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Abstract

Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity
and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of
Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted
Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at
different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency
and upper harmonics of 1/f distributed spectral density of atomic variables, such as Ca atoms, dihedral angles, or polar
interaction distances. Frequency of perturbation was adjusted high enough (simulation length .,106period of a
perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (,,0.8 ns21) not to attenuate
the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete
Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns
yielded Ca displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic
variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while
phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements.
Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared
to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high
identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and
efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins.
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Introduction

Proteins are molecular machines with a variety of functions

facilitated by their intrinsic flexibility and dynamics [1–4]. Driven

by nonlinear atomic interactions, protein dynamics span a wide

range in time and spatial scale; hence protein fluctuations may be

viewed as nonperiodic transitions between hierarchically orga-

nized conformational substates [5–7]. Protein conformations and

dynamics are sensitive to various external disturbances, such as

changes in environment temperature [8,9], ligand binding [10,11],

or post-translational modifications [12]. According to population

shift paradigm, changing the surrounding environment, e.g. via

ligand binding, shifts the energy landscape of a protein,

redistributing the already existing populations of substates [13].

In expansion of this view, it was suggested that external

disturbances may also be transmitted as changes in dynamic

fluctuations without significant variation in backbone conforma-

tion [14].

Signal produced by local interaction with a ligand may reach

distant sites of the protein and this propagation mechanism of

regulatory signals is known as allostery [15]. Long range

communications in proteins have often been interpreted referring

to global (or collective) dynamics. A general method of elucidating

global motions comprises performing equilibrium Molecular

Dynamics (EMD) simulations on various states of proteins, such

as ligation states, and applying linear statistical methods, such as

correlation analysis and principal component analysis (PCA), on

the resulting atomic trajectories [16–18]. Recently, novel statistical

methods have been employed to elucidate the roles of nonlinear

and non-Gaussian components in proteins dynamics [4]. For

instance, nonlinear PCA was applied on peptides to increase the

percentage of explained fluctuations in the low-dimensional space

[19]; isomap algorithm was employed on folding simulation of

coarse-grained model of SH3 domain to represent the intrinsic

dynamics on a nonlinear manifold [20], and independent

component analysis was applied on T4 lysozyme to determine

collective motions with non-Gaussian distributions [21,22].

Another important aspect of global dynamics is vibrational

frequencies of collective modes, and various approaches, such as

Normal Mode Analysis (NMA) [23] and time series models [24],

have been used to investigate how distribution of vibrational

frequencies may change upon ligand binding.

Linear and nonlinear feature extraction methods yield collective

dynamics at global scale, thus obtained results are often at low

resolution. Elucidation of functionally important motions in

proteins, however, demands more detailed analyses which would

determine the dynamical roles of individual structural elements

and residues. Network analyses showed the significance of protein
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topology on information flow [25], so topology information has

been incorporated into residue communication analyses. Interac-

tion-correlation matrices of active and inactive states of rhodopsin

were determined using nonbonded energy fluctuations of residue

pairs during equilibrium MD simulations, and signaling pathways

were found to be different in two states of the protein [26].

Application of local feature analysis (LFA), which extracts sparsely

distributed collective motions, on T4 lysozyme gave a clearer

picture of how different parts of the protein may be moving

compared to that obtained by the sole application of PCA [27].

Recently, LFA and variance of inter-residue distances during the

simulations were utilized to determine independent dynamic

segments and allosteric communications in KIT receptor tyrosine

kinase [28]. In another interesting study, direction of information

flow between residues was determined using information theory

techniques [29].

Despite the progress in processor power in the recent years,

equilibrium MD simulations still cannot be extended to time scales

of functionally important conformational motions, and this

prevents identification of rarely-occurring and/or subtle function-

ally important atomic motions. MD perturbation methods are

used to overcome the difficulties encountered by equilibrium

simulations in elucidating how information is propagated between

distant sites and identify key residues contributing to these

communication paths. Anisotropic Thermal Diffusion (ATD)

[30] and Pump-Probe Molecular Dynamics (PPMD) methods

[31] are two of the pioneering examples of MD perturbation

methods, in which external perturbations were applied on local

regions of proteins to elucidate intramolecular signaling. In the

former study, a PDZ domain protein was equilibrated to 10 K

while the target part was coupled to a heat bath at 300 K, and

propagation of energy throughout the protein, quantified by root

mean square deviation (RMSD) from the minimized structure, was

monitored. In the latter study, an oscillating force of specified

magnitude was applied on Ca atoms of a PDZ domain protein to

induce a circular motion around an arbitrary axis, and couplings

between Ca atoms were determined. These studies aimed to

explain the mechanism of anisotropic energy transport in proteins

by suggesting energy transport channels comprising residues [32].

While both studies showed long range couplings between residues,

most of the perturbation energy was transferred through the

backbone, and side-chains were not perturbed sufficiently to

determine their contribution to intraprotein signaling [33]. In

Rotamerically Induced Perturbation (RIP) method developed to

remedy this problem [34], periodic perturbations at amplitudes of

60u were applied to side-chains of all residues and significant

residues in communication pathways were identified. In another

study focusing on side-chains, Monte Carlo samplings of side-

chain dihedral angles were performed on proteins with fixed

backbones, and single side-chain perturbations were found to be

transmitted to long distances [35]. Instead of atomistic MD

simulations, simplified networks of Ca atoms are used in

Perturbation-Response Scanning (PRS) methods, and residues

with significant contribution to displacements were determined by

applying random forces to different nodes [36,37]. Dynamic

character is given to network perturbation methods using

Markovian transmission models, in which relaxation of residues

upon a disturbance in initial conditions was monitored [38].

While having substantially increased our understanding of

intraprotein signaling, it is difficult to achieve unbiased contribu-

tion of backbone and side-chains to signal transduction using

existing MD perturbation methods [30,31,34,35], and parameters,

such as frequency, directionality and magnitude of applied

perturbations, have not been thoroughly elucidated. In order to

offer plausible solutions to these problems, we employed a novel

frequency response technique on Protein Tyrosine Phosphate 1B

(PTP1B) in the current study. PTP1B is a member of Protein

Tyrosine Phosphatase (PTP) family, which removes the phosphate

group from phosphotyrosine (pTyr) residues [39,40], and an

important target for diabetes, obesity and cancer [41–43]. While

the majority of crystal structures in Protein Data Bank (PDB)

showed that its flexible WPD loop adopted closed active

(WDPclosed) and open inactive (WDPopen) conformations in the

ligand bound and free states of PTP1B (Figure S1), respectively

[44,45], there exist a number of liganded WPDopen and free

WPDclosed structures [44,46]. Furthermore, WPD loop of Yersinia

PTP was shown to adopt open and closed conformations in both

free and liganded states in submilisecond scale [47]. Inhibition of

PTP1B via an inhibitor bound to a site, which is ,20 Å distant to

the active site, established allosteric inhibition in PTP1B [48].

