still sufficiently large and a significant
reduction in the daily incidence is not feasible. At compliance levels close to 40% a very strong reduction in transmission
among compliant individuals (bcc z 0) allows to stall the rising incidence. In order to achieve the desired 50% reduction in
daily cases, as stated in point (i), a compliance level of nearly 50% or more is necessary. Reducing the incidence to 25% within
the same time requires even higher compliance levels. Conversely, even at full compliance, the contact reductions need to be
sufficiently large in order to achieve stagnating or falling incidence. This is in agreement with what was already shown in
Fig. 4, where a reduction of effective contacts by 20%was not sufficient to keep the incidence from rising further. Here, we see
that reduction of effective contacts by a factor 0.4 to 0.6 of the pre-intervention level is required to either reach stagnation or
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significant reduction of daily incidence. Qualitatively, the same conclusions are also obvious from consulting the reproduction
numbers shown for comparison in Fig. 6b.

Simulated curves for the evolution of daily incidence in time corresponding to the limit cases (stagnation or reduction to a
fixed percentage of pre-intervention value just being achieved) in Fig. 6a are shown in the appendix, Fig. A1a.

4. Conclusion and discussion

In order to illustrate possible effects of less than perfect compliancewith non-pharmaceutical interventions (NPIs) on their
effectiveness in curbing the spread of infectious diseases, we modeled and simulated a situation mimicking the status of the
COVID-19 epidemic in Germany in the fall of 2020. The model captures both (i) reduced susceptibility of individuals adhering
to the proposed NPIs (an effect similar to protection which could be achieved via vaccination) and (ii) reduced transmission
from compliant individuals (acting similar to quarantine or treatment, cf. Chapter 9 in (Martcheva, 2015)). The simulations
show that in implementing NPIs to rapidly reduce daily cases, a concurrence of a sufficient level of compliance (r) in the
population and a significant reduction, r, of effective contacts among compliant individuals is required. For example, let the
pre-intervention reproduction number be about 1.5, and let both the effective infectiousness, ac, and the susceptibility, sc, of
half the population (compliance level r ¼ 0.5) be reduced by about 30% each. This leads to a 51% reduction of transmission
among compliant individuals, cf. (3), r ¼ 0.49, which is by far not enough to stop the rise in new cases, as can be seen in the
upper right panel in Fig. 3a. Only if the measures are sufficiently effective in reducing transmission and a large proportion of
the population implements such measures, a stagnation or even reduction of case numbers can be achieved in a reasonably
short time (in the above simulations: 5 weeks).

Moreover, if infections are detected and reported rather quickly (Scenario 20, Fig. 5), reduced transmission among
compliant individuals can lead to a brief reduction in newly reported cases before these start rising again (cf. Fig. 5 compliance
50% or 70%). If reported cases are used as a daily proxy for evaluating the effectiveness of control measures, such a short-time
decline could be misleading.

The system (1) for transmission dynamics used for the above simulations was developed as a simplification of our previous
models for COVID-19 in Germany (Barbarossa et al., 2020; Barbarossa & Fuhrmann, 2021). For the sake of simplicity we
decided not to include age groups, stages of infection, hospitalizations or cases requiring intensive care, nor considered any
reduction of contact rates due to self-control of individuals to high incidence values (Capasso & Serio, 1978; Fenichel et al.,
2011). Further we assume that individuals are either compliant or noncompliant for the whole duration of control mea-
sures, and that there is no behavioral switching between the two groups. The model could be extended to include such a
switch, as was done in the past by other authors (Poletti et al., 2009; D'Onofrio & Manfredi, 2020; Iboi et al., 2021).

