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ABSTRACT

The Colorectal Cancer (CRC) Subtyping Consortium (CRCSC) recently published 
four consensus molecular subtypes (CMS’s) representing the underlying biology 
in CRC. The Microsatellite Instable (MSI) immune group, CMS1, has a favorable 
prognosis in early stage disease, but paradoxically has the worst prognosis following 
relapse, suggesting the presence of factors enabling neoplastic cells to circumvent 
this immune response. To identify the genes influencing subsequent poor prognosis 
in CMS1, we analyzed this subtype, centered on risk of relapse.

In a cohort of early stage colon cancer (n=460), we examined, in silico, changes 
in gene expression within the CMS1 subtype and demonstrated for the first time the 
favorable prognostic value of chemokine-like factor (CKLF) gene expression in the 
adjuvant disease setting [HR=0.18, CI=0.04-0.89]. In addition, using transcription 
profiles originating from cell sorted CRC tumors, we delineated the source of 
CKLF transcription within the colorectal tumor microenvironment to the leukocyte 
component of these tumors. Further to this, we confirmed that CKLF gene expression 
is confined to distinct immune subsets in whole blood samples and primary cell lines, 
highlighting CKLF as a potential immune cell-derived factor promoting tumor immune-
surveillance of nascent neoplastic cells, particularly in CMS1 tumors. Building on 
the recently reported CRCSC data, we provide compelling evidence that leukocyte-
infiltrate derived CKLF expression is a candidate biomarker of favorable prognosis, 
specifically in MSI-immune stage II/III disease.

INTRODUCTION

Until recently, the classification of CRC has been 
limited to the generation of prognostic signatures based on 
gene expression profiles developed by supervised analysis 
for prognosis. Between 2012 and 2014, a number of studies 
underpinned a comprehensive molecular characterization 
of CRC [3–7], culminating in the landmark publication of 
consensus molecular subtypes by the Colorectal Cancer 
Subtyping Consortium (CRCSC) [8]. The four Consensus 
Molecular Subtypes (CMS) identified were: CMS1: 

microsatellite instability (MSI) immune (frequency 14%); 
CMS2: canonical (37%); CMS3: metabolic (13%) and 
CMS4: mesenchymal (23%), providing a more granular 
discrimination of the underlying CRC disease biology 
and permitting for the first time an attempt at dissecting 
the clinical utility of these robust subtypes. The CMS1 
subtype is characterized by a high mutation burden, due 
to the abundance of MSI tumors within this subtype, and 
a high level of immune infiltration. This subgroup has 
long been associated with a relatively good prognosis 
in early stage disease. Paradoxically however, while 

               Research Paper



Oncotarget36633www.impactjournals.com/oncotarget

only a relatively small proportion of patients with MSI 
tumors subsequently relapse, they have the worst overall 
prognosis [8–11].

Tumor-associated leukocytes (TALs) have 
previously been associated with favorable prognosis in 
CRC, particularly when the density and distribution of 
CD8+ and CD45RO+ memory T cells are assessed [9, 
12]. Recently, these findings were investigated using 
a pan-cancer meta-analytical framework combining 
gene expression profiles with survival data to assign 
prognostic value to gene transcripts [13]. Across a variety 
of cancers, this approach demonstrated an association 
between an increased abundance of immune-response 
genes and improved survival, confirming the generally 
favorable prognostic value of immune infiltration. 
While the presence of high immune infiltration is 
generally associated with improved cancer survival rates, 
paradoxically the presence of certain subpopulations of 
T cells can also be associated with poor prognosis [14]. 
The tissue-specific prognostic value of immune cell 
infiltration was further highlighted when the association 
between 22 subsets of TALs and patient survival was 
examined across 25 cancer types [13]. This pan-cancer 
approach further revealed the reciprocal, and sometimes 
counter-intuitive, nature of TAL prognostic associations 
based on cancer type. But while these published studies 
suggest that particular immune cell subsets are associated 
with prognosis in specific cancers; they do not take into 
account the presence of the emerging stratified subtypes 
within each cancer type.

To address this question, we employed a stratified 
approach, specifically in the immune-rich CMS1, 
to examine the prognostic value of individual gene 
transcription probesets by supervised risk analysis. This 
approach highlighted the probesets associated with relapse 
in the adjuvant stage II/III disease setting. Further survival 
analysis revealed the prognostic value of our findings 
specifically in the CMS1, thus validating this stratified 
analysis approach. Finally, we used gene expression 
profiles to delineate the source of expression of the 
identified gene across a range of specific human tissues 
and primary cells.