Truncation of a7 on the C-terminus of the resolved PTP1B was

found to decrease the activity of PTP1B, while mutations on a7

were found to reduce the potency of inhibitors [49]. Adding C-

terminal domain of PTP1B to N-terminal domain was found to

influence the activity of the enzyme [50]. Computational studies

also revealed fine details of the collective motions in PTP1B, such

as coupling of WPD loop with a3, a6, L11 and active site waters

[51–53].

In this study, we employed restrained Targeted MD (TMD)

potential on WPD and R loops of PTP1B, and altered the target

function between WDPopen and WDPclosed conformations at

different frequencies. Discrete Fourier Transform (DTF) was

applied on the raw trajectories of atomic variables, such as Ca

atomic displacements, dihedral angles of side-chains and back-

bone, and distance of polar interactions. Perturbed atomic

variables were determined using statistical t-test, which detected

deviations from the linear slope of the log-log scale spectral

densities. Reconstructed trajectories of atomic variables at the

fundamental frequency were used to predict the conformational

response of the protein to the local disturbance, and phase angles

of the reconstructed trajectories were utilized to determine

dynamically coupled residues, which may play roles in signal

propagation from the flexible ligand binding loop of PTP1B. Four

Author Summary

Similar to a machine in which interactions between
different parts determine its function, signaling between
the residues of a protein may play an important role in
determining its function. External perturbations, such as
ligand binding to a local region, may trigger a global
response of the protein, manifested as perturbations in
positions or mobility of atoms. Here we introduce a
frequency response technique, in which a local periodic
perturbation is employed on a flexible loop of a protein,
and atomic responses are analyzed. Protein response
characteristics are found to be closely related to pertur-
bation frequency, so frequency analysis tools such as
power spectral densities and magnitude Bode plots are
utilized. Conformational change of the protein estimated
by this method is found to be consistent with that
determined from crystal structures. We cluster the phase
angles of side-chains dihedral angles to identify collective-
ly fluctuating residues, and determine a large number of
hydrophobic interactions, which help intraprotein signal
propagation. We believe that the suggested frequency
response technique will be a fine contribution to the
existing repertoire of perturbation methods.

Frequency Response Analysis of Proteins
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clusters of in-phase fluctuating residues with inter-cluster phase

differences of p/4 were identified. The first cluster of residues

made coupled fluctuations with the WPD loop, while most of the

residues in the second and third cluster moved collectively with the

R-loop. Phase difference between WDP and R loops was found to

be consistent with the experimental structures and the suggested

mechanism of WPD loop closure in the literature. Hydrophobic

interacting side-chains, backbone connectivity, intra- and inter-

backbone H-bonds were found to be the major actors in signal

transduction within clusters, with minor contributions from side-

chain polar interactions.

Results

Results are organized as follows. In the first section, method of

trajectory reconstruction to study the effects of perturbation signal

is explained. Experimental verification of the suggested method is

presented in the following section. In the third and fourth sections,

perturbed atomic variables are identified, and then clustered with

respect to their phase angles. Effect of perturbation frequency on

fluctuation amplitudes is elucidated in the final section.

Separating local disturbance signal from random atomic
fluctuations

TMD1 and EMD (see Materials and Methods) simulations both

were sampled at 1 ps for simulation periods of 80 ns. The target

structure in TMD1 simulation was altered between WPDopen and

WPDclosed structures at 2.5 ns intervals, thus the frequency of the

targeting function ( f0) was 0.2 ns21 (Figure 1A). The highly mobile

region comprising residues 281 to 298 (a7 and the loop connecting

a6 and a7) was not included in the structural analyses because of

the disordered nature of this region [44,52]. Aligning the Ca atoms

of Glu2 to Ala278, RMSD from the crystal structure of PTP1B

leveled off between 1.5 and 2.0 Å, showing that protein structure

was maintained in both simulations (Figure S2A). In EMD

simulation, WPD loop did not approach to its WPDclosed structure

(Figure S2B), while periodicity of the WPD loop opening/closing

motions was clearly observed in TMD1 (Figure S2C). A line of

slope 21.0 fits perfectly to all but the first ,10–12 frequency

components in the range of log-log plot of residue-averaged power

spectral density [54] in EMD and TMD1 simulations (Figure 1B).

Power (P ) spectra of both simulations overlap well, particularly for

f .0.15 ns21 (12th Fourier component). The spectrum of TMD1

shows peaks at the fundamental (base) frequency ( fb) 0.2 ns21,

equal to the TMD1 target function frequency, and at upper

harmonics ( fu), at 0.4, 0.6 and 0.8 ns21 (Figure S3).

Power at the fundamental frequency in TMD simulations is

used to distinguish the effect of perturbation signal from thermal

fluctuations. Making all the frequencies expect the fundamental

frequency (and its symmetrical component) zero and applying

inverse DFT for all Ca atomic trajectories, filtered (or recon-

structed) atomic coordinates are obtained. Benefit of the filtering

method may be better appreciated on trajectories of residues

which do not reside on WPD loop. For instance, diffusive motion

of Ser151 Ca atom on L11 clouded the local perturbation signal

on its z-component trajectory, so periodic fluctuations can be

observed only in its filtered trajectory, explaining 14% of

fluctuations (Figure 1C). Statistical significance of the power

observed at the base frequency in TMD simulations will be

discussed thoroughly in the following sections, nonetheless it

should here be emphasized that the same frequency component in

EMD simulation explained only ,0.05% of the total fluctuations.

This observation strongly suggests that the perturbation signal has

been transduced to L11, and though the contribution of noise to

atomic fluctuations may be high, signal may be distinguished from

thermal noise.

Comparison of predicted and experimental residue
displacements

A single Ca displacement vector representing the collective

conformational change of the whole PTP1B was obtained via

applying PCA on the reconstructed trajectories (Text S1 and

Figure S4), yielding reconstructed in-phase trajectories of Ca

atoms. Experimental residue displacements were obtained from

an initial set of 58 crystal structures (Table S1) from Protein

Data Bank (PDB), and this set was further reduced to 36

structures in order to overcome the bias introduced by L16

region, which adopts two different conformations in both

WPDopen and WPDclosed crystal structures (Text S2 and Figure

S5,S6). Correlation of experimental and predicted magnitude of

atomic displacements (Figure 1D) was found to be 0.97 and 0.76

for all Ca atoms and all Ca atoms excluding the TMD potential

applied region, respectively. Average residue displacements

(excluding R and WPD loops) were found to be 0.38 Å and

0.34 Å in TMD1 simulation and crystal structures, respectively,

showing the consistency of predictions with experimental

findings.