We should note that all the simulations discussed above presume thatmost of the population is still susceptible at the time
of intervention. This leads to the effective reproduction number Rt being only slightly smaller than the basic reproduction
number R0 (before intervention) or the control reproduction number Rc (after intervention). This is one reason why the
theoretical threshold curve shown in Fig. 6b is rather close to those found in Fig. 6a showing the required reduction of
transmission among compliant individuals for given compliance levels. Clearly, the smaller the susceptible fraction of the
population is at the beginning, the faster the relative change in the number of susceptibles over time and the more pro-
nounced will the effect of depleting the pool of susceptibles be.
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Appendix A. Calculation of the control reproduction number

For the calculation of the control reproduction number Rc we apply the next generation matrix (NGM) approach from
(Diekmann et al., 1990). The population can be split into not infected compartments, y ¼ ðSc; Sn;R;DÞT , and infected com-
partments x ¼ ðE1;c; E1;n; E2;c; E2;n; E3;c; E3;n;Uc;Un; Ic; InÞT . The disease free equilibrium is

y ¼ ðrN; ð1� rÞN;0;0ÞT ; x ¼ 0
where r denotes the compliance level, i.e., the fraction of the population that is compliant. By the NGMapproachwe construct
the 10 � 10 matrices
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F ¼ b0

0
BBBBBBBBBBBBBB@

0 0 0 0 mEacscr mEanscr acscr anscr mIacscr mIanscr
0 0 0 0 mEacsnr̂ mEansnr̂ acsnr̂ ansnr̂ mIacsnr̂ mIansnr̂
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCA
where we wrote the transmission rates as bmk,X ¼ b0mXamsk and abbreviated r̂ ¼ ð1� rÞ, and

V ¼

0
BBBBBBBBBBBBBB@

gE 0 0 0 0 0 0 0 0 0
0 gE 0 0 0 0 0 0 0 0

�gE 0 gE 0 0 0 0 0 0 0
0 �gE 0 gE 0 0 0 0 0 0
0 0 �gE 0 gE 0 0 0 0 0
0 0 0 �gE 0 gE 0 0 0 0
0 0 0 0 �ð1� tcÞgE 0 gU þ hc 0 0 0
0 0 0 0 0 �ð1� tnÞgE 0 gU þ hn 0 0
0 0 0 0 �tcgE 0 �hc 0 gI 0
0 0 0 0 0 �tngE 0 �hn 0 gI

1
CCCCCCCCCCCCCCA
In what follows, we assume tc ¼ tn ¼ : t and hc ¼ hn ¼ : h, meaning that the chance of detection is independent of the
behavior.1 Then, the inverse of V is

V�1 ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
gE

0 0 0 0 0 0 0 0 0

0
1
gE

0 0 0 0 0 0 0 0

1
gE

0
1
gE

0 0 0 0 0 0 0

0
1
gE

0
1
gE

0 0 0 0 0 0

1
gE

0
1
gE

0
1
gE

0 0 0 0 0

0
1
gE

0
1
gE

0
1
gE

0 0 0 0

1�t

gU þh
0

1�t

gU þh
0

1�t

gU þh
0

1
gU þh

0 0 0

0
1�t

gU þh
0

1�t

gU þh
0

1�t

gU þh
0

1
gU þh

0 0

tgU þh

ðgU þhÞgI
0

tgU þh

ðgU þhÞgI
0

tgU þh

ðgU þhÞgI
0

h

ðgU þhÞgI
0

1
gI

0

0
tgU þh

ðgU þhÞgI
0

tgU þh

ðgU þhÞgI
0

tgU þh

ðgU þhÞgI
0

h

ðgU þhÞgI
0

1
gI

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The next generation matrix is hence
1 This assumption may be motivated as follows. Although it may be expected that individuals who deliberately ignore the proposed contact reduction
measures will be less likely to have themselves tested upon minor suspicions of being infected, the opposite may be true for those who cannot easily reduce
their contacts due to their profession (e.g. medical doctors or caregivers). Individuals in this category could be tested periodically, making detection of
asymptomatic or pauci-symptomatic infections more likely.
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FV�1 ¼ b0