RESULTS

Stratified approach to generate subgroup specific 
relapse rates

We analyzed available data from the stage II/III 
colon cancer tumors in the reference dataset employed by 
the CRCSC (GSE39582) [7]. Within the overall cohort 
of n=460 Stage II and III colon cancer cases (Figure 1), 
56% were male, 56% were Stage II, 41% were proximal 
colon tumors, 44% received adjuvant treatment and the 
mean (SD) age at diagnosis was 68 (13) years (Table 1). 
Individuals with CMS1 tumors were significantly more 

likely to have proximal colon tumors (78 v 33%, p<0.001), 
less likely to receive adjuvant treatment (25 v 48%, 
p<0.001) and were older (mean 70 v 67 years, p=0.05) 
compared with individuals with other tumor classifications 
within the cohort (Table 1). No differences in stage or sex 
distribution were detected between individuals with CMS1 
and other tumor classifications.

We then examined the prognostic value of the four 
identified subtypes (CMS1-4) based on 3-year relapse 
risk using a cohort of n=177 untreated stage II/III patient 
profiles with CMS assignment and complete clinical 
follow up data (Figure 1). As previously described, there 
was a trend towards better prognosis in the MSI-immune 
CMS1 compared to the CMS4 mesenchymal subgroup (3-
year relapse rate (RR) of 13% vs. 31%, HR=0.40, 95% CI 
0.15 – 1.03) (Figure 2 and Supplementary Table 1).

Gene expression associated with risk in the 
CMS1

Using clinical relapse data, we generated an initial 
discovery subset (detailed in Materials and Methods) 
resulting in 46 stringently filtered transcriptional profiles 
specifically assigned to CMS1 (Figure 1). As the frequency 
of patients assigned to CMS1 in the CRCSC overall cohort 
was 14%, this collection of 46 patients represents the 
largest possible publically available CMS1 microarray 
based dataset from a single cohort. Using an ANOVA 
model of high risk contrasted with low risk to examine 
true prognostic biology within CMS1, we generated a 
list of differentially expressed probesets. This resulted 
in 55 annotated probesets accounting for 49 unique 
genes (Table 2). While the majority of these genes were 
represented only once, Chemokine-Like Factor (CKLF) 
was represented by all three probesets corresponding to 
this gene on the microarray platform, highlighting its 
association with relapse risk.

Clinical relevance of CKLF gene expression in 
the CMS1

To validate the clinical value of our findings, we 
examined the stage II/III profiles with the complete data 
in GSE39582 (Figure 1) [7] by removing all the imposed 
restraints from the initial discovery subset to create a 
survival validation subset. Using mean expression of the 
three probesets representing CKLF, we stratified tumor 
profiles across all CMSs into high, medium and low, based 
on CKLF gene expression. When comparing the highest 
with the lowest levels of CKLF expression, no significant 
associations with recurrence-free survival were detected in 
the overall cohort (Table 3 and Supplementary Figure 1A 
and 1B) with each group overlapping.

However, when the CMS1 patient profiles were 
stratified by CKLF expression separately (CMS1 
profiles in the survival validation cohort n=79, Figure 
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Figure 1: Study overview of discovery and survival validation subsets. The data used in this study was obtained from 566 
Affymetrix U133 Plus 2.0 patient transcriptional profiles accessed through the NCBI GEO accession number GSE39582. Filtering for 
stage II/III and complete relapse data reduced this cohort to 460 profiles. The CMS1 specific discovery subset was composed of 46 tumors 
which fulfilled risk filtering (see Materials and Methods) followed by differential gene expression analysis based on risk classification. The 
survival validation subset was composed of either the entire cohort, CMS1 specific or MSI specific subgroups of samples. For relapse-free 
survival analyses, only stage II and III patients were considered, giving 79 transcriptional profiles in the CMS1 or 60 transcriptional profiles 
in the MSI subgroups.
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Table 1: Characteristics of patients in CMS1 (Consensus Molecular Subtype) compared with other tumor subtypes 