Figure 1. Frequency components of Ca trajectories in EMD and
TMD1 simulations. (A) Time evolution of the target function in TMD1

simulation. (B) Power spectral density per residue (or residue-averaged
MSF) for residues 2 to 278. Frequency components of EMD and TMD1

simulations are represented with black and blue solid lines, respectively.
Gray dashed lines represent the least-squares lines fit to power
spectrum. (C) Reconstructed trajectory of z-Cartesian coordinate of
Ser151 Ca atom using power at the base frequency in TMD1 simulation.
Raw and reconstructed trajectories are shown in black and blue,
respectively. (D) Amplitudes of Ca displacements determined from
WPDopen and WPDclosed crystal structures (black) and those estimated
using reconstructed in-phase trajectories (blue).
doi:10.1371/journal.pcbi.1003238.g001
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Directions of residue displacements during the conformational

transition of PTP1B determined from the reconstructed in-phase

signals and crystal structures were also found to be in agreement.

Overlap of the first eigenvector (p) of the reconstructed trajectories

with the atomic displacement vector determined from crystal

structures (d) is 0.86 and 0.66 for all Ca atoms and all Ca atoms

excluding the TMD potential applied region, respectively

(Table 1). To evaluate the quality of our predictions, we also

performed PCA [2,3] and linear response theory (LRT) method

[55,56] on the EMD trajectory. Overlap of single eigenvectors

with the experimental displacements was found to be very low;

only by taking the essential dynamics subspace composed of

twenty principle components (PCs), overlap values reached 0.59.

Mimicking the local interaction by an external force between Ca

atom of Asp181 on WPD loop and the center of mass of PO4 in

the WDPclosed crystal structure, overlap of LRT predictions with

experimental displacements was found to be 0.62. Accuracy of

predictions of the current method is easily on par with those from

conventional methods, hence an initial confirmation of the

frequency response method was obtained. The current method

was also found to be robust to perturbation frequencies, as

direction of atomic displacements was seen to be unaltered to

perturbations employed at periods of 2 ns and 1.2 ns (Figure S7

and Table S2). Relation between perturbation frequency and

protein response is elaborated in the last section, nonetheless it

should here be emphasized that similarity of atomic responses is

confined to low frequency perturbations only.

Identification of perturbed atomic variables
Spectral density of Ca displacements (Text S3) was analyzed to

detect whether power at the fundamental frequency was perturbed

during WPD loop transition. To deem significance to perturba-

tions in power spectra, a simple statistical method is suggested.

Based on the observation that energy spectral density for Ca

atomic fluctuations has ,1=f n distribution expect for the lowest

frequencies, a least-squares line is fit to the energy (or power)

spectral density (excluding the first 10 frequency components), and

one-sided upper confidence interval for energy at the base

frequency is determined using the standard least-squares proce-

dure [57]. If the power component at the base frequency exceeds

this confidence interval, then the null hypothesis that energy at the

base frequency has not been perturbed is rejected, showing that Ca

fluctuations of that residue are perturbed by the local disturbance

in TMD simulations. As a demonstration, power spectral densities

of Ca atoms of Cys215 and Asp63 in TMD1 simulation are shown

in Figure 2A,B. Cys215 is a catalytically essential residue in P-loop

and ,12 Å distant from Asp181, while Asp63 lies ,37 Å away

from Asp181. Although mobility of Asp63 was much higher than

that of Cys215, power of Cys215 at the base frequency exceeded

1% confidence limit, while that of Asp63 was below the 5% limit.

This indicates that the local disturbance in PTP1B increased the

amplitude of Cys215 fluctuations, but did not affect Asp63. Power

at the first five frequency components of Asp63 was significantly

higher than the least-squares line, showing that random diffusional

motion of Asp63, possibly independent of WPD loop fluctuations,

may be responsible for high mobility of this residue.

Mapping the significantly perturbed residues at the base

frequency to protein structure (Figure 2C) shows that a large

number of residues were perturbed by the local disturbance.

Fluctuation amplitudes of 87% and 77% of all residues at

confidence levels of 0.95 (a= 0.05) and 0.99 (a= 0.01) [57],

respectively, were found to be perturbed. Repeating the analysis at

different base frequencies by changing the number of perturbation

Table 1. Overlap of the residue displacements determined
from the reconstructed in-phase trajectories at the base
frequency, PCA, LRT method and crystal structures.

Overlap Residues 2 to 278 R and WPD loops excluded

d(a) and p 0.86 0.66

d and e1 0.07 0.11

d and e6
(b) 0.18 0.35

d and e10 0.34 0.13

d and e1-10
(c) 0.56 0.35

d and e1-20
(d) 0.72 0.59

d and l(e) 0.83 0.62

(a)d is the Ca displacement vector between the averages of WPDopen and
WPDclosed crystal structures in L16I conformation (see Text S2).
(b)Sixth and tenth (in the next row) eigenvectors are the single eigenvectors
obtained from EMD simulation having the highest overlap with the
experimental conformational change.
(c)Linear combination of the first 10 eigenvectors consistent with the
conformational change of PTP1B.
(d)Linear combination of the first 20 eigenvectors consistent with the
conformational change of PTP1B.
(e)l is the Ca displacement vector obtained by LRT method.
doi:10.1371/journal.pcbi.1003238.t001

Figure 2. Identification of perturbed Ca atoms. Power spectral
density of (A) Cys215 and (B) Asp63. MSF of Cys215 and Asp63 were
found to be 0.17 Å2 and 1.97 Å2, respectively. In both figures, solid blue
line is the least-squares line fit to the power spectrum (black), while red
and green dashed lines represent the 95% and 99% confidence limit
estimates, respectively, and square represents the power at the base
frequency. (C) Mapping of Ca atoms perturbed at significance levels of
95% (red) and 99% (cyan) on the three-dimensional structure of PTP1B.
Green regions are the structural elements on which TMD potential was
applied.
doi:10.1371/journal.pcbi.1003238.g002
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cycles (Figure S8) and length of TMD simulations (Table S3)

confirmed the robustness of the identification method of perturbed

residues (Text S4). Residues with unperturbed Ca atoms

(transparent in Figure 2C) lie mainly on the opposite face of

PTP1B, and on the C-termini of a3 and a7. Identification of a

large number of perturbed Ca atoms makes it necessary to include

other atomic variables in the analysis to obtain a higher resolution

picture of intraprotein signaling. For this purpose, backbone

dihedral angles, side-chain dihedral angles and polar interaction

distances were analyzed by the same method.

