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Long noncoding RNAs (lncRNAs) have diverse functions, including immune regulation.
Increasing studies have reported immune-related lncRNAs in the prognosis of multiple
cancers. In this study, we developed an individualized signature containing 13 immune-
related lncRNA pairs (IRLPs) which could predict the overall survival, disease-free survival,
progression-free survival, and disease-specific survival of gastric cancer (GC) patients in
The Cancer Genome Atlas (TCGA) cohort, and internal and external validations, signature
comparisons, and subgroup analyses further confirmed its superiority, stability, and
generalizability. Notably, this signature also showed good applicability in discriminating
the prognosis of pan-cancer patients. Then, we constructed and validated a nomogram for
overall survival based on the signature and clinical factors, which allowed more accurate
predictions of GC prognosis. In addition, we revealed that the low survival rate of patients
with high-risk scores may be due to their aggressive clinical features, enriched cancer-
related signaling pathways, the infiltration of specific immunosuppressive cells, and low
tumor mutation burden. We further predicted obviously worse immunotherapeutic
responses in the high-risk groups and identified some candidate compounds targeting
GC risk group differentiation. This signature based on the IRLPs may be promising for
predicting the survival outcomes and immunotherapeutic responses of GC patients in
clinical practice.
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INTRODUCTION

Gastric cancer (GC) is one of the most prevalent malignancies and the fourth common cause of
cancer deaths worldwide with 1.09 and 0.77 million new GC cases and deaths estimated in 2020,
respectively(Sung et al., 2021). Due to the insidiousness of the onset of GC, patients are often
diagnosed at an advanced stage, with a median overall survival (OS) of less than 12 months when
becoming metastatic at distant sites (Digklia andWagner, 2016). The tumor node metastasis (TNM)
staging system is currently the gold standard for guiding the clinical treatment of GC (Egner, 2010).
However, patients with the same clinicopathological features and similar therapeutic strategies could
exhibit large differences in prognosis because of the complex genetic heterogeneity, which indicates
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the deficiencies of the TNM staging system in prognostic
stratification (Shah and Ajani, 2010). Therefore, novel
molecular markers with more clinical utilities are needed to
improve prognostic prediction and guide the clinical treatment
of GC patients.

Long noncoding RNAs (lncRNAs) are a common type of RNA
molecules composed of over 200 nucleotides in length that can
regulate gene expression through diverse mechanisms such as
chromatin remodeling, genomic imprinting, transcription, and
post-transcriptional processing (Rafiee et al., 2018). LncRNAs
exert an essential role in the initiation and progression of cancers
and have shown great potential as biomarkers in cancer diagnosis,
prognosis, and treatment (Zhou et al., 2015; Bhan et al., 2017).
More recently, increasing evidence has suggested that lncRNAs
participate in tumorigenesis not only by influencing the genome
or transcriptome but also by modulating cancer immunity
(Denaro et al., 2019). To be specific, lncRNAs could regulate
gene expression that is correlated with immune responses, and
thus altering immune cell infiltration status in the tumor
microenvironment (TME), which could profoundly affect
tumor invasiveness, progression, and prognosis (Chen et al.,
2017; Lazăr et al., 2018). In recent years, cancer
immunotherapy, such as immune checkpoint blockade (ICB),
has emerged as a breakthrough for the treatment of many cancers,
especially melanoma and non-small-cell lung carcinoma (Postow
et al., 2015; Rizvi et al., 2015). Although the clinical trials of ICB in
the treatment of patients with advanced GC have achieved some
encouraging results, the durable efficacy is limited to a small
number of patients, and the objective response rate varies greatly
between different studies, which impedes the development of
immunotherapies for GC (Smyth et al., 2020; Zeng et al., 2021).
Studies have indicated that the immunological components of
TME are implicated in the antitumor processes and associated
with clinical response to ICB (Lazăr et al., 2018; Zeng et al., 2021).
Thus, considering the critical role of lncRNAs in regulating the
immune microenvironment, identifying lncRNA signatures that
are correlated with immunity may promote our understanding of
GC immunobiology and help improve the clinical benefits of
immunotherapies.

Using large-scale gene expression data in the public
databases, recent studies have developed a variety of
immune-related lncRNA based prognostic signatures for
various types of cancers, including GC (Shen et al., 2020;
Chen et al., 2021; Wang et al., 2021c). However, these
studies are not further validated in other independent
populations, which may limit their clinical applications in
the survival prediction for cancer patients. In addition,
these signatures are based on quantifying the expression
levels of genes, which need further normalization of model
gene expression due to the potential biological heterogeneity
among different datasets and inevitable detection biases across
different platforms (Leek et al., 2010). Fortunately, two-
biomarker combinations based on the relative ranking of
gene expression levels could avoid the complexity of data
preprocessing and have shown great potential in cancer
diagnosis and prognostic prediction (Heinäniemi et al.,
2013; Li et al., 2017).

In the present work, we carried out an integrative analysis
using public gene expression datasets from various GC cohorts,
together with a novel pairing algorithm, to identify and validate
an immune-related lncRNA pair signature (IRLPS) for improving
prognostic prediction of GC. Then, we explored the underlying
biological mechanisms and investigated its correlations with
immune cell infiltrations, immunotherapeutic responses, and
genomic mutations. In addition, we tried to figure out the
potential compounds that might have therapeutic values in
GC. Finally, we combined the IRLPS with clinical factors for
constructing an individualized nomogram to facilitate clinical
applications.