Characteristic CMS 1
n=80

All other subtypes*
n=380

p-value

Age, years, mean (SD) 70.2 (14.6) 67.0 (12.0) 0.05

Sex, n (%)
 Male
 Females

38 (47.5)
42 (52.5)

220 (57.9)
160 (42.1) 0.09

Tumour stage, n (%)
 II
 III

48 (60.0)
32 (40.0)

211 (55.5)
169 (44.5) 0.46

Tumour location, n (%)
 Proximal
 Distal

62 (77.5)
18 (22.5)

125 (32.9)
255 (67.1) <0.001

Adjuvant treatment receipt, n (%)
Yes 20 (25.0) 182 (47.9) <0.001

Comparative analysis of age, sex, stage, location and treatment for CMS1 (n=80) patients versus the remaining CMS 2, 3, 4 
and unclassified patients (n=380).
*Comprises n=193 CMS2, n=50 CMS3, n=99 CMS4 and n=38 unclassified CMS subtypes.

Figure 2: Relapse risk in recently defined consensus molecular subtypes. Survival curve using Kaplan-Meier estimation 
comparing prognosis of CMS1-4 in untreated stage II/III CRC patients (GSE39582). RR indicates the 3 year relapse rate.
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Table 2: Probesets and genes associated with relapse risk in CMS1 

Column ID Gene Symbol p-value
(Risk)

Fold-Change
(High Risk vs. Low Risk)

221058_s_at CKLF 0.000302824 -1.56349

242465_at LOC100505592 0.000332139 -1.78683

223451_s_at CKLF 0.000598022 -1.62852

219161_s_at CKLF 0.0019177 -1.56255

209759_s_at DCI 0.00192191 -1.51586

213285_at TMEM30B 0.00219006 -1.86942

229331_at SPATA18 0.0022411 -2.15593

210002_at GATA6 0.00239525 -1.95547

203814_s_at NQO2 0.00317772 -1.88969

232809_s_at FLT1 0.00388947 -1.58036

221958_s_at WLS 0.00428383 -1.90076

228360_at LYPD6B 0.00460096 -2.18477

Column ID Gene Symbol p-value
(Risk)

Fold-Change
(High Risk vs. Low Risk)

205728_at ODZ1 7.48E-07 1.63545

208148_at MYH4 1.31E-06 2.36166

214603_at MAGEA2 /// MAGEA2B 4.30E-05 3.64337

214642_x_at MAGEA5 9.20E-05 3.02798

235700_at CT45A1 0.000129371 2.11826

219011_at PLEKHA4 0.000144152 1.67177

242577_at LOC389834 0.000198257 1.57463

1553830_s_at MAGEA2 /// MAGEA2B 0.000294457 2.9941

210467_x_at MAGEA12 0.00031194 3.36053

220445_s_at CSAG2 /// CSAG3 0.000344059 2.01273

204086_at PRAME 0.000353129 2.95165

233092_s_at LOC100271840 0.00043833 1.78984

214612_x_at MAGEA6 0.000469934 8.44036

209942_x_at MAGEA3 0.000595555 8.19105

205563_at KISS1 0.000821326 1.88576

209733_at MID2 0.000932513 1.72349

215729_s_at VGLL1 0.00106856 1.89873

214254_at MAGEA4 0.00109841 2.16359

244631_at LOC389834 0.00112161 1.97882

1570445_a_at LOC643201 0.00116794 1.89823

232195_at GPR158 0.00120259 2.43469

(Continued )



Oncotarget36637www.impactjournals.com/oncotarget

1) a 79% reduced risk of recurrence was evident for 
the highest compared with the lowest level of CKLF 
expression (Figure 3A, Table 3 and Supplementary 
Figure 1C and 1D). This risk of recurrence became 
statistically significant once confounding factors such as 
age, stage, tumor location and adjuvant treatment were 
adjusted for (HR 0.18, 95% CI 0.04-0.89) (Table 3). The 
CKLF-medium group appeared to have an intermediate 
survival compared to the other two groups (Figure 3A), 
indicating that the positive prognostic value of CKLF 
was restricted to tumors within the highest-expressing 
tertile. These findings were also demonstrated using 
Euclidean and Ward clustering with a skewing of high-
risk samples towards the low CKLF expression clusters 
(Supplementary Figure 1E). Using cross tabulation 
of the patient profiles, we found comparable numbers 