Dihedral angles are represented by circular data, so each

dihedral angle was transformed to a vector on a unit circle, as sine

and cosine components before employing DFT on its trajectories

[58]. Similar to the results obtained for atomic fluctuations, 1=f n

relation was captured in power spectral density of dihedral angles,

as demonstrated in two examples: y179 at the hinge of WPD loop,

and w215 in the P-loop (Figure 3A–D). Periodic motion is already

evident in the raw trajectory of y179, and power at 0.2 ns21

captures 68% of its mean square fluctuations (MSF). Although a

periodic pattern cannot be observed in the raw trajectory of w215, a

spike at 0.2 ns21 in the power spectrum shows that this dihedral

angle was also perturbed. In PTP1B, 33% and 21% of the

backbone dihedral angles were found to be perturbed at a= 0.05

and 0.01, respectively. Excluding R and WPD loops, percent of

perturbed backbone dihedral angles decreased to 25% and 13% at

a= 0.05 and 0.01, respectively. Compared to the high number of

perturbed Ca atoms, perturbed backbone dihedral angles formed a

smaller cluster surrounding the active site, making it easier to

analyze signal propagation (Figure 3E). Connectivity of b4, b10,

b11, and b12 to the active site suggests a plausible communication

path: Fluctuations in N-termini of R and WPD loops may perturb

the backbone atoms on b4 and b11, which, in turn, may perturb

b10 and b12 with the help of H-bonds formed between these b-

strands. WPD loop conformational transition was suggested to be

coupled to a3 and a6 motions in previous studies [48,52], and N-

termini of a3 and a6 were indeed found to be perturbed. Subtle

but statistically significant dihedral angle changes in a-helices (,8u
in a3, and ,4u in a6) suggest that small perturbations on the

structural elements may play roles in signal transduction. This

phenomenon is more vividly demonstrated in the P-loop (Table 2).

Although the catalytically essential P-loop is found to be negligibly

displaced between the WPDopen and WPDclosed crystal structures

except in oxidized state [59], the current analysis indicates a

significant increase in the mobility of the P-loop backbone dihedral

angles. Considering that perturbation signal was propagated to

regions surrounding the P-loop, such as L4, Q-loop and a4, subtle

perturbations in the active site of PTP1B may be significant in

global transduction of intraprotein signal [25].

Employing DFT on side-chain dihedral angles in PTP1B

showed that power at the base frequency of 46 residues (32 of these

residues reside out of R and WPD loops) was increased at a= 0.05

(Figure S9). Perturbed side-chains form a number of different

clusters, such as a set of contacting residues between b10-b11-b4,

or between a6-a19-a29 (see Figure 3E). These clusters are

examined in more detail in the following section.

Finally, distances between all polar interacting atoms in PTP1B

were examined by DFT. Power of 38 interatomic distances at

0.2 ns21 showed significant increase at a= 0.05. 27 of these atom

pairs formed H-bonds between the backbone atoms, while five of

the H-bonds were formed between Cys215 and the backbone

amides of P-loop, and the remaining six polar atom pairs belonged

to side-chains of four different residues. H-bonds formed between

the backbone atoms of b4, b10, b11, and b12 were perturbed,

corroborating the previous suggestion that H-bonds may

participate in the concerted motions of these four b-strands.

Identification of a high number of perturbed H-bonds between

backbone amide-oxygen atoms in a3, a4 and a6 indicates that H-

bonds may also play a role in signal transduction along the helices

(see Table 2). Perturbation of H-bonds formed between Cys215

and P-loop backbone amides is another indication of the

perturbation of the P-loop. Two other perturbed H-bonds

contributed by P-loop are formed with Q-loop, a catalytically

important element of PTP1B [60], and L4, part of a highly

conserved region among PTP family (named motif 4 [61]),

indicating diffusion of perturbation signal from the active site to

outer regions via H-bonds.

Clustering of perturbed atomic variables with respect to
phase angles

Fluctuation of two atomic variables at the same frequency does

not guarantee a concerted (collective) motion, i.e. correlation of

two Ca atoms fluctuating with a phase difference of p/2 at the

same frequency is equal to zero. Phase angles of the reconstructed

trajectories of atomic variables should be similar so that they may

be presumed to fluctuate collectively. Phase angle represents the

relative position of a periodic motion from an arbitrary starting

Figure 3. Identification of perturbed backbone and side-chain
dihedral angles, and polar interactions. (A) Raw trajectory (black),
reconstructed trajectory (blue), and (B) power spectral density (Pf) of
y179. (C) Raw trajectory (black), reconstructed trajectory (blue), and (D)
power spectral density of w215. Coloring and line styles in the power
spectra are identical to those in Figure 2A,B. (E) Residues with perturbed
backbone dihedral angles (cyan), side-chain dihedral angles (purple), H-
bonds (black dashes lines) at a significance level of 95%. Residues with
yellow side-chains and green backbone belong to the structural
elements on which TMD potential is applied. Side-chains participating
in perturbed polar interactions are colored with respect to their atom
types and labeled.
doi:10.1371/journal.pcbi.1003238.g003
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point in time, and has a range of 2p. A phase angle difference of p
implies two anti-correlated signals, i.e. maxima of the first signal

coincide with the minima of the second signal. Residue correlation

maps constructed using Ca displacements are based on this

interpretation; correlated residues move in the same direction,

while anti-correlated residues move in opposite directions [9,16].

Unlike the Cartesian frame of reference used to compute residue

displacement correlations, a dihedral angle is determined by the

relative position of two planes formed by four consecutive atoms.

Hence, it is not possible, without a detailed structural analysis, to

suggest that two different dihedral angles with a phase difference of

p are correlated or anti-correlated. Therefore in the current study,

range of phase angles was limited to p and two dihedral angles

fluctuating with a phase difference of zero or p were assumed to

make a concerted motion. To cluster the circular phase angle data

[58] in the range of p, phase angles are mapped to a two-

dimensional plane of axes, cos(2h) and sin(2h). Hence, one rotation

around the origin would correspond to a phase difference of p; for

instance, two signals with phase angles of p/12 and 11p/12,

respectively, would only be separated by a phase difference of p/6.