0
BBBBBBBBBBBB@

�
mIðtgU þ hÞ
ðgU þ hÞgI

þ 1� t

gU þ h
þ mE
gE

�
acscr

�
mIðtgU þ hÞ
ðgU þ hÞgI

þ 1� t

gU þ h
þ mE
gE

�
anscr *…*

�
mIðtgU þ hÞ
ðgU þ hÞgI

þ 1� t

gU þ h
þ mE
gE

�
acsnð1� rÞ

�
mIðtgU þ hÞ
ðgU þ hÞgI

þ 1� t

gU þ h
þ mE
gE

�
ansnð1� rÞ *…*

0 0 0…0

« « «

1
CCCCCCCCCCCCA

¼ b0

�
mIðtgU þ hÞ
ðgU þ hÞgI

þ 1� t

gU þ h
þ mE
gE

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R0

0
BBBBB@

acscr anscr *…*

acsnð1� rÞ ansnð1� rÞ *…*

0 0 0…0

« « «

1
CCCCCA

That the common factor is R can be noted by recalling that b ¼ m b as in the pre-intervention setting. Since we are
0 X X 0
interested in the dominant eigenvalue of this matrix and all but the first two rows are filled with zeros, we only need to
calculate the eigenvalues of the upper 2 � 2 minor

�
acscr anscr

acsnð1� rÞ ansnð1� rÞ
�

This leads to

Rc ¼ R0ðacscrþ ansnð1� rÞÞ;

which is remarkably independent of the detection parameters, meaning that the threshold for achieving Rc ¼ 1 given any
R0 >1 should be the same for early and late detection, respectively. The ratio betweenRc andR0 in dependence of the level of
compliance r and the fraction r¼ acsc towhich transmission rates among compliant individuals are reduced after intervention
is shown in Fig. 6b.

Notice that this approach allows calculating the control reproduction number for the case that noncompliant individuals
slightly change their behavior but to a lesser degree than compliant individuals (ac < an < 1 and/or sc < sn < 1). Having
assumed, however, that noncompliant individuals keep their pre-intervention behavior, we require that ansn ¼ 1. Moreover,
since we assumed the reproduction number to be reduced by a factor r < 1 if the compliance were 100% (meaning r ¼ 1),2 we
also require r ¼ acsc.

The simple formula for the control reproduction number is therefore as given in (5),

Rc ¼ ðrrþ1� rÞR0 ¼ ð1�ð1� rÞrÞR0:
The controlled reproduction number can be hence obtained reducing R0 by a fraction (1 � r)r. The latter corresponds to
the practical efficacy of control measures, being the product of the fraction effective contacts to be reduced by the measures
and the compliance level.

If we drop the assumption on homogeneous detection (that is we allow tc s tn and hc s hn), then the next generation
matrix is calculated in a completely similar fashion:

FV�1 ¼

0
BB@

Acacscr Ananscr *…*
Acacsnð1� rÞ Anansnð1� rÞ *…*

0 0 0…0
« « «

1
CCA;

with the abbreviation
Am ¼ mIðtmgU þ hmÞ
ðgU þ hmÞgI

þ 1� tm
gU þ hm

þ mE
gE

; m2fc; ng:
The eigenvalues are again 0 and
2 More precisely, we assume the reduction of transmission to result from (i) infectious compliant individuals spreading the infection to a lesser degree,
encoded in ac < 1, and (ii) susceptible infectious individuals being more cautious, hence less susceptible, encoded by sc < 1. Both effects compound to
reduced transmission between susceptible individuals by a factor r ¼ acsc.
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Rc ¼ b0ðAcacscr�Anansnð1� rÞÞ:
Assuming again the behavior of the noncompliant population to be unaffected by the intervention, we obtain b0An ¼ R0
and ansn ¼ 1, leading to

Rc ¼
�
Ac

An
rr� ð1� rÞ

�
R0:

Ac
The ratio An
depends on the particular values of the parameters involved, but the important message is that Rc does not

depend onwhether the reduction in transmission is mediated by infectious individuals being cautious to not spread the virus
or by susceptible individuals being cautious not to catch the virus. This will clearly be different oncewe are sufficiently far into
the epidemic, i.e., sufficiently far away from the DFE. Since it should be expected that noncompliant individuals make up a
larger share of the infectious population than their share in the total population is, while compliant individuals will more
likely remain susceptible, the reduction ac in spreading activity will play a less significant role compared to the reduction sc in
susceptibility.