of BRAF mutants and wildtypes in both the high- 
(15%) and low-risk (17%) groups, which ruled out 
the possibility of an inadvertent enrichment for BRAF 
mutants in the CMS1 high-risk subtype (Supplementary 
Table 2). In addition, we found no difference in CKLF 
gene expression across the entire cohort according 
to CMS (Supplementary Figure 1F), indicating the 
ubiquitous nature of CKLF gene expression in all 
CMSs. This trend towards a favorable prognosis in the 
CMS1 specific CKLF-high group was also observed in 
a further independent dataset (HR 0.38, 95% CI 0.13-
1.13) (GSE14333 n=188, CMS1 n=41), containing a 
mix of colon and rectal tumor transcriptional profiles, 
some of which had received adjuvant chemotherapy or 
neo-adjuvant chemo-radiotherapy treatments regimes 
(Supplementary Figure 1G).

Column ID Gene Symbol p-value
(Risk)

Fold-Change
(High Risk vs. Low Risk)

243683_at MORF4L2 0.00163486 1.81374

204823_at NAV3 0.00181836 1.73127

235004_at RBM24 0.00183565 1.8934

37028_at PPP1R15A 0.001906 1.72498

210751_s_at RGN 0.00195509 1.52471

202014_at PPP1R15A 0.00198168 1.73184

229511_at SMARCE1 0.00202072 1.70354

210605_s_at MFGE8 0.00205293 1.7212

224825_at DNTTIP1 0.00206935 1.64464

227084_at DTNA 0.00217336 1.69962

236840_at C12orf56 0.00232896 1.98568

220106_at NPC1L1 0.00234885 1.71598

1567912_s_at CT45A1 0.00295615 1.75065

227239_at FAM126A 0.00346844 2.32878

208075_s_at CCL7 0.00348212 1.85285

236514_at ACOT8 0.0037126 1.6944

223138_s_at DHX36 0.0038878 1.60102

213906_at MYBL1 0.00395218 2.28576

235561_at TXNL1 0.00418508 1.77398

229252_at ATG9B 0.00418806 1.71331

218853_s_at MOSPD1 0.00482949 1.77617

201023_at TAF7 0.00499489 1.56954

Differentially expressed probesets and their associated gene name between high and low risk groups in CMS1. Following 
ANOVA, fold-change +/- 1.5 fold and p-value<0.005 filters were applied resulting in 55 annotated probesets associated 
with risk in CMS1. Positive fold-change indicates higher expression in high-risk group.
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Prognostic value of CKLF gene expression in 
MSI patients

Given that CMS1 is highly enriched for MSI 
tumors, we performed a further stratification, by selecting 
only MSI profiles from the stage II/III cohort, regardless 
of CMS clustering (Figure 1). As expected, these profiles 
were enriched for the CMS1 samples (49 CMS1 out of 60 
MSI tumors – 82%). Patient tumors (n=60) were stratified 
into three groups based on CKLF gene expression (Figure 
3B). Analysis of the high expression compared to the low 
expression group in the MSI tumor profiles did reflect a 
similar trend, with an 84% reduced risk, but this result was 
not significant (HR 0.16, 95% CI 0.02-1.39), indicating 
that CMS1 transcriptional classification is not simply a 
marker of MSI status (Table 3, Figure 3B).

CKLF gene expression is associated with the 
tumor immune infiltrate

Gene set enrichment analysis of the CMS1 group 
in the CRCSC study revealed an increased expression of 
genes associated with immune infiltration [8], confirming 
previous pathology-based associations between MSI and 
immune infiltrate [10, 11]. Given the distinct structure of 
the tumor microenvironment (TME) within the CMS1 
tumors, we sought to determine if the precise origin of 

CKLF gene expression was confined to any specific 
cell type within the TME. To address this question, we 
utilized a separate microarray dataset obtained from 
dissociated fresh primary tumors (GSE39396), which 
had been Fluorescence Activated Cell Sorting (FACS) 
selected into specific endothelial, epithelial, leukocyte and 
fibroblast populations [15]. Assessment of the expression 
profiles according to the cell of origin confirmed that 
CKLF is significantly associated with tumor infiltrating 
leukocytes (p<0.005) when compared to the other cell 
types represented within the TME (Figure 4A).