Perturbed polar interactions are not included in this analysis,

since in-phase fluctuations of a pair of atoms may yield out-of-

phase interatomic distance fluctuations (Figure S10), thus giving

misleading results in clustering. While phase angles of the

perturbed side-chain and backbone dihedral angles are distributed

all over the unit circle (Figure 4A,C), they are mostly concentrated

in the upper right quadrant (0,h,p/4). Lack of well-defined

separate clusters led us to classify phase angles by dividing the unit

circle into bins of equal intervals. Unit circle was divided into four,

taking each quadrant as a separate cluster, i.e. range of phase

angles in a single cluster was taken to be p/4. Figure 4B shows the

normalized reconstructed trajectories of perturbed side-chain

dihedral angles, colored with respect to their clusters in two-

dimensional phase-angle plane. There is a distinguishable phase

difference between the trajectories of the first and second clusters,

which are most populated clusters. Clustering the phase angles of

Ca displacements (Figure 4D) shows that the first cluster comprises

77% of residues, which span all over the protein (figure not

shown). A higher resolution picture of the signaling network is

obtained via coloring the residues with respect to their cluster

numbers on the PTP1B structure (Figure 4E). Residues comprising

the first cluster (gray vdW spheres) spread over PTP1B, from a29

to L4, and particularly concentrated on the WPD loop and the

regions on the opposite side of R-loop. The second cluster residues

(blue vdW spheres) mostly reside on the R-loop and b-strands. The

third and fourth clusters mainly consist of two small sets of

residues, making nonbonded contacts on the other side of PTP1B.

Following is a more detailed examination of each cluster of atomic

variables.

The first cluster mostly comprises atomic variables associated

with the conformation transition of WPD loop. Signals propagate

to outer regions of PTP1B on both sides of WPD loop and to the

protein core, so each region located at different sites on PTP1B

was investigated separately as a subgroup of the first cluster for

easier analysis of their spatial organization. The first subgroup of

residues is located in the vicinity of WPD loop extending to its

right side (Figure 5A). In-phase fluctuating side-chains of Tyr153

on L11, Tyr176, Trp179 on the WPD loop, Phe191 and Leu192

on a3, Arg221 on P-loop, Gln266 on Q-loop and Phe269 on a6

form an extensive network of hydrophobic interactions, suggesting

a plausible mechanism for the concerted perturbations in the

dihedral angles of WPD loop, a3, P-loop and Q-loop and a6

(Table 3). These residues (except Phe191) have high identity

among human PTP domains [61], while significance of Phe191

and Leu192 in allosteric inhibition and Tyr153 in WPD loop

dynamics was recognized in previous studies [48,52]. Side-chain

conformation of Arg221 is a determinant of WPD loop

conformation [45] and Gln266 is known to make subtle

conformational changes upon repositioning of active waters during

WPD loop transition [46,53]; additionally, significance of both

residues in catalysis has been confirmed by mutational studies

[62,63]. Therefore, structural and functional importance of the

perturbed residues in the vicinity of WPD loop recognized by

experimental studies supports the reliability of our method. Side-

chains of Phe7 and Trp16 on a19–a29, Arg268 and Tyr271 on a6

made in-phase fluctuations with WPD loop motions, extending the

network of hydrophobic interactions. Concerted motion of these

side-chains gives a plausible explanation of how Ca atoms on a19–

a29 were perturbed at the same phase angle with WPD loop

transition (figure not shown).

Table 2. Distribution of atomic variables perturbed at a= 0.05 among structural elements of PTP1B.

Structural element (a)Ca atoms Backbone dihedral angles Side-chain dihedral angles Polar interactions(b)

a19–a29 (6–26)(c) 21 4 4 0

b4 (106–109) 4 2 2 4

b10 (154–162) 9 5 2 1

b11 (168–175) 8 5 3 4

b12 (211–214) 4 3 0 4

a3 (188–202) 12 7 3 6

a4 (222–237) 16 8 3 7

a6 (267–280) 14 9 4 5

pTyr recognition loop (44–50) 7 1 2 2

L4 (85–90) 6 2 2 4

P-loop (215–221) 7 7 2 7

Q-loop (260–266) 7 6 1 2

(a)Each column shows the number of perturbed atomic variables in each structural element except R and WPD loops.
(b)This column represents the number of residues participating in perturbed polar interactions.
(c)Numbers in parentheses show the residue numbers of each structural element.
doi:10.1371/journal.pcbi.1003238.t002
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The second subgroup of atomic variables plays a role in signal

transduction to the core of PTP1B (Figure 5B). Concerted motion

of Phe191 and Phe225, which make hydrophobic interactions, was

coupled to fluctuations of Asp229 and Arg79. It was also observed

that salt bridges between Arg199, Arg79 and Asp229 were

perturbed, indicating a partial contribution of polar interacting

side-chains to signal propagation. The last subgroup lies on the left

side of WPD loop (Figure 5C) in the vicinity of R-loop. Side-chains

of Lys116 and Lys120 on the R-loop and backbone of Cys121

make nonpolar contacts with pTyr recognition loop, L4 and P-

loop. Side-chain of Arg45, which formed H-bonds with the

backbone oxygens of Gly86 and Pro87, made in-phase fluctuations

with WPD loop transitions. Contribution of P-loop to these

fluctuations can be deduced from in-phase fluctuations of its

backbone and one perturbed H-bond between backbone polar

atoms of Ser216 and Gly86. Backbone dihedral angles of b9, b10,

b11, b4 and b12, which span PTP1B from its outer rim to its

center, made collective fluctuations. There were only two side-

chains (Leu158 and Leu172) which contribute to these collective

motions, indicating that the perturbation signal is likely to

propagate through the b-strands via i) backbone connectivity to

the R-loop, WPD loop and P-loop, and ii) H-bonds between

backbone atoms.

Most of the perturbed side-chain and backbone dihedral angles

in the second cluster belong to residues residing on R-loop (see

Table 3). Arg112, Lys116 and Phe182, which play roles in

stabilizing WPD loop conformation [45,53], made collective

fluctuations with the backbone of R-loop. Surrounded by

Asn111, Arg112, Val113, Cys121 and His175, invariant Met109

participates to a hydrophobic interaction network with His173,

Leu158, indicating a plausible signal propagation path from R-

loop to the outer b-strands (Figure 5D). Side-chain of the highly

conserved Val108 contributed to these in-phase fluctuations,

propagating the signal to the interior b-strands (b12 and b3) of

PTP1B. It is interesting that the side-chains of Cys215 and Trp16,

Figure 4. Clustering the perturbed atomic variables with
respect to their phase angles. (A) Phase angles of perturbed side-
chain dihedral angles on cos(2h)-sin(2h) plane. (B) Normalized
reconstructed trajectories of the perturbed side-chain dihedral angles.
Phase angles of the perturbed (C) backbone dihedral angles and (D) Ca

displacements on cos(2h)-sin(2h) plane. Clusters are numbered in
clockwise direction, starting from the first cluster on the upper right
quadrant, and colored black, blue, red and green, respectively. On each
quadrant of cos-sin planes, percentages of perturbed atomic variables
in the corresponding cluster are shown. (E) Residues with perturbed
side-chain and backbone dihedral angles are mapped on PTP1B, and
colored with respect to their cluster numbers, except for the first
cluster, which are colored gray instead of black for easier visualization.
Perturbed side-chains are shown with vdW spheres, scaled by 0.86vdW
radii, and perturbed backbone dihedral angles are shown on the ribbon
backbone. Phase angle and reconstructed trajectory of Trp179 x2
dihedral angle, representative of the conformation transition of the
WPD loop, are shown in yellow in (A) and (B), respectively.
doi:10.1371/journal.pcbi.1003238.g004