MATERIALS AND METHODS

Data Collection and Preprocessing
The workflow of this study is shown in Supplementary Figure
S1. Firstly, we downloaded the uniformly reprocessed RNA-seq
data from the recount2 platform using the “TCGAbiolinks” R
package, including 416 GC samples and 37 adjacent normal
samples from The Cancer Genome Atlas (TCGA) project and
204 normal gastric samples from The Genotype-Tissue
Expression (GTEx) project (Collado-Torres et al., 2017b;
Mounir et al., 2019). Then, the raw count gene expression
matrix and corresponding transcripts per million (TPM)
normalized gene expression matrix was obtained using the
“scale_counts” and “getTPM” functions of the “recount” R
package, respectively (Collado-Torres et al., 2017a). Genes
whose expression level was zero in more than 50% of the
samples were filtered out. Clinical information of 381 patients
was extracted from the UCSC Xena after excluding those with
missing survival or clinical data. TCGA dataset was used as the
training cohort. We also downloaded the somatic mutation data
of GC patients and gene expression and survival data of TCGA
pan-cancer cohort for further analysis. In addition, two external
validation GC cohorts, namely the Asian Cancer Research Group
(ACRG) cohort (GSE62254, N = 300) and the Singapore cohort
(Singapore batches A GSE15459 and B GSE34942, N = 248), were
downloaded from the Gene Expression Omnibus (GEO)
database. Both of the two external expression datasets were
derived from the Affymetrix Human Genome U133 Plus 2.0
(HG-U133 Plus 2.0) array and normalized on the log2 scale. The
batch effect in the Singapore cohort was removed using the
ComBat algorithm of the “sva” R package as described by Lei
et al. (2013) (Leek et al., 2012) All these cohorts have OS and
disease-free survival (DFS) data except for the lack of DFS data in
the Singapore cohort, while only the TCGA cohort has two other
survival indicators, namely progression-free survival (PFS) and
disease-specific survival (DSS). The clinical characteristics of each
cohort were presented in Supplementary Table S1.

Immune-Related lncRNA Profile Mining and
Differential Expression Analysis
Significant lncRNA-pathway pairs across 33 cancer types were
downloaded from the ImmLnc database (Li et al., 2020). Then,
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the extracted 3,044 lncRNAs related to GC immunity were
defined as the immune-related lncRNAs in this study. The
lncRNA expression profile in RNA-seq data was extracted
according to the GENCODE (release 36) GTF file. For
consistency, the microarray lncRNA expression profiles were
obtained by re-annotation. Briefly, the probe sets of
Affymetrix HG-U133 Plus 2.0 array were aligned to the
human genome (GRCh38) with GENCODE v36 annotation
using the SeqMap tool with no mismatch (Jiang and Wong,
2008). Then, by keeping the probes uniquely mapped to target
gene sequences, a total of 4,231 probes covering 3,346 lncRNAs
were obtained. When multiple probes matched with the same
lncRNA, the average expression value of these probes was used as
the expression level of corresponding lncRNA. To identify
differentially expressed immune-related lncRNAs, the “limma”
R package was applied to the read count matrix of the 416 GC and
241 normal samples from the recount2 project, and the thresholds
were set as |log2 fold change| (|log2FC|) >1.0 and false discovery
rate (FDR) < 0.05 (Ritchie et al., 2015). Since the lncRNA
expression profiles in TCGA and GEO databases were
different, we focused on the overlapped lncRNAs in the
present study.

Definition and Construction of the
Immune-Related lncRNA Pairs
In this study, we used the IRLPs to develop a prognostic signature
for GC, in which the expression levels of lncRNAs were pairwise
compared in each sample to generate a score for each paired
combination. Briefly, if the expression level of lncRNA 1 was
higher than that of the lncRNA 2, the score of the IRLP was
assigned 1, otherwise, the score was 0. In addition, those IRLPs
with a constant value (scores of 0 or 1 assigned to more than 80%
of the samples in any dataset) were removed because they may
represent the platform-dependent bias measurements and do not
contain sufficient discriminative information to predict patients’
survivals.

Construction and Validation of a Prognostic
Signature Based on Immune-Related
lncRNA Pairs
Univariate Cox regression analysis was performed in the
training cohort based the constructed IRLPs matrix and
corresponding clinical data, and prognostic IRLPs with p <
0.01 were chosen as the candidates. Then, a Cox regression
model that combined with the least absolute shrinkage and
selection operator (LASSO) algorithm was further adopted to
select a panel of IRLPs to develop the prognostic signature. The
optimal tuning parameter was estimated by 10-fold cross-
validation at one standard error beyond the minimum
partial likelihood deviance. Finally, the selected IRLPs were
incorporated into a stepwise based multivariate Cox regression
model to construct the IRLPS. The risk score was calculated by
adding up each IRLP score, with the weights assigned by the
corresponding coefficients generated in the multivariate Cox
analysis.

Based on the median risk score in the training cohort, patients
in each cohort were classified into the high- and low-risk groups.
The Kaplan-Meier method was applied to compare the survival
between the two groups. Time-dependent receiver operator
characteristic (ROC) curves were adopted to evaluate the
predictive performance of the IRLPS. Univariate and
multivariate Cox regression analyses were performed to assess
the clinical significance of the IRLPS. In addition, stratified
analyses were conducted to assess the robustness of the
signature in predicting GC prognosis in different clinical
subgroups. Furthermore, we compared our IRLPS with four
published prognostic signatures that were also constructed
using the TCGA data based on both time-dependent ROC and
concordance index (C-index) analysis (Wang et al., 2021a; Mao
et al., 2021b; Wang et al., 2021c; Xu et al., 2021).

Functional Annotations and Gene Set
Enrichment Analysis
The differentially expressed genes (DEGs) between the high- and
low-risk groups were analyzed by the “limma” R package, and the
DEGs with |log2FC| >1.0 and FDR<0.05 were subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses by using the
“clusterProfiler” R package (Yu et al., 2012). In addition, we
performed a pre-ranked Gene Set Enrichment Analysis (GSEA)
to identify the cancer hallmarks and immunologic signatures that
are correlated with the IRLPS (Subramanian et al., 2005). The
hallmark gene sets (h.all.v7.4. entrez.gmt) and immunologic gene
sets (c7. all.v7.4. entrez.gmt) were obtained from the Molecular
Signatures Database. Gene sets with nominal p < 0.05 and FDR <
0.25 were considered significantly enriched.

Exploration of Immunological Features
Several generally acknowledged methods, including
CIBERSORT, EPIC, MCP-counter, xCell, ESTIMATE were
applied to analyze the infiltrating characteristics of immune
cells and stromal cells based on the gene expression data of
tumor tissues (Yoshihara et al., 2013; Newman et al., 2015; Becht
et al., 2016; Aran et al., 2017; Racle et al., 2017). Then, the
correlations between the IRLPS and immune/stromal cells were
calculated by Spearman correlation analysis. In addition, since
immune checkpoint gene expression may be correlated with the
treatment responses of ICB therapy, we further assessed the
associations between the IRLPS and several key immune
checkpoint molecules (Goodman et al., 2017).