CKLF gene expression profile across diverse 
human tissue and primary cells

While CKLF gene expression is significantly 
associated with the leukocyte population within CRC 
tumors, we wished to comprehensively profile its 
expression levels in other human tissues and cells. Using 
the recently assembled Genotype-Tissue Expression 
(GTEx) portal [16, 17] (http://gtexportal.org/home), we 
examined the gene expression of CKLF (as measured by 
RNA-seq analysis) across a diverse range of 53 tissues 
(version V6, January 2016) to investigate the pattern 
of CKLF gene expression. This analysis revealed high 
expression of CKLF in whole blood samples, compared 
to all other tissues represented within the portal (subset 

Table 3: Unadjusted and adjusted analyses of relapse-free survival 

CKLF gene expression*

Unadjusted Hazard 
ratios

(95% confidence 
intervals)

Adjusted** Hazard 
ratios

(95% confidence 
intervals)

Number non-events
Low/Med/High

Number events
Low/Med/High

High v. Low 
expression

High v. Low 
expression

CMS1

 Untreated (n=59) 17/15/19 5/2/1 0.21 (0.04-1.03) 0.19 (0.04-0.96)

 All (n=79) 20/19/25 7/6/2 0.21 (0.04-1.03) 0.18 (0.04-0.89)

MSI

 Untreated (n=47) 12/13/16 4/1/1 0.18 (0.02-1.65) 0.19 (0.02-1.85)

 All (n=60) 15/16/19 5/4/1 0.17 (0.01-1.42) 0.16 (0.02-1.39)

Entire cohort

 Untreated (n=258) 63/65/68 20/19/23 0.99 (0.54-1.79) 0.93 (0.50-1.73)

 Treated (n=202) 43/41/41 28/27/22 0.80 (0.45-1.43) 0.90 (0.50-1.62)

 All (n=460) 106/106/109 48/46/45 0.87 (0.58-1.31) 0.98 (0.64-1.49)

RFS analysis was performed using Cox proportional hazards method in the CMS1, MSI or entire cohort stratified by CKLF 
expression levels. Analysis was performed both before and following adjustment.
*Cut-offs for low/medium/high CKLF gene expression based on tertile values.
**Adjusted for age, sex, TNM stage, tumour location and adjuvant treatment receipt (in treated analyses only).
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shown in Figure 4B). The wide range of expression 
values observed for CKLF in these whole blood samples, 
represented by a large spread and outliers, indicates that 
there is clear variation across patient samples which may 
be due to the heterogeneous populations represented 
within whole blood. This finding was confirmed using 
a further cohort [18] from a panel of 79 human tissues 
(GSE1133) (subset shown in Supplementary Figure 2).

To further delineate the specific cell type expressing 
CKLF, we utilized the BioGPS database [19], which 
captures gene expression profiles across 745 samples 
representing a diverse range of primary human cells [20] 
including multiple immune sub-populations detectable 
in whole blood. Within this comprehensive collection of 
human cell types, we find CKLF expression levels are 
highly concordant in all three probesets across the entire 
cohort of cell types (Supplementary Figure 3). High CKLF 
gene expression was consistently associated with a small 
number of immune cell types including hematopoietic 
stem cells, neutrophils and the anti-tumorigenic γδ T cells 
(gamma-delta T cells) (Figure 4C).

DISCUSSION

The recent publication of four consensus molecular 
subtypes in CRC has provided a framework for clinically 
relevant stratified-based discovery to be applied in 
CRC for the first time [8]. Using the reference dataset 
employed by the CRCSC [7], we specifically selected the 
MSI-immune CMS1 transcriptional profiles for analysis. 
Selection of this subtype of tumors in isolation allowed us 
to identify subtle transcriptional changes associated with 
relapse risk which would have otherwise been missed 
across an unstratified patient cohort.