Figure 5. Atomic representations of in-phase fluctuating
residues in the first two clusters of atomic variables. Residues
with perturbed side-chains in the first cluster contributing to the
interactions between (A) WPD loop, L11, a3, P-loop, Q-loop, a6, a19 and
a29; (B) WPD loop, a3, a4, b2 and b3; (C) WPD loop, pTyr recognition
loop, L4, b4, b9, b10, b11, b12 and P-loop. (D) Residues with perturbed
side-chains in the second cluster. In all the figures, residues with
perturbed side-chains are colored with respect their atoms (nitrogen in
blue, oxygen in red, carbon in gray), residues with perturbed backbone
dihedral angles are colored in purple, and perturbed H-bonds are
shown with black dashed lines. Perturbed side-chains participating in
hydrophobic and polar interactions are shown in vdW spheres, with
0.76vdW radii for easier visualization, and licorice representation,
respectively.
doi:10.1371/journal.pcbi.1003238.g005
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backbone of a29 and a6 (Figure 5D) and N-terminal Ca atoms of

a7 (figure not shown) were also found to be coupled to these

fluctuations. One possible mechanism of signal transduction to

these regions is via the polar interactions between Cys215 side-

chain and backbone amides of P-loop, and the H-bond between

the backbone atoms of Ile219 and Ile261. A perturbation in Q-

loop may affect a29 via hydrophobic interactions with Trp16, and

a7 through its backbone connectivity to a6, suggesting a coupling

mechanism between Q-loop and a7 [52].

The third cluster consists of in-phase perturbed side-chains of

residues located in two distant regions; side-chains of Glu115,

Asp181 and Phe182 and backbone atoms of R and WPD loops

formed the first subgroup, while side-chains of Trp96 on a2,

Tyr124 on L8, and Leu160 on b12, making hydrophobic contacts,

formed the second subgroup (Figure S11A). The fourth cluster of

perturbed side-chains comprises Asn44, Gln61, Trp100, Lys116

and Leu160, and Lys116 and Leu160 make hydrophobic

interactions (Figure S11B). Compared to the first three clusters,

signaling pathways between the side-chains in the fourth cluster

are less evident.

Effect of forcing function frequency on the magnitude of
residue perturbations

In linear systems, input frequency affects the amplitude of

output response (see Material and Methods). To examine the

response of PTP1B to different frequencies, 13 different TMD

simulations were performed at cycling periods of 30 ps

(f0 = 33.3 ns21, w0 = 209 rad/ns) to 5 ns (Table S4). Magnitude

Bode plots were plotted for each Ca atom using the amplitude of

fluctuations at the base frequency in each TMD simulation, and

stable and minimum-phase systems with a single state were fitted

to frequency responses [64]. 60% of Ca displacements (Table S5)

were found to be well represented by lead-lag transfer functions

(Equation 14) and tp was found to be greater than tz for most of

the cases (Figure 6A–C). The 95th percentile of tp and tz were

found to be 220 ps and 210 ps, respectively, giving approximate

upper limits for these parameters. Using medians of these

parameters, a simple yet informative model of Ca dynamics may

be as represented as follows:

y sð Þ
Kp

~ 0:5z
0:5

(60ps)sz1

� �
u sð Þ ð1Þ

This transfer function states that ,50% of the final displacement

of a Ca atom will be realized immediately following the step

disturbance, while the rest of the displacement will be in the same

direction to its initial perturbations as a first-order relaxation

process with a time constant (tp) of 60 ps. For 5% of Ca atoms, tp

was found to be smaller than tz (Figure 6D,E), indicating that

relaxation of these Ca atoms would be in the opposite direction to

their initial response. The latter response was observed mostly in

R-loop residues (Figure S12). About 28% of Ca atoms, though

showing monotonic trends in their Bode plots, could not be

satisfactorily modeled using a single state (Figure 6F,G), while the

rest of the Ca atoms showed either no trend, or second-order

characteristic in their Bode plots (Figure 6H,I).

Discussion

Allostery has been suggested to be a common feature of all

proteins [14]. To have a better understanding of allostery, one

Table 3. Clustering of residues with respect to phase angles of reconstructed side-chain and backbone dihedral angle trajectories.

Cluster no. Residues with perturbed side-chain dihedral angles
Structural elements with perturbed
backbone dihedral angles

1 Phe7, Trp16, Arg45 (a)(100%), Arg79, Leu110, Lys116, Lys120 (80%), Tyr153 (60%), Leu158, Leu172,
Tyr176 (100%), Trp179 (100%), Phe191, Leu192 (80%), Arg221 (100%), Phe225 (40%), Asp229 (80%),
Gln266 (90%), Arg268, Phe269 (80%), Tyr271

WPD loop, P-loop, Q-loop, a3, a4, a6, b4,
b10, b11

2 Trp16, Gln85, Val108 (80%), Met109 (100%), Arg112, Met114, Glu115 (100%), Lys116 (60%), Gly117 ,
Lys120 (80%), Leu158, His173, Phe182, Cys215 (100%)

R-loop, Q-loop, b3, b4, b12, a29, a6

3 Trp96 (100%), Asn111, Tyr124 (100%), Leu160 (40%), Asp181 (80%), Phe182 R-loop, P-loop, L8

4 Asn44 (90%), Gln61, Trp100 (90%), Leu160 (40%) R-loop, WPD loop, P-loop, b9, b10, b11, a3

(a)Percentage in the parenthesis represents the amino acid identity among 37 human PTP domains [61].
doi:10.1371/journal.pcbi.1003238.t003