Prediction of Immunotherapeutic Response
To explore the response of immunotherapy in different risk
groups, we applied the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm to generate predicted results
about ICB therapy (anti-PD1 and anti-CTLA4) for each GC
patient (Jiang et al., 2018; Fu et al., 2020). Given that tumor
mutation burden (TMB) has emerged as a promising biomarker
for predicting the immunotherapeutic response, we also
calculated the TMB of GC patients in the TCGA cohort. TMB
was defined as the total number of nonsynonymous mutations
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per megabase in the coding area of a tumor genome (Wang et al.,
2021b). The “maftools” and “GenVisR” R packages were used to
analyze and visualize common mutations (Skidmore et al., 2016;
Mayakonda et al., 2018).

Calculation of Stemness Index
Cancer stemness has been reported to be associated with
suppressed immune response and significantly poor outcome
for most cancers (Miranda et al., 2019). Thus, we investigated
whether the established IRLPS was correlated with the stemness
phenotype of GC. As previously reported, we utilized the one-
class logistic regression (OCLR) algorithm to calculate the RNA
expression-based stemness index (mRNAsi) for each tumor
sample (Malta et al., 2018). The mRNAsi was mapped to the
range of 0–1 through a linear transformation that subtracted the
minimum and divided by the maximum.

Connectivity Map Analysis
To explore potential compounds that might be useful for GC
treatment, the top 1,000 DEGs (FDR<0.05) between high- and
low-risk groups were employed to query the Connectivity Map
(CMap) database (Subramanian et al., 2017). Then, compounds
with a negative enrichment score and p < 0.05 were selected for
the subsequent mechanism of action (MoA) analysis.

Construction and Validation of an
Individualized Nomogram
To facilitate the clinical utilization of the IRLPS, we established a
nomogram in the TCGA cohort by integrating the IRLPS with
independent clinical prognostic factors from multivariate Cox
regression. Then, the nomogramwas applied to the ACRG cohort
for external validation (the Singapore cohort was not included
due to the lack of corresponding clinical data). C-index and time-
dependent ROC analyses were both applied to evaluate the
performance of the nomogram. Moreover, calibration curves
were used to display the differences between the actual
observed and predicted survival possibility. Decision curve
analyses (DCA) were used to assess the net benefits of
different clinical decisions.

Statistical Analysis
All the statistical analyses were conducted on the R software
(version 4.0.0). The R packages used in this study are listed in
Supplementary Table S2. Internal validation was performed
using the bootstrap method. The Wilcoxon rank-sum test and
Kruskal-Wallis test were used to evaluate the correlations of
IRLPS score with clinical factors, as well as the correlations of
other evaluated factors (TIDE score, mRNAsi, and TMB et al.)
with IRLPS groups. The chi-square test was used to analyze the
differences of specific gene mutations among IRLPS groups. In
addition, Spearman correlation analyses were performed to
investigate the relationship between IRLPS score and immune
cells and immune checkpoints. p < 0.05 was considered
statistically significant. Bonferroni correction was performed in
the subgroup analysis.

RESULTS

Differentially Expressed Immune-Related
lncRNAs
A total of 970 differentially expressed immune-related lncRNAs
were identified in GC, among which 429 were upregulated and
541 were downregulated (Supplementary Figure S2A). Then, we
crossed these lncRNAs with 3,346 re-identified lncRNAs in the
microarray datasets to obtain 312 shared lncRNAs for the
following analysis (Supplementary Figure S1 and
Supplementary Figure S2B), and the details were shown in
Supplementary Table S3.

Construction and Internal Evaluation of the
Immune-Related lncRNA Pairs
A total of 48,516 IRLPs were built by pairwise comparison using the
312 shared lncRNAs, and 2,186 of them were kept after excluding
those with a constant value. With univariate Cox analysis, 44 OS-
related IRLPs were identified in the training cohort (p < 0.01)
(Supplementary Table S4). Then, these prognostic IRLPs were
subjected to LASSO-Cox regression analysis. The LASSO
coefficient profiles and partial likelihood deviance plot were
shown in Figures 1A,B, illustrating the selected 20 IRLPs. Then,
we further applied the multivariate Cox analysis and ultimately
obtained 13 IRLPs for constructing the IRLPS and generating the
risk scores (Figure 1C).

Based on the median cutoff value, patients in the training cohort
were divided into the high- and low-risk groups. The Kaplan-Meier
survival curves revealed that patients in the high-risk group had
significantly poorer OS than those in the low-risk group (p < 0.0001)
(Figure 2A). Time-dependent ROC analysis suggested that our
IRLPS had a good performance in predicting OS of GC patients
with a 5-years average area under the curve (AUC) of 0.817
(Figure 2B). The heatmap of the 13 IRLPs showed that a score of
1 in AC107021.2|LINC02097, NR2F2-AS1|PICART1, AC010207.1|
LINC01644, LINC01018|AP004609.1, LINC02610|BANCR,
LSAMP-AS1|LINC01775, and LIFR-AS1|AC012313.5 was more
distributed in the high-risk group, indicating their harmful roles
inGCprognosis, while the remaining IRLPs showed the reverse trend
(Figure 2C). In addition, the distribution of the risk scores also
indicated poor survival in the high-risk group patients (Figure 2D).
Interestingly, we further found that patients in the high-risk groups
had a poorer DFS, PFS, and DSS compared with those in the low-risk
groups (all p < 0.0001), and the high predictive ability of the IRLPS
was revealed by the time-dependent ROC analysis (5-years average
AUCs of 0.737, 0.764 and 0.813, respectively) (Supplementary
Figures S3A–S3F). Moreover, internal validations by
bootstrapping verified the performance of the signature in
predicting different survival indicators (Supplementary Table S5).