Appendix B. Derivation of the correction factor of detection rates

To motivate the shape of the correction factor for the detection rate, h, given in (6) we consider a minimal model for an
infectious disease with underascertainment. To this end, we track Susceptible, Undetected infectious, detected Infectious, and
Removed/recovered individuals. Moreover, we consider the population of available Tests.3 These are supplied at a given rate
sþ and are depleted by being applied to individuals who are tested. Clearly, not all tested individuals are infectious, hence
tests are governed by the following quasi reactions:

∅/
sþ

T ; T þ S/
sS S; T þ U/

sU I; T þ I/
sI I; T þ R/

sR R;

the first reaction describing the constant supply and the other reactions describing the pairing of a test with an individual (the

person being tested). The test results allows only undetected individuals to change their state (from U to I), whereas leaves all
other compartments unchanged. The resulting system of equations reads

_T ¼ sþ � ðsSSþ sUU þ sI I þ sRRÞT
_S ¼ �ðbUU þ bI IÞS
_U ¼ ðbUU þ bI IÞS� gUU � sUUT
_I ¼ sUUT � gI I
_R ¼ gUU þ gI I:
It now makes sense to choose sþ and the sX sufficiently large to ensure that T is small. This reflects the fact that testing
capacity cannot be stored since the limiting factor is laboratory time. Increasing testing capacity would result in larger sþ and
would allow for larger sX, that is, a higher coverage, but should not result in large residual values of T.

This motivates the idea of viewing the test population as a fast variable, setting it to a quasi steady state

_Tz0 0 Tz
sþ

sSSþ sUU þ sI I þ sRR

and writing the only relevant testing term as
sUUT z sU
sþ

sSSþ sUU þ sI I þ sRR
U ¼ sþ

K
K

K þ U
U

where we put
K ¼ sS
sU

Sþ sI
sU

I þ sR
sU

R:
With the notation

h
�
d

sþ
K

3 More precisely: T corresponds to the capacity for administering and evaluating tests.

869



M.V. Barbarossa, J. Fuhrmann Infectious Disease Modelling 6 (2021) 859e874
we recover an analogue of relation (6). There are several assumptions at play in this discussion. First, we assume that sU is
significantly larger than sS, sI, and sR, meaning that for any given individual the chance of being tested is much larger if this
individual is indeed infected. This chance may be influenced by the individual showing symptoms or having been in close
contact to a confirmed case. While the derivation above remains valid for sU being similar to sS, sI, and sR and even if all sX
were the same, which would be the case for random screening, the saturation effect would become less relevant. Indeed, if
sU ¼ sS ¼ sI ¼ sR then K ¼ S þ I þ R and sUUT z sþU/N with the constant population size N. Moreover, for small sU, an
unrealistically high number of tests would be required to reach a meaningful detection ratio at small prevalence. Considering
again the case of random screening, to achieve a given detection ratio, this very fraction of individuals would have to be tested
over the average infectious periodwhich is about oneweek. For the sake of the argument, wemay even assume sI¼ 0 since an
already detected individual need not be detected again. We also assume the term K to be approximately constant. This is true
if either the susceptible population is much larger than all other populations and sS is not much smaller than sR, or if the rates
sS and sR are approximately the same and S þ R [ I. Both cases are plausible: If the detection ratio is high, most cases are
detected and there are few recovered individuals whowere not detected. Given the official COVID-19 data for Germany in the
fall of 2020 (Robert Koch Institute Coronavirus Disease 2019 (COVID-19), 2019), this would mean the large majority of the
population is still susceptible. If on the other hand, the detection ratio is low, there may be many recovered individuals who
were never detected, but from the point of view of a test, these individuals are in no way different from susceptibles, and it
should be expected that sS z sR.