Figure 6. Magnitude Bode plots of Ca atomic displacements.
Fluctuation amplitudes (blue points) of Ca atoms of (A) Asp181, (B)
Phe191, (C) Phe269, (D) Lys120, (E) Thr175, (F) Thr178, (G) Tyr176, (H)
Pro89 and (I) Cys32 determined at different perturbation frequencies
(rad/ns). Red lines represent the fitted lead-lag transfer functions.
doi:10.1371/journal.pcbi.1003238.g006
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must discern intraprotein signal propagation mechanisms. Previ-

ous studies have shown that intraprotein signals may be

transduced via backbone connectivity, networks formed by side-

chains and H-bonds [65–67]. In the current study, a simple yet

efficient tool is developed to identify signal transduction pathways

in proteins. Local periodic perturbations in the form of TMD

potentials were given to R-loop and WDP loop, which assumed

two distinct conformations in the crystal structures of the free and

ligand bound states of PTP1B, and the resulting trajectories of

atomic variables were analyzed by statistical tools. As opposed to

simplified networks representations [35–38], implicit solvent

models [31,34,35] and low temperature simulations [30], which

may cause superfluous increase in signal to noise ratio, MD

simulations were performed with explicit solvent at 300 K and

without any backbone constraints. Direction and amplitude of

applied perturbations were predetermined from functional local

conformational changes seen in crystal structures, hence the

resulting protein response may be related to function. Using power

at the fundamental frequency of Ca atoms, conformational

transitions of regions on which TMD potential was not directly

applied were found to be consistent with those from crystal

structures. Spectral densities of atomic variables were observed to

vary as 1=f n for a wide frequency range, and the linearity of log-

log plot of spectral density was exploited to determine the

significantly perturbed atomic variables. In the literature, 1/f

spectrum of fluctuations was observed in resistance of metals [68],

and also in protein dynamics [69,70], and anomalous diffusion was

suggested to be one of the mechanisms which could explain this

behavior [71]. In the current study, the first ,10 frequency

components showed significant deviations from 1/f spectrum (see

Figure 1B,S3). This may be a consequence of nonstationary and

diffusive character of protein dynamics being manifested through

low frequencies [72]. Hence, number of TMD cycles should be

sufficiently large (.10) during the whole simulation to prevent

random diffusional motions from dominating the base frequency.

Difficulty of constructing signaling pathways using the large

number of perturbed Ca atoms made it necessary to employ the

suggested method on backbone and side-chain dihedral angles and

distances between H-bonding pair of atoms. Various studies

focused on these atomic variables separately to determine residue

couplings in proteins [35,66,67,73], while correlation between

backbone and side-chain conformations and H-bonding networks

was also recognized [74,75]. Mapping perturbed atomic variables

on the structure of PTP1B showed that these variables were

concentrated around the active site, particularly in the vicinity of

WPD and P loops, diffusing to the outer regions, corroborating the

significance of active and ligand binding sites in protein structure

networks [25]. It is important to note that conventional tools may

fail in identifying correlated motions of side-chains due to

transitions between rotamers. Rotamer transitions inflate the

lowest frequency components of dihedral angle trajectories, but

Fourier coefficients will decay as frequency increases. Hence,

perturbations at medium frequencies, higher than those that are

substantially affected by the rotamer transitions, isolate side-chain

responses to the local disturbance at the base frequency.

Mapping the perturbed side-chain and backbone dihedral

angles on PTP1B structure showed that it was possible to identify

interaction networks mainly by examining the nonbonded con-

tacts between the perturbed side-chains, while perturbed back-

bone conformations and H-bonds made subtle contributions to

identification of the networks. In-phase fluctuations of backbone

dihedral angles of a3, a4, and a6 and the surrounding side-chains

provide evidence for ns-correlation between these atomic variables

[75] and cooperation of backbone connectivity and nonbonded

interactions in signal transduction. In future applications on other

proteins and perturbation sites, different combinations of vari-

ables, i.e. displacements of Ca atoms and dihedral angles of side-

chains, may give better results depending on protein structure and

signaling routes. In the current study, clustering was achieved by

dividing the phase angles into four equal bins of p/4. Since the

base frequency should not be higher than ,0.8 ns21, there may

be .100 ps difference in the fluctuations of the atomic variables

within the same cluster. One may decrease the bin width of phase

angles for identification of residue couplings in higher resolution.

Alternatively, unsupervised clustering methods may be utilized

depending on the distribution of phase angles. For instance,

employing K-means clustering [76] on the phase angles did not

change the first two clusters, hence the current clustering method

was unaltered.

The first cluster of atomic variables represents the protein

fluctuations coupled with the WDP loop, while the second and

third clusters may be significant in maintaining the coupled

motions of the b-strands in the core of PTP1B with the R-loop, Q-

loop and a7. Abundance of hydrophobic interactions between

perturbed side-chains corroborates the view that clusters of

hydrophobic side-chains, particularly bulky aromatics [35],

around the active site may be dynamically correlated and

functionally important [73]. A smaller number of side-chains

making polar interactions are also identified as parts of residue

interaction network [66]; for instance, salt bridge between Asp229

and Arg79 is likely to play a role in transducing the signal from the

WPD loop to the core of PTP1B. Most of the perturbed polar

interactions consist of H-bonds formed between backbone atoms,

playing roles in signal transduction along helices and between b-

strands. Many perturbed residues are found to be moderately to

highly conserved among human PTP domains (Table 3), suggest-

ing that conserved residues may be important in coupled motions

and signal transduction [77]. Here, we hypothesize that residues

on the identified interaction networks are significant in signal

propagation from WPD loop to the rest of the protein, but does

that compel a communication in the reverse pathway also?

Allosteric site in PTP1B comprises a3, a6 and a7 [48], and the

current study shows that side-chain fluctuations of residues on the

N-terminus of a3–a6 and Ca atoms on the N-terminus of a7 are

coupled with WPD and R-loop fluctuations, respectively. Com-

munication in reverse pathways was recognized previously

[30,31], hence residues proposed to contribute to signal transduc-

tion in the current study may particularly be helpful in guiding and

interpreting future experimental studies on allosteric inhibition of

PTP1B, a topic of gaining recent importance [78].

Traditionally in linear systems theory, phase angle between two

signals is interpreted as time delay, and this interpretation was

adopted in a previous study to determine the response times

between different residues [31]. We, on the other hand, suggest

that this interpretation may be incorrect when atomic variables are

taken into consideration. R-loop fluctuations may be given as a

representative example to clarify this issue. Although difference in

R-loop conformations between WPDopen and WPDclosed crystal

structures is not significant, importance of R-loop mobility was

recognized previously for WPD loop transitions [46,79]. In our

analysis, most of the R-loop backbone and side-chain dihedral

angles was in the second and third cluster, i.e. the phase difference

between the WPD loop and R-loop residues was p/4-p/2. This

result is consistent with experimental results, i.e. net displacement

of most of R-loop residues between the beginning and end of

WPD loop transition is small, whereas R-loop residues may

fluctuate significantly during the transition. An idealized case of

WPD loop and R-loop fluctuations with a phase angle difference
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of p/2 may be visualized as follows: As WPD loop moves to its

closed conformation, R-loop initially moves away but then

return to its initial conformation. We should nevertheless warn

the reader about a potential artifact in TMD technique.