External Validation of the Immune-Related
lncRNA Pairs
To assess the robustness of the IRLPS in the independent external
population, the formula and the cutoff value used in the training
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cohort were applied to two GEO datasets. The results showed that
patients in the high-risk groups also exhibited obviously worse OS
than those in the low-risk groups for both the ACRG (p = 0.002)
and Singapore cohort (p = 0.0028) (Figures 2E,G), and the
corresponding 5-years average AUC values were 0.612 and
0.649, respectively (Figures 2F,H). Similar results were
observed in the entire GEO validation cohort and the whole
cohort (all p < 0.0001; 5-years average AUCs of 0.625 and 0.679,
respectively) (Supplementary Figures S4A–S4D). In terms of the
DFS, the discriminative ability of the IRLPS was also validated in
the ACRG cohort (p = 0.0031; 5-years average AUC of 0.613) and
the combined cohort (p < 0.0001; 5-years average AUC of 0.644)
(Supplementary Figures S5A–S5D). Notably, we were pleasantly

surprised to find that the IRLPS could also predict all survival
indicators of digestive tract cancers and even pan-cancer with
corresponding low-risk groups showed survival advantages (all
p < 0.01) (Supplementary Figures S6A–S6H). Furthermore,
compared with other traditional prognostic signatures, the
IRLPS showed an obviously higher accuracy for OS prediction
in GC patients as demonstrated by the ROC and C-index analyses
(Supplementary Figures S7A, S7B).

Subgroup Analyses
According to the clinical traits, including age, gender, tumor
stage, grade, T stage, N stage, M stage, and Lauren subtype, GC
patients in both separate and combined cohorts were divided into

FIGURE 1 | Identification of the prognostic signature in the TCGA cohort. (A) The least absolute shrinkage and selection operator (LASSO) coefficient profiles of the
prognostic immune-related lncRNA pairs (IRLPs); (B) The 10-fold cross-validated partial likelihood deviance. The lambda value was confirmed as 0.07124 at one
standard deviation of the minimal deviance, which resulted in 20 non-zero coefficients; (C) The forest map showed 13 IRLPs identified by multivariate Cox proportional
hazard regression in the stepwise method.
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FIGURE 2 | Predictive effects of the prognostic signature. (A,B) Kaplan-Meier curves and time-dependent receiver operator characteristic (ROC) curves of the
signature for predicting the overall survival (OS) of patients in the TCGA cohort; (C,D) Heatmap of the immune-related lncRNA pairs (IRLPs) in the high- and low-risk
groups, rank of the risk score, and distribution of the survival status; (E,F) Kaplan-Meier curves and time-dependent ROC curves of the signature for predicting the OS of
patients in the Asian Cancer Research Group (ACRG) cohort; (G,H) Kaplan-Meier curves and time-dependent ROC curves of the signature for predicting the OS of
patients in the Singapore cohort.
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sixteen subgroups. As shown in Supplementary Table S6, the
IRLPS could significantly discriminate the OS of patients in every
subgroup of the TCGA cohort (all p < 0.025), and similar results
were observed in the validation cohorts especially for the male,
advanced stage (stage III-IV), N1-3 stage, M0 stage, and intestinal
adenocarcinoma groups (all p < 0.025). In addition, we further
performed subgroup analyses in the DFS datasets and suggested
that the IRLPS remained an indicator of the DFS in the younger
(<60 years), male, advanced stage, high grade (G3), N1-3 stage,
M0 stage, and intestinal adenocarcinoma groups (all p < 0.025)
(Supplementary Table S7).

Independent Prognostic Role of the
Immune-Related lncRNA Pairs
To investigate whether the IRLPS was an independent prognostic
factor in GC, we conducted the Cox regression analysis.
Univariate Cox regression analysis indicated that the high-risk
groups had poorer OS than the low-risk groups in the TCGA (HR
= 4.541, 95% CI: 3.129–6.591, p = 1.68 × 10−15), ACRG (HR =
1.646, 95% CI: 1.196–2.264, p = 0.002), and Singapore cohorts
(HR = 1.726, 95% CI: 1.201–2.479, p = 0.003) (Table 1). After
adjusting for the clinical features in the multivariate Cox analysis,
we found that the IRLPS was an independent prognostic factor in
the TCGA (HR = 4.549, 95% CI: 3.096–6.685, p = 1.22 × 10−14),
ACRG (HR = 1.646, 95% CI: 1.190–2.277, p = 0.003), and

Singapore cohorts (HR = 1.578, 95% CI: 1.093–2.278, p =
0.015) (Table 1). In addition, the IRLPS was also
independently associated with the DFS of GC patients in the
TCGA (HR = 3.342, 95% CI: 1.804–6.192, p = 1.26 × 10−4) and
ACRG cohorts (HR = 1.600, 95% CI: 1.118–2.290, p = 0.010)
(Supplementary Table S8).

Clinical Correlation Analysis for the
Immune-Related lncRNA Pairs
The correlations between the IRLPS and the clinicopathological
features were analyzed in the whole cohort. The results showed
that the IRLPS was not associated with age, gender, M stage, and
Lauren subtype. However, we found significant correlations
between the IRLPS and tumor grade (p = 0.020), tumor stage
(p = 1.30 × 10−7), T stage (p = 8.30 × 10−5), N stage (p = 0.0012),
recurrence status (p = 9.90 × 10−7), and the molecular subtypes of
TCGA (p = 3.10 × 10−5), ACRG (p = 6.60 × 10−7), and Singapore
cohorts (p = 8.20 × 10−10) (Figures 3A–3L), suggesting that the
IRLPS may be involved in the progression of GC.

Functional Enrichment Analysis
Using gene expression data of the TCGA cohort, 165
significant DEGs were identified between the high- and
low-risk groups (Figure 4A). Among them, 163 genes were
up-regulated in the high-risk group and only 2 genes were

TABLE 1 | Univariate and multivariate Cox regression analysis of clinicopathologic factors and IRLPS for predicting OS in the training and validation cohorts.