Although stratified medicine does provide a unique 
opportunity for analyzing specific subtypes, particularly 
as we move away from the traditional two arm studies 
to multi-arm, multistage clinical trials, [21] one of the 
difficulties which will inevitably be encountered with the 
stratified approach is the analysis of selected small patient 
cohorts, which are difficult for traditional statistical models 
to assess. Additionally, as we focus on the good prognostic 
CMS1 subgroup, the number of relapse events can be 

Figure 3: CKLF gene expression is associated with prognosis only in CMS1. A. Survival curve using Kaplan-Meier estimation 
comparing CKLF levels in CMS1 stage II/III CRC patients (GSE39582) B. Survival curve using Kaplan-Meier estimation comparing 
CKLF levels in MSI stage II/III CRC patients (GSE39582).
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Figure 4: CKLF gene expression within the tumor microenvironment and normal tissue. A. Box and whisker plot of CKLF 
expression according to specific endothelial, epithelial, fibroblast or leukocyte cell-of-origin from FACS sorted primary colorectal tumors. 
B. CKLF RNA-seq expression values are shown in RPKM (Reads Per Kilobase of transcript per Million mapped reads), calculated from a 
gene model with isoforms collapsed to a single gene. No other normalization steps have been applied. Box plots are shown as median and 
25th and 75th percentiles; points are displayed as outliers if they are above or below 1.5 times the interquartile range. The data used for 
the analyses described in this manuscript were obtained from the Genotype-Tissue Expression (GTEx) portal (http://gtexportal.org/home) 
version V6 in January 2016. C. CKLF gene expression from a subset of the Atlas of Human Primary Cells cohort. Bar charts are shown as 
median CKLF gene expression according to specific lineage and error bars represent standard deviation. ** denotes p<0.005.
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very low or even zero in some cases, which is problematic 
when performing initial proportional hazards fitness 
analysis. The precise application of stratified medicine will 
depend on how these statistical issues are resolved, but the 
model used in this study represents a pipeline approach of 
how an early discovery phase analysis can yield valuable 
information and generate hypotheses for validation in 
focused clinical studies.

This pipeline approach identified CKLF as a good 
prognostic marker in early stage CMS1 patients, where 
analysis of relapse rates highlighted the significant 
prognostic advantage for patients with high levels of 
CKLF gene expression. These findings indicate the 
potential for CKLF as a prognostic marker in this stratified 
group and provide a framework for further hypothesis-
driven analysis in ascertaining its true clinical value. Our 
analysis also ruled out enrichment for BRAF mutations 
in the high-risk subgroup, as there are similar proportions 
of BRAF mutations represented in the low-risk group. 
While a similar prognostic trend for CKLF is also found 
in MSI tumor profiles, this data fails to reach significance, 
but may be limited by reduced statistical power in this 
analysis. It is the limitation of small patient numbers 
within stratified groups, which may be challenging 
when examining retrospective unselected cohorts using 
a stratified approach. This point is further highlighted 
given the size of the cohort we begin with, containing 566 
patient transcriptional profiles, which represents one of 
the largest publically available single clinical CRC cohort 
datasets.

The CKLF protein was originally identified from 
a screen using a monocyte cell line and was found to 
have a strong chemotactic effect on human neutrophils, 
lymphocytes and monocytes [22]. CKLF was subsequently 
found to bind with the chemokine receptor CCR4, while 
increased CKLF expression was also detected in CD4+ 
and CD8+ lymphocytes and was associated with T 
lymphocyte activation [23]. Data presented here confirms 
these findings, with detection of CKLF gene expression in 
CD4+ and CD8+ cells, but importantly indicates further 
increased expression within neutrophils, hematopoietic 
stem cells (HSCs) and a distinct class of T cells, namely 
the γδ T cell lineage. The role of neutrophils in CRC 
development has previously been shown to correlate 
with an adverse prognosis [24], but these findings have 
been challenged more recently, as neutrophils can be 
further subdivided into an anti-tumorigenic (N1) or 
pro-tumorigenic (N2) phenotype (reviewed in [25]). 
The CKLF expression level observed in HSCs, which 
is not maintained in all subpopulations of myeloid and 
lymphoid progenitor cells, warrants further investigation 
to determine the role that CKLF plays in this process of 
immune cell differentiation. Indeed, CKLF is increased 
following granulocyte colony-stimulating factor (G-CSF) 
stimulation, which causes mobilization of these cells into 
the bloodstream [26, 27]. The γδ T cell represents a unique 

immune population, which has been shown to play a key 
role in the immune system response to infection, cellular 
transformation and to tissue damage responses (reviewed 
in [28]). Although there is a paucity of data on the role 
of this cell lineage in mediating response to malignancy, 
[29] γδ T cells do exert a protective role in cancer. A 
limited number of studies have demonstrated the anti-
tumorigenic role of γδ T cells specifically in CRC [30, 31] 
with increased numbers of γδ T cells being recruited at the 
earliest stage of tumor initiation [32], while a further study 
has indicated their ability to protect the host from tumor 
formation in mouse models of malignancy [33].