In fact, simulating the above system (results not shown here) for sS ¼ sI ¼ sR and, say, sU ¼ 20sS, reveals that for most
parameters, there is barely a difference between this system and the slow system

_S ¼ �ðbUU þ bI IÞS
_U ¼ ðbUU þ bI IÞS� gUU � hU
_I ¼ hU � gI I
_R ¼ gUU þ gI I;

with

h ¼ h
� K

K þ U
;

and K assumed to be constant. In contrast, the same system with constant h ¼ h
�

shows significantly higher reported case
numbers as soon as the prevalence increases. Moreover, if bI is significantly smaller than bU (as one would expect if detected
cases are quarantined) the model with constant h predicts a slower progression of the disease than both the model with test
population and the one with U-dependent detection rate.

Appendix C. Daily incidence in limit cases (cf. Fig. 6)

In Fig. 6a, we show the reductions of transmission required to achieve the goals of

(i) reducing within five weeks the incidence to 25% or 50% of the value at intervention, or
(ii) preventing the incidence from significantly rising at any time within weeks 2 through 5 after intervention,

introduced in subsection 3.1. Herewe show the actual course of the incidence if contacts are reduced by these exact threshold
levels. The corresponding curves are shown in Fig. A1 for selected prescribed compliance levels and under the assumptions of
both late and early detection.

As already obvious from Fig. 6a for late detection (the curves for early detection being very similar), neither goal (i) or (ii)
can be achieved at 30% compliance, and even without any transmission from or to compliant individuals (dashed curves,
upper left panels in Fig. A1(a)-(b)) the incidencewill rise after possibly briefly falling. At 40% compliance, stagnating incidence
levels can be achieved but transmission among compliant individuals must be very small (blue curves, upper right panels in
Fig. A1(a)e(b)). As compliance rises to 50%, a reduction of the incidence to half the value at intervention is possible within five
weeks, and finally, if at least 60% of the population adhere to the contact reductions, either goal can be achieved, though
clearly at different contact reductions. For compliance levels higher than 60% the incidence curves achieved by the threshold
transmission reductions do not change significantly. This means that there is no big difference in the outcome upon very high
compliance with moderately effective reduction measures, and moderate compliance with very strong reductions in
transmission.
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Fig. A1. Daily incidence for threshold cases in Fig. 6a. For different compliance levels (indicated as percentage on the top of each panel), the incidence over time is
shown for the critical reductions according to Fig. 6a. The values r1 and r2 indicate the reduction of the transmission rate among compliant individuals required
for lowering the incidence to 25% or 50%, respectively, of the value at the time of intervention, whereas s is the reduction factor required for stagnation as
explained in Subsection 3.2. If a certain goal cannot be attained (denoted by “n.a.“) at the given compliance level, the incidence for the r ¼ 0, meaning that
compliant individuals do not participate in the transmission at all, is shown as a dashed line.

Another effect, already alluded to in the discussion of scenario 20, becomes apparent from Fig. A1. In the case of late
detection, the threshold contact reduction that is necessary for stagnation results in the incidence leveling out close to the
maximum value. The latter is reached when the full effect of the intervention starts showing in the reported case numbers.
Quite differently, for the case of early detection, the same threshold value leads to a significant decline in newly detected cases
before a plateau well below the maximum incidence is reached. This can potentially lead to a deceptive situation where the
rapidly falling incidence may make the contact reductions to appear way more effective than they are, and consequently
reduce the sense of urgency among the population. If this in turn leads to a lower level of compliance, the incidence instead of
falling further or stabilizing at a level slightly below the maximum may soon start rising again. However, as will become
apparent from the following discussion, the incidencemay start rising after a brief decrease even in the absence of any further
changes of the transmission rates.