For OS variables Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

TCGA training cohort (N = 381)a

Age (≥60 vs. <60 years) 1.574 (1.084–2.286) 0.017 1.740 (1.186–2.553) 0.005
Gender (Male vs. Female) 1.216 (0.861–1.718) 0.267 — —

Histological grade (G3 vs. G1-2) 1.436 (1.016–2.030) 0.040 1.345 (0.945–1.916) 0.100
T stage (T3-4 vs. T1-2) 1.748 (1.157–2.643) 0.008 1.362 (0.857–2.163) 0.191
N stage (N1-3 vs. N0) 2.014 (1.342–3.022) 7.21e-04 1.017 (0.609–1.700) 0.948
M stage (M1 vs. M0) 2.213 (1.272–3.849) 0.005 2.242 (1.254–4.007) 0.006
Tumor stage (Stage III-IV vs. Stage I-II) 2.057 (1.456–2.905) 4.25e-05 1.652 (1.027–2.657) 0.039
IRLPS (high- vs. low-risk) 4.541 (3.129–6.591) 1.68e-15 4.549 (3.096–6.685) 1.22e-14

ACRG validation cohort (N = 300)
Age (≥60 vs. <60 years) 1.239 (0.882–1.741) 0.217 — —

Gender (Male vs. Female) 0.905 (0.647–1.265) 0.559 — —

T stage (T3-4 vs. T1-2) 2.396 (1.741–3.297) 8.22e-08 1.336 (0.902–1.981) 0.149
N stage (N1-3 vs. N0) 2.816 (1.434–5.527) 0.003 1.729 (0.847–3.531) 0.133
M stage (M1 vs. M0) 3.840 (2.482–5.942) 1.52e-09 2.989 (1.872–4.772) 4.51e-06
Lauren subtype (Diffused vs. Intestinal) 1.677 (1.198–2.347) 0.003 1.130 (0.789–1.617) 0.505
Lauren subtype (Mixed vs. Intestinal) 2.128 (1.167–3.879) 0.014 1.705 (0.928–3.131) 0.086
Tumor stage (Stage III-IV vs. Stage I-II) 3.408 (2.341–4.960) 1.53e-10 2.092 (1.293–3.386) 0.003
IRLPS (high- vs. low-risk) 1.646 (1.196–2.264) 0.002 1.646 (1.190–2.277) 0.003

Singapore validation cohort (N = 248)
Age (≥60 vs. <60 years) 0.973 (0.659–1.437) 0.889 — —

Gender (Male vs. Female) 1.128 (0.775–1.639) 0.530 — —

Lauren subtype (Diffused vs. Intestinal) 1.308 (0.896–1.911) 0.164 — —

Lauren subtype (Mixed vs. Intestinal) 0.948 (0.471–1.907) 0.880 — —

Tumor stage (Stage III-IV vs. Stage I-II) 6.136 (3.725–10.110) 1.05e-12 5.995 (3.633–9.892) 2.40e-12
IRLPS (high- vs. low-risk) 1.726 (1.201–2.479) 0.003 1.578 (1.093–2.278) 0.015

IRLPS: immune-related lncRNA, pair signature; OS: overall survival; HR: hazard ratio; CI: confidence interval; TCGA: The cancer genome atlas, ACRG: Asian cancer research group.
aPatients with Gx (histological grade cannot be assessed) or Nx (lymph nodes cannot be assessed) or Mx (distant metastasis cannot be assessed) were included in the analysis but were
not displayed in this table.
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down-regulated (Supplementary Table S9). Therefore, we
conducted GO annotation and KEGG enrichment analysis
using the up-regulated DEGs and found that these genes
were enriched in GO terms such as collagen-containing
extracellular matrix (ECM), regulation of angiogenesis,
and regulation of cellular response to growth factor
stimulus (Figure 4B and Supplementary Table S10), and
KEGG pathways such as cAMP, cGMP-PKG, and TGF-β
signaling (Figure 4C and Supplementary Table S11). In
addition, subsequent pre-ranked GSEA of tumor hallmarks
revealed that the high-risk group also exhibited an obvious
enrichment of common pathways including angiogenesis,
epithelial-mesenchymal transition (EMT), and TGF-β
signaling (Figure 4D and Supplementary Table S12).
Moreover, we observed the enrichment of numerous
immunologic signatures such as follicular B cells vs.
memory B cells down and naive vs. effector CD8 T cells
up in the high-risk group (Figure 4E and Supplementary
Table S13), which implied the immune-related modulation
of the signature.

Estimation of the Immune Cell Infiltration
and Immunosuppressive Molecules With
Immune-Related lncRNA Pairs
Since the IRLPS were initially connected with immune pathways, we
consequently explored whether this signature was correlated with
tumor immune microenvironment based on the gene expression
data of the three cohorts. We found that activated tumor-infiltrating
immune cells such as CD4+ T cells and T helper cells were more
negatively correlated with this signature, while monocytes,
macrophages, mast cells, endothelial cells, and cancer-associated
fibroblasts showed positive correlations in the TCGA cohort (all p <
0.05) (Figure 5A). Similar results were observed in the ACRG and
Singapore cohorts (Supplementary Figure S8A and
Suppplementary Figure S9A). In addition, the stromal score
from the ESTIMATE algorithm was positively associated with the
IRLPS, while the immune score showed no correlation (Figure 5A,
Supplementary Figure S8A and Suppplementary Figure S9A).
The above results are detailed in Supplementary Table S14.
Furthermore, we found that the IRLPS score was generally

FIGURE 3 | The correlations between the prognostic risk score and (A) age; (B) gender; (C) tumor grade; (D) Lauren subtype; (E) tumor stage; (F) T stage; (G) N
stage; (H) M stage; (I) TCGA subtype; (J) Asian Cancer Research Group (ACRG) subtype; (K) Singapore subtype; and (L) recurrence status.
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negatively correlated with the expression of CLTA-4, LGALS9, and
HVEM (all p < 0.05) and positively correlated with PD-L2 and
CD276 in the three cohorts (all p < 0.05), but no significant
associations were observed between PD-1 and PD-L1 expression
and the signature (Figure 5B, Supplementary Figure S8B and
Suppplementary Figure S9B).