While pathology-based studies have highlighted 
the favorable prognostic value associated with CD8+ T 
cell infiltration in CRC [9, 12], we now show for the first 
time that increased expression of CKLF has significant 
prognostic value in tumors classified as CMS1. It is 
possible that the increased levels of immune-derived 
CKLF are a surrogate marker for an increase in a specific 
type of immune cell infiltrate as suggested by our 
analyses. The specific anti-tumorigenic roles attributed 
to these particular classes of immune-infiltrate may also 
explain the poor prognosis observed in the CKLF-low 
subgroup of CMS1 tumors. While high levels of CKLF, 
indicating a high level of specific immune cell types, is 
sufficient to successfully eliminate these tumors, or at 
least hold them in a nascent equilibrium state, it is the lack 
of CKLF expression which suggests that without these 
immune cell populations within the TME, the neoplastic 
cells can escape the immune-surveillance and allow 
disease relapse [34]. These findings would require further 
detailed molecular pathology analysis in a large cohort 
of clinically annotated CMS1 tumor samples to validate. 
A limitation of hypothesis-driven studies such as this 
one is the requirement of open access to large stratified 
patient datasets, with matching molecular and clinical 
data, to allow hypothesis validation. While this issue 
will continue to limit the application of in silico clinical 
discovery strategies, the responsible but effective sharing 
of genomic and clinical data as espoused by, for example, 
the Global Alliance for Genomics and Health [35] to allow 
complete testing of this approach. Implementing such a 
molecular pathology “integromics” approach is becoming 
increasingly relevant in the era of stratified medicine [36–
38].

The importance of undertaking a stratification 
approach for molecular analyses, as described in this 
study, is further highlighted given the lack of prognostic 
value attributed to CKLF across the entire unstratified 
cohort. Without focused supervised analysis of patient 
transcriptional profiles, research approaches will continue 
to identify tumor factors which can identify poor 
prognostic tumor subgroups, such as the mesenchymal 
CMS4 tumors, based not on relapse risk but on overall 
tumor subtype. This approach inevitably leads to the 
assignment of patients into risk categories which are 
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representative of the overall subgroup compared to the 
general population, but not based on the likelihood of 
individual relapse within the subgroup to which the 
tumor belongs, a finding which is far more clinically 
informative. This study also highlights the need for a 
radical shift in clinical trial design [21] coupled with a 
harmonized approach to biomarker development and 
patient stratification [39].

In conclusion, applying the recent consensus 
molecular subtypes to a large stage II/III patient cohort, we 
have extended the traditional pathology-based stratification 
of tumors into immune-high or immune-low tumors which 
have general prognostic value, with the identification of 
specific immune-derived factors, enabling us to understand 
the underlying biology accounting for these prognostic 
differences. Using this stratified diagnostics approach, we 
have identified CKLF as a favorable prognostic biomarker 
of relapse risk in the clinically relevant MSI-immune 
consensus molecular subtype of CRC. True validation 
of this type of hypothesis-driven biomarker discovery is 
reliant on further independent validation of these findings, 
in a molecular pathology-based analysis of prospective 
stratified clinical trial material.

MATERIALS AND METHODS

Independent datasets

Gene expression profiles from independent CRC 
datasets were downloaded from NCBI Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) 
under accession numbers GSE39582, GSE14333, 
GSE39396 and GSE1133. GSE39582 contains 566 
stage I-IV tumor profiles from a large CRC series, of 
which 460 stage II/III profiles are utilized in this study. 
GSE14333 contains 188 Dukes stage B/C profiles from 
mixed colon and rectal tumors. GSE39396 contains 
microarray profiles from fresh colorectal specimens 
where Fluorescence Activated Cell Sorting (FACS) 
selected cells into specific endothelial [CD45(+), 
EPCAM(-), CD31(-), FAP(-)], epithelial [CD45(-) 
EPCAM(+), CD31(-), FAP(-)], leukocyte [CD45(-), 
EPCAM(-), CD31(+), FAP(-)] and fibroblast [CD45(-), 
EPCAM(-), CD31(-), FAP(+)] populations. GSE1133 
consists of 79 human and 61 mouse tissue baseline gene 
expression microarray profiles. From this cohort, we 
selected the 79 human tissue transcriptional profiles. 
In addition to the NCBI cohorts, we have utilized both 
the GTEx and BioGPS portals. The RNA-seq data used 
for the analyses described in this manuscript were 
obtained from the Genotype-Tissue Expression (GTEx) 
portal (http://gtexportal.org/) version V6 in January 
2016. This cohort consists of expression profiles from 
53 human tissues across 8555 samples. The BioGPS 
database (http://biogps.org/) contains gene expression 