This effect is not caused by reporting delays or underascertainment but is inherent to the transmission dynamics as is
apparent from the fact that the true incidence of new infections shows the same behavior. For the sake of simplicity, we shall
illustrate here the argument on the basis of the SIR model, neglecting both the latent period and possible under
ascertainment,

_Sc ¼ �ðbccIc þ bncInÞSc
_Sn ¼ �ðbcnIc þ bnnInÞSn
_Ic ¼ ðbccIc þ bncInÞSc � gIc
_In ¼ ðbcnIc þ bnnInÞSn � gIn;

(A1)

with the removed compartments, Rm ¼ Nm � Sm � Im, m 2{c, n}.
In keeping with our previous notation, we assume a fixed transmission parameter b0 that is constant among all pairs (Im,

Sk), and describes transmission before the intervention. After interventions, the transmission parameters are again given by
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bmk ¼ amskb0, and we recall that an ¼ sn ¼ 1. Instead of calculating next generation matrices we now linearize system (A1)
about the disease free equilibrium (rN, (1 � r)N, 0, 0), r again denoting the compliant fraction of the population. This leads to

d
dt

0
BB@

Sc
Sn
Ic
In

1
CCAz

0
BB@

0 0 �b0acscrN �b0scrN
0 0 �b0acð1� rÞN �b0ð1� rÞN
0 0 b0acscrN � g b0scrN
0 0 b0acð1� rÞN b0ð1� rÞN � g

1
CCA
0
BB@

Sc
Sn
Ic
In

1
CCA
The constant population size allows us to abbreviate b ¼ b0N, and we only have to investigate the lower right submatrix

J ¼
�
acscrb� g scrb
acð1� rÞb ð1� rÞb� g

�

Its eigenvalues are

l1 ¼ bðacscrþð1� rÞÞ � g and l2 ¼ �g< l1;

and obviously the sign of l1 determines the stability of the DFE. There is nothing new here, the same information was ob-

tained by calculating the dominant eigenvalue of the next generation matrix that would have been

Rc ¼ bðacscrþ ð1� rÞÞ
g

:

However, linearizing about the DFE allows us to investigate the corresponding eigenvectors

x1 ¼ ðscr;1� rÞT and x2 ¼ ð1;�acÞT

of J, which tell us how the infections have to be distributed among compliant and noncompliant individuals in order to create
the maximal number of secondary infections.

Before intervention, there is no difference between compliant and noncompliant individuals and ac ¼ sc ¼ 1. Having
assumed R0 >1 means that the leading eigenvalue before intervention is l01 >0, hence the system will have evolved to a
situation where ðIc; InÞT is proportional to x01 ¼ ðr;1� rÞT . At the time of intervention, the system is still close to the DFE,
Sc þ Sn still making up the vast majority of the population. Let us now assume that the control reproduction number after
intervention is Rc⪆1, meaning that the controlled eigenvalue lc1⪆0 is still positive but small. However, the distribution of
infectious individuals is no longer aligned with the corresponding eigenvector xc1 but still with x01. Hence, the component of
the solution aligned with xc1 will slowly increase at rate lc1 while the component aligned with xc2 will decrease at rate l2 ¼ �g.
If lc1 is sufficiently small, this leads to an overall decrease of the number of infectious individuals until the solution is suffi-
ciently aligned to xc1 and the component proportional to xc2 becomes negligible.

Fig. A2. Illustration of the leading eigenvalue lc1 (left) of J as multiple of l01, depending on the transmission reduction factor, r, and the compliance level, r. Notice
that the level lc1 ¼ 0 corresponds to Rc ¼ 1 for system (A1). On the right, the corresponding eigenvector, xc1, in the Ic-In plane is shown for r ¼ 0.25 and ac ¼ sc ¼ffiffiffi
r

p ¼ 0:5, corresponding to dotted line in (a), and different compliance levels. For comparison, the dashed lines depict the eigenvectors x01 at the same compliance
levels. It is obvious that the eigenvectors xc1 are shifted towards In. Notice that r ¼ 0.4 approximately corresponds to lc1 ¼ 0 at r ¼ 0.25. The colors of the ei-
genvectors correspond to those of the point in (a) where the pair (r, r ¼ 0.25) is located.
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In order to illustrate this effect in a numerical example, let us work with our previous assumption thatR0 ¼ 1:5, meaning
in this simplified setting that b ¼ 1.5g or l01 ¼ b� g ¼ 0:5g. This allows us to write