Prediction of the Response to
Immunotherapy in Different Risk Groups
Using the TIDE algorithm, we found that the high-risk group had a
higher TIDE score than the low-risk group (p = 3.2 × 10−7)
(Figure 5C), suggesting that the high-risk patients were less
likely to benefit from ICB therapy, which was in line with the
lower predicted proportion of responders in the high-risk group
(28.95 vs. 51.83%, p = 8.71 × 10−6) (Figure 5G). In addition, we
found that the high-risk group had higher T cell exclusion and
dysfunction scores but lowermicrosatellite instability scores (all p <
0.05) (Figures 5D–F). Consistent prediction results were observed
in both the ACRG and Singapore cohorts regarding the
immunotherapy response rates, TIDE scores, and T cell

exclusion scores (all p < 0.05) (Supplementary Figures
S8C–S8G and Supplementary Figures S9C–S9G). Besides, we
observed obvious differences in the distribution of predicted
responders across the ACRG (p = 2.32 × 10−8) and Singapore
molecular subtypes (p = 7.75 × 10−8), with the EMT (2.17%) and
invasive subtypes (8.33%) exhibited the worst response rates,
respectively (Supplementary Figure S8G and Suppplementary
Figure S9G). No significant difference was found regarding the
TCGA subtypes (p = 0.080) (Figure 5G). Interestingly, we observed
higher mRNAsi in the low-risk-groups compared with the high-
risk groups (all p < 0.01) (Figure 5H, Supplementary Figure S8H
and Suppplementary Figure S9H), implying the better prognosis
of patients with higher mRNAsi as previously reported (Mao et al.,
2021a). Furthermore, patients in the low-risk group had obviously
higher TMB than those in the high-risk group (p = 0.00095)
(Figure 5I), which further supported that the low-risk patientsmay
have enhanced responses in ICB therapy.

Somatic Mutation Analysis
Next, we performed somatic mutation analysis to investigate the
genomic differences between the two risk groups of the TCGA cohort.

FIGURE 4 | Exploration of the underlyingmolecular mechanisms of the prognostic signature. (A)Heatmap of the differentially expressed genes (DEGs) between the
high- and low-risk groups; (B,C) Significantly enriched GeneOntology (GO) annotations and Kyoto Encyclopedia of Genes andGenomes (KEGG) pathways by analyzing
the DEGs up-regulated in the high-risk group; (D,E) Pre-ranked gene set enrichment analysis (GSEA) of the tumor hallmarks and immunologic characteristics correlated
with the prognostic signature.
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The waterfall plot presented the top 20 genes with the highest
mutation frequency in the high- and low-risk groups (Figures
6A,B). Therein, TTN, TP53, MUC16, and LRP1B were the most
mutated genes in both the groups but no significant differences were
found for their mutation frequencies (all p > 0.05) (Figure 6C).
However, other common mutated genes in GC such as SYNE1 (p =
0.023), ARID1A (p = 0.011), FAT4 (p = 0.012), and PIK3CA (p =
0.013) exhibited significantly higher mutation frequencies in the low-

risk patients (Figure 6C). MUC16 mutations were correlated with
favorable survival outcomes in GC patients (Figure 6D) and may be
applicable for prognostic prediction and immunotherapeutic
guidance for GC(Li et al., 2018). Hence, we explored whether
MUC16 mutation combined with the IRLPS could yield different
prognoses in GC patients. The results showed that the risk groups
determined by the IRLPS showed significant survival differences in
both the MUC16 mutation (MUC16 mut/high vs. MUC16 mut/low,

FIGURE 5 | The correlations between the tumor-infiltrating immune cells, immunosuppressed molecules, predicted immunotherapeutic responses, and our
prognostic signature in the TCGA cohort. (A) Lollipop plot displayed the correlations between the signature and tumor-infiltrating immune cells estimated by different
algorithms; (B) Correlogram showed the correlations between the signature and several crucial immune checkpoint genes, including PD-1, PD-L1, PD-L2, CTLA-4,
CD276, LGALS9, and HVEM (correlation coefficients is represented by the area and colored according to the value; *p < 0.05, **p < 0.01, ***p < 0.001); (C–F)
Comparisons of the Tumor Immune Dysfunction and Exclusion (TIDE) scores, T cell exclusion scores, dysfunction scores, and microsatellite instability (MSI) scores
between the high- and low-risk groups; (G)Comparisons of the proportions of predicted responders and non-responders to immunotherapy among different risk groups
(left panel) and TCGA subtypes (right panel); (H) Boxplot demonstrated the higher stemness index (mRNAsi) in the low-risk group; (I) Violin plot showed the significant
difference in the tumor mutation burden (TMB) between the high- and low-risk groups.
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p < 0.0001) and wildtype subgroups (MUC16 wild/high vs. MUC16
wild/low, p< 0.0001) (Figure 6E), indicating that the predictive ability
of the IRLPS was not affected by MUC16 mutation status.
Intriguingly, patients in the MUC16 mut/high group had a worse
OS than patients in the MUC16 wild/low group (p < 0.0001).
Moreover, the MUC16 mut/low group had the best OS rate, and
the MUC16 wild/high group had the worst OS rate (Figure 6E).

Identification of Potential Compounds
Targeting the Immune-Related lncRNA
Pairs
According to the MoA analysis, there were 29 corresponding
molecular pathways targeted by 41 compounds (Figure 7 and
Supplementary Table S15). Among them, adrenergic receptor
antagonist was the most critical MOA which was shared by six
compounds including carteolol, nadolol, pindolol, terazosin, timolol,
and vincamine. Then, three compounds (diphenhydramine,
thioperamide, and trimethobenzamide) shared the same MoA as
histamine receptor antagonist, two compounds (indoprofen and
naproxen) shared the same MoA as cyclooxygenase inhibitor, and
two compounds (lisuride and quinpirole) shared the same MoA as
dopamine receptor agonist. Further studies are warranted to assess
the potential therapeutic values of these compounds in GC.