profiles across 745 samples representing a diverse range 
of primary human cells called the Expression Atlas 
of Human Primary Cells. This cohort was developed 
from combining a large number of publically available 
microarray datasets (745 samples, from over 100 
separate studies) derived from human primary cells. 
Expression bar charts were plotted as median probeset 
values using GraphPad Prism version 5 for Windows.

Risk assignment

The study design and filters applied at each step 
are outlined in Figure 1. The entire GSE39582 cohort 
was filtered by excluding stage I and stage IV patient 
transcriptional profiles, followed by any transcriptional 
profiles with missing relapse data resulting in a cohort 
of 460 transcriptional profiles. For the discovery 
subset, we removed patient transcriptional profiles 
which were censored to follow up prior to 36 months 
(unknown relapse data). Patients that relapsed prior 
to 36 months were classified as high-risk and patients 
with no relapse were classified as low risk, resulting in 
372 transcriptional profiles. This discovery subset was 
further filtered to contain only transcriptional profiles 
from untreated patients, resulting in 177 transcriptional 
profiles. Three year relapse free survival analysis 
was performed on these 177 transcriptional profiles 
to determine relapse rate information across all CMS 
assigned tumors using GraphPad Prism version 5 for 
Windows. This 177 transcriptional profile subgroup 
was then further filtered to contain only CMS1 
assigned transcriptional profiles resulting in 46 tumor 
transcriptional profiles, 6 assigned as high risk and 40 
with low risk assignment (Figure 1).

Transcriptional analysis

Partek Genomics Suite was used for dataset 
analysis. Differentially expressed probesets which had a 
fold-change +/- 1.5 fold and p-value<0.005 were defined 
using analysis of variance (ANOVA) of supervised 
risk groupings. For the purpose of clustering, the data 
matrices were standardized to the median value of 
probeset expression. Standardization of the data allows for 
comparison of expression levels for different probesets, 
which may not necessarily be on the same scale or at 
the same intensity levels. Following standardization, 
2-dimensional hierarchical clustering was performed 
(samples x probe sets/genes). Euclidean distance 
was used to calculate the distance matrix, which is a 
multidimensional matrix representing the distance from 
each data point (probe set-sample pair) to all the other data 
points. Ward’s linkage method was subsequently applied 
to join the samples and genes together, with the minimum 
variance, to find compact clusters based on the calculated 
distance matrix.
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Chemokine-like factor (CKLF) stratification

Tertile stratification was performed on the mean 
CKLF expression value from the three probesets used 
within the CMS1, MSI and complete cohorts. These values 
were classified as high, medium and low based on 1:1:1 
sample distributions. In the case where there were uneven 
numbers for equal distribution, preference was given to 
equally distribute the high and low groups.

Survival analysis

Survival validation was performed on the CMS1 
(n=79) and MSI (n=60) transcriptional profiles from the 460 
stage II/III transcriptional profiles with complete clinical 
information. Survival curves, comparing expression and 
treatment subgroups were plotted from patient details right 
censored at 36 months, to give 3-year relapse rates using 
GraphPad Prism version 5 for Windows. Cox Proportional 
Hazards analysis, using Stata version 11.2, was applied 
to evaluate recurrence-free survival according to CKLF 
gene expression levels within the CMS1 subgroup, within 
MSI tumors and in the entire cohort, prior to and after 
adjustment for age, sex, tumor stage and location, and 
receipt of adjuvant treatment. Stratified analysis was also 
conducted in untreated patients only, using the relapse data 
for the duration of follow up within the dataset (201 months 
maximum follow up). Categorical and continuous variables 
were compared between individuals with CMS1 tumors 
and the rest of the overall cohort using chi-squared tests 
and t-tests, respectively.
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