l1 ¼ g

�
3
2
ðacscrþð1� rÞÞ � 1

�
¼ g

2
ð1�3ð1� acscÞrÞ ¼ l01ð1�3ð1� rÞrÞ;

where r ¼ acsc. Just as we calculated the control reproduction number as a multiple of R0, we can now calculate lc1 as a
multiple of l01 by a factor depending solely on the transmission reduction among compliant individuals, r, and the compliant
fraction r of the population. It should not come as a surprise that Fig. A2a looks rather similar to Fig. 6b.

As the eigenvector xc1 depends on sc rather than r as a whole, we need to make a choice on how to distribute the
contribution to r among reduced effective infectiousness, ac, and reduced effective susceptibility, sc, of compliant individuals.
For the sake of showing the eigenvector in Fig. A2b, we choose ac ¼ sc ¼ ffiffiffi

r
p

, meaning that both effects contribute equally.
Doing so allows us to illustrate how strongly xc1 is shifted towards In as compared to x01. We have chosen to fix r ¼ 0.25 for
figure A2b, and it should be obvious that the shift is stronger the smaller r, and hence sc, is. Indeed, Fig. A3 illustrates how the
solution vector shifts toward the new eigenvector after the intervention.

In fact, the observed phenomenon is not exclusively due to partial noncompliance. We may consider the classical SIR
model ( _S ¼ � bIS; _I ¼ bIS� gI) with reproduction number R0 ¼ b

g>1, and assume that at some point in time the contact
rate b is reduced to rbwith 0 < r < 1. At the time of intervention, the incidence of new infections will instantaneously drop by
the reduction factor r. However, let if the contact reduction is so weak that Rc ¼ r b

g>1, then the incidence will immediately
start rising again. Adding a latency period and explicitly modeling detection will smooth this process but an intermittently
decreasing incidence followed by another rise may still be visible. This reasoning shows that there is no need to assume a
reaction of the population to falling incidence values in order to observe rebounding incidence numbers. Conversely, these
arguments should also caution against relaxing contact restrictions too quickly as this could exacerbate the rebound effect by
increasing Rc.

Fig. A3. Before the intervention (week 13), the fraction of noncompliant among all currently infectious individuals is precisely the same as their fraction among
the whole population. After intervention, the share of noncompliant infectious individuals rises in accordance with the shifted eigenvector illustrated in Fig. A2b.
Appendix D. Model parameters

In the following list we summarize the model parameters relevant for the transmission dynamics of (1) and their values
used for the simulations.

N: total population (assumed to be constant in good approximation)83, 000, 000approximately the population of Ger-
many as of 2020
b0: global transmission rate0.225 d�1/N directly before the intervention; slightly smaller at the start of the simulated
period as indicated at the beginning of Section 3fixed to achieve R0z1:5 given the other parameters
mU: relative transmission rate for undetected infectious individuals 1 can always be fixed as 1 by appropriately choosing
the common factor b0 which is exactly what we did
mE: relative transmission rate for presymptomatic infectious individuals1.5 assures that RE contributes 35%e40% to R0
mI: relative transmission rate for detected infectious individuals 0.1 represents significantly decreased transmission due to
(self) isolation
gE: three times inverse of mean duration of incubation period 3/(5 d)corresponds to mean incubation period of five days
gU: inverse of mean duration of symptomatic period1/(7 d)
gI: inverse of mean duration of infectious period after detection 1/(7 d) same as gU in order to ensure that detection does
not affect mean infectious period
t
�
: maximal fraction of infectious individuals detected at symptom onset0.1
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h
�
: maximal detection rate from symptomatic stage U 0.6gUchosen such that approximately 45% of infected individuals

will be detected at low prevalence
K: prevalence of undetected infectious individuals at which the detection rates decrease to half their maximal value500,
000
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