Development and Evaluation of the
Prognostic Nomogram
Multivariate Cox analysis showed that age, M stage, tumor stage,
and IRLPS were independent prognostic factors for the OS in the
TCGA cohort. Thus, we developed an individualized nomogram
using these variables to further improve the prediction of the OS
for GC patients (Figure 8A). The C-index of the nomogram was
0.760 (95% CI: 0.719–0.801) in the TCGA cohort, and similar
results were observed when using bootstrapping for the internal
validation (C-index: 0.762, 95% CI: 0.722–0.800)
(Supplementary Table S16). The nomogram was further
validated in the independent ACRG cohort (C-index: 0.653,
95% CI: 0.608–0.698), and it had higher C-index than any
other individual included factors such as the tumor stage
(Supplementary Table S16). In addition, the ROC curves
were also displayed to illustrate the high predictive accuracy of
the nomogram (Figures 8B,D). Subsequently, we draw the
calibration curves for the OS prediction at 1, 3, and 5 years
and revealed the high agreement between the predictions by
nomogram and actual observations in both the TCGA and ACRG
cohorts (Figures 8C,E). Furthermore, the DCA curves showed
that the net benefits of the nomogram were significantly higher
than the limit curves (Supplementary Figures S10A, S10B),
indicating the good clinical applicability of the nomogram.

FIGURE 6 | Comparisons of the somatic mutations between the high- and low-risk groups of the TCGA cohort. (A,B)Waterfall plot displayed the top 20 mutated
genes in the high- and low-risk groups, respectively; (C) Comparisons of the mutation status of TTN, TP53, MUC16, LRP1B, SYNE1, ARID1A, FAT4, and PIK3CA
between the high- and low-risk groups; (D) Kaplan-Meier curve analysis of the overall survival (OS) stratified by the MUC16 mutation status; (E) Kaplan-Meier curve
analysis of the OS according to both the MUC16 mutation status and our prognostic signature.
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DISCUSSION

GC is a common malignant tumor originating in the digestive
tract, of which the prognostic outcome is undesirable despite
improved therapeutic strategies (Smyth et al., 2020). Due to the
complex tumor heterogeneity and oncogenic mechanisms,
developing an individualized prognostic evaluation system for
GC that can guide precise clinical treatment remains a challenge.
Growing evidence has revealed that tumor progression depends
not only on its intrinsic malignant characteristics but also on the
TME (Wang et al., 2019). The immune responses in the TME are
crucial determinants of tumorigenesis, antitumor immunity, and
prognosis (Zeng et al., 2019). As important immune regulators,
lncRNAs could impact the prognosis of cancer patients and serve
as potential biomarkers for cancer therapies (Zhou et al., 2015;
Denaro et al., 2019; Li et al., 2020). Therefore, we focused on the
lncRNAs that are correlated with immune modulation to
establish the prognostic signature for GC.

Previous studies have published many genetic prognostic
models using traditional method that focused on the exact
expression levels of coding genes or noncoding RNAs (Wang
et al., 2021a; Mao et al., 2021b; Wang et al., 2021c; Xu et al., 2021).
However, these signatures may have limited applicability for the

evaluation of the prognosis of GC because clinicians have to
quantify the gene expression to a standardized unit. Here, we
adopted a novel pairing method to transform the lncRNA
expression profile to 0-or-1 IRLPs matrix and developed a
reasonable prognostic signature named IRLPS in GC (Li et al.,
2017). Since the IRLPs were generated entirely based on the
relative ranking of their expression in the same patients, there is
no need to conduct scaling and normalization to make gene
expression levels comparable among patients or datasets. In this
study, we enrolled three independent relatively large GC cohorts
intending to verify the effectiveness of the method in different
populations and measurement platforms. In particular, the
lncRNA expression profiles in the GEO microarray datasets
were mined by the re-annotation method. Previous studies
have shown the feasibility of the profiling of lncRNAs through
microarray probe re-annotation (Zhang et al., 2012; Zhou et al.,
2015; Wang et al., 2018). Considering the differences of the
lncRNA expression profiles extracted from the TCGA and
GEO database, we focused on the shared lncRNAs between
the two data sources to ensure that the analyzed lncRNAs are
general and universal across the GC samples.

A total of 13 IRLPs comprising 26 lncRNAs were selected to
construct the prognostic model through the combination of

FIGURE 7 | Explorations of candidate drugs targeting the immune-related lncRNA pair signature for the treatment of GC by Connectivity Map analysis.
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univariate Cox regression, LASSO-Cox regression, and
multivariate Cox regression analyses. In the TCGA training
cohort, the IRLPS showed good predictive ability for not only
the OS but also other survival indicators (DFS, DSS, and PFS) of
GC patients, which was effectively validated by bootstrapping
technique. Then, subgroup analyses and independent external

validations further demonstrated the stability and generalizability
of the IRLPS in predicting the OS and DFS of GC patients.
Notably, pan-cancer survival analyses also demonstrated the
universal applicability of the IRLPS. In the comparisons with
the other four published traditional prognostic signatures, we
clarified the superiority of the established signature that was

FIGURE 8 | Construction and validation of an individualized nomogram for the overall survival (OS) prediction based on independent prognostic factors. (A) A
nomogram for the prediction of OS integrating our prognostic signature with independent clinical variables (age, M stage, and tumor stage) was constructed in the TCGA
cohort; (B,D) Time-dependent receiver operator characteristic (ROC) curves for OS prediction of the nomogram in the TCGA and Asian Cancer Research Group (ACRG)
cohorts; (C,E) Calibration curves of the nomogram on 1-, 3-, and 5-years survival probability in the TCGA and ACRG cohorts.
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based on the paring algorithm. Moreover, the IRLPS was found to
be an independent predictive indicator for both the OS and DFS
of GC patients. In particular, considering the complementary
value between the IRLPS and clinical prognostic characteristics,
we further constructed and validated an individualized
nomogram which could provide a more accurate prediction of
OS for GC and is more convenient for oncologists to use.

Several lncRNAs in the model have been previously confirmed
to play important roles in the occurrence and development of GC.
For instances, Pan et al. reported that LIFR-AS1 could contribute
to the proliferation and invasion of GC cells via miR-29a-3p/
COL1A2 axis (Pan et al., 2021). Li et al. (2019) found that
PICART1 functioned as a tumor suppressor by regulating the
PI3K/AKT and ERK/MAPK signaling pathways. Zhang et al.
(2015) demonstrated that BANCRwas involved in the growth and
apoptosis of GC cells via the regulation of NF-κB1, and
overexpression of BANCR was correlated with unfavorable
prognosis of GC patients (Li et al., 2015). In addition, many
of the modeling lncRNAs can also contribute to the malignant
phenotypes of multiple other cancer types, such as RBMS3-AS3 in
the prostate cancer,NR2F2-AS1 in the non-small cell lung cancer,
and LINC01554 in the hepatocellular carcinoma (Zhang et al.,
2019; Zheng et al., 2019; Jiang et al., 2020). Hence, we believed
that the established signature may provide novel biomarkers for
the precise treatment of GC.

To elucidate the potential reasons for the survival differences
determined by the IRLPS, we first evaluated the associations of the
IRLPS with clinical characteristics and found positive correlations
between the signature and tumor differentiation, invasion depth,
lymph node metastasis, and clinical stage, indicating the essential
role of the IRLPS in GC progression. It was known that molecular
characteristics were closely related to the prognosis and treatment
responses of GC (Cristescu et al., 2015). Here, we observed that GC
patients in different molecular subtypes had obviously different risk
scores, suggesting that our signaturemay reflect tumor heterogeneity
and participate in the molecular events contributing to the
oncogenesis of GC. In particular, the EMT subtype of the ACRG
molecular classifier had the highest risk scores and the lowest
proportion of predicted responders, which was consistent with
previous reports that this subtype predicts poor survival and
immunotherapy response (Kim et al., 2018). Next, functional
enrichment analyses were performed on the up-regulated genes
to further identify the potential mechanisms involved. We observed
that the terms correlated to the ECM were markedly enriched in the
high-risk group, indicating the active proliferation and migration of
tumor cells because the surrounding ECM could influence cell
adhesion and polarity and stimulate growth factor signaling
(Walker et al., 2018). In addition, several established cancer-
related pathways and hallmarks including cAMP and cGMP-
PKG signaling pathway, and angiogenesis and EMT related gene
sets were enriched in the high-risk group, indicating the internal
regulatory mechanisms of the IRLPS in the invasiveness and poor
prognosis of GC. It was also worth noting that both the KEGG
enrichment analysis and pre-ranked GSEA identified the TGF-β
signaling in the high-risk group. Studies have shown that TGF-β
could promote the infiltration of T regulatory cells and inhibit the
function of effector T cells and natural killer cells, which induces

immune suppression within the TME, thus causing tumor immune
evasion and poor prognosis in the high-risk group (Batlle and
Massagué, 2019). Moreover, we found many immunologic gene
sets that were up-regulated in the high-risk group, highlighting the
role of IRLPS in regulating the immune system.

Accumulating evidence has recently elucidated the effects of the
TME components on defining the immunophenotypes of cancers,
which could impact cancer tumorigenesis and prognosis (Wu et al.,
2021). Thus, understanding the immune landscape of the TMEmay
help find effective ways to improve patients’ prognoses and
therapeutic benefits. To investigate the relationships between the
established signature and immune cells, we adopted several
acknowledged methods to estimate the TME characteristics. Our
results found that tumors with high IRLPS scores exhibited high
infiltration levels of monocytes, macrophages, and mast cells, and
low infiltration levels of CD4+ T cells and follicular T helper cells,
which indicated that we could evaluate the immune response of GC
tissue according to the IRLPS model. A previous study revealed that
tumor-associated macrophages could secrete anti-inflammatory
cytokines that induce an immunosuppressive tumor
microenvironment by recruiting T regulatory cells, which
suppresses the cell-mediated immune response (Mehta et al.,
2021). It was also reported that increased tumor-infiltrating mast
cells could foster immune suppression and GC progression through
TNF-α-PD-L1 pathway (Lv et al., 2019). These may explain the poor
prognosis of the high-risk groups. Except for the tumor-infiltrating
immune cells, stromal cells also play important roles in shaping the
tumor immunophenotypes (Denton et al., 2018). Fortunately, we
observed negative correlations between the IRLPS and stromal
scores, and the cancer-associated fibroblasts, as the most
prominent components within the tumor stroma that could
directly contribute to an immunosuppressive environment, are
more abundant in the tumors with higher risk scores (Monteran
and Erez, 2019). Accordingly, we obtained the expected results of the
worse predicted immunotherapy responses in the patients of the
high-risk groups by analyzing the TIDE scores and TMB. The TIDE
prediction score was associated with the induction of T cell
dysfunction in tumors with high cytotoxic T lymphocyte (CTL)
levels and the prevention of T cell infiltration in tumors with low
CTL levels and thus represents two primary mechanisms of tumor
immune escape (Jiang et al., 2018). In this study, higher TIDE and
T cell exclusion scores were found in the high-risk groups of all the
investigated cohorts, indicating that their lower ICB response rates
might be due to the immune evasion through T cell exclusion. In
addition, using the somatic mutation data available in the TCGA
cohort, we found obviously lower TMB in the high-risk group. It has
been reported that tumors with low TMB generates fewer
neoantigens, thus avoiding being attacked by CTLs (Wang et al.,
2021b). Taken together, these findings suggested the important role
of IRLPS in determining TME cell infiltration and predicting
response to ICB therapy.

It should be admitted that this study has some limitations.
First, although we validated the effectiveness of the signature in
two independent GEO cohorts, the overall accuracy of the
signature in the validation cohorts was not as good as the
TCGA cohort, which may be due to racial differences between
different cohorts or sampling bias caused by genomic intratumor
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heterogeneity (Gyanchandani et al., 2016). Second, the clinical
value of the signature in predicting immunotherapy response
needs to be assessed in prospective clinical trials. Third, the
underlying mechanisms of the identified lncRNAs in the
immune regulation of GC have not been fully elucidated, and
further research on their functions may contribute to their clinical
application as novel therapeutic targets.

In summary, this study proposed an innovative signature for
predicting the prognosis of GC patients, which may provide new
insights into the role of lncRNAs in tumor immunity and facilitate
the more effective development of anti-tumor immunotherapy.
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