Recently, it was suggested that TMD related techniques may

be biased in the order of conformational transitions, i.e. large-

scale changes are likely to occur earlier than small-scale changes

[80]. It is possible that this phenomenon may affect the phase

angles of atomic variables in our study and requires attention in

the future studies.

Bode plots of most of the Ca atoms showed low frequency

asymptotes, indicating that fluctuations of most of the Ca atoms

would be significantly attenuated at frequencies higher than a

specified value. In previous studies, perturbations were frequently

employed at ps scale periods [30,31], but effect of perturbation

frequency on the protein response has not been investigated

thoroughly. Here, we show that perturbation frequencies should

be lower than the breakpoint frequency (wc) for the perturbation

signal propagate effectively through the protein. Approximate

transfer functions of Ca displacements were constructed using

magnitude Bode plots, and the largest time constants of Ca

displacements were found to be ,200 ps, making wc equal to ,5

rad/ns (fc = ,0.8 ns21). Hence, perturbations with frequencies

higher than 0.8 ns21 would lead to dampening of transmitted

periodic signal, and the observed coupled motions would not be a

faithful representation of the collective response of the protein.

Application of low frequency perturbations is also important in

increasing the contribution of side-chains to propagation of

perturbation signal [33].

Previously, Markovian transmission models were utilized to

examine and classify dynamic responses of residues to initial

perturbations [38]. Though the motivation, i.e. to elucidate time-

dependent dynamics of residues, is similar to that in our study, the

employed methods vary significantly. Time-domain response of

residues to initial perturbations may be informative in the presence

of negligible noise, e.g. network models, but in the more realistic

environment of MD simulations with explicit water, frequency

response analysis is more convenient to extract time-dependent

dynamics. In the current study, response of Ca atoms can be

classified into two main groups based on their transfer functions.

Evenly distributed over PTP1B, the first group consists of Ca

atoms with initial responses in the same direction with their final

displacement upon perturbation. Most of the Ca atoms in the

second group reside on R-loop and the preceding b4, and the

initial responses of these atoms are in the opposite direction to

their final displacement. This model complements the role of R-

loop dynamics in WPD loop conformational transition, discussed

above. R-loop residues move away from their equilibrium

positions initially, but tend to return to their initial positions as

WPD loop transition proceeds. One should also be cautious in the

interpretation of the lead element, which suggests that Ca atoms

should give an immediate response to local perturbations. While it

is physically impossible for the perturbation signal to be

transduced immediately, it takes less than ,10 ps for a local

perturbation signal to be propagated through the whole protein at

a speed of 5 Å.ps21 to 14 Å.ps21, as suggested in the literature

[30,31]. Considering that period of the fastest local perturbation

was 30 ps in the current study, the instantaneous response

suggested by the lead element should be interpreted as a response

within the first ,10 ps.

The current study has also yielded some interesting questions.

Are higher harmonics observed in the frequency spectra a

consequence of the rectangular form of input function, or

nonlinear nature of the protein machine [81]? Are different Bode

plots characteristics of residues related to their functional roles? It

is expected that future applications of frequency response

techniques on other proteins will not only enrich our understand-

ing of allostery, but also improve the current method by

illuminating these and other issues.

Materials and Methods

Equilibrium Molecular Dynamics (EMD) simulations
Initial atomic coordinates for WDPopen and WDPclosed struc-

tures and crystal structure waters within 6 Å of PTP1B were

obtained from PDB [82] with PDB IDs 2F6F [49] and 1SUG [46],

respectively. Cys215 was taken in thiolate form [83], while Asp181

was protonated [84]. In the crystal structure of 2F6F, residues 23

to 0 were truncated and Phe295 was back mutated to Ser295. In

1SUG crystal structure, Leu299 was removed and Met1 was

added to this structure using 2F6F structure as a template. Missing

side-chain and hydrogen coordinates were estimated using psfgen

package of VMD [85]. TIP3 waters were added within a layer of

10 Å of the protein in a rectangular box of 79.6680.5669.1 Å,

and the system was neutralized by adding sodium and chloride

ions. Particle mesh Ewald method [86] and a non-bonded cutoff of

12 Å were employed on the system containing 4830 protein atoms

and 12000 water molecules. NAMD [87] program was used with

the CHARMM27 forcefield with cmap correction [88], and

thiolate CHARMM forcefield parameters were taken from

Foloppe et al. [89]. Minimization of 3000 steps was followed by

a gradual heating to 300 K at an integration time step of 1 fs.

Equilibrium simulations were performed at a constant tempera-

ture of 300 K using a damping coefficient of 5 ps21 for Langevin

temperature control, and at a constant pressure of 1 atm using

100 fs and 50 fs as the oscillation period and the damping time

scale, respectively, for Nose-Hoover Langevin piston pressure.

Two equilibrium MD simulations of 40 ns length in both

conformations were performed, and representative snapshots were

taken as target structures to be used in TMD simulations. An

additional EMD simulation of 80 ns length in WPDopen confor-

mation was performed, as a reference equilibrium simulation to be

compared with TMD simulation of the same length.

Restrained Targeted Molecular Dynamics (TMD)
simulations

A subset of atoms is driven to a target conformation in

restrained TMD simulations with holonomic constraint [90].

TMD force on each atom in the subset is computed by the

gradient of the following potential:

UTMD tð Þ~ k

2N
RMSD tð Þ{RMSD� tð Þð Þ2 ð2Þ

where RMSD(t) is the RMSD between the current and target

coordinates, and RMSD*(t) is a positive scalar linearly decreasing

from the value of the initial RMSD between the first and target

structures to zero. In the current study, TMD potential was

initially applied on WPD loop atoms only, but side-chain of

Glu115 on R-loop was seen to hinder the closure of WPD loop

[46,79], so TMD potential was extended to include R-loop atoms

also. Smallest spring constant k rendering periodic WPD loop

transitions [91] was found to be 3000 kcal?mol21?Å22 by trial and

error. Analysis of the WPD loop trajectory on the reduced PC

plane and repeating the analysis using TMD simulations with a

smaller k value showed the robustness of the current results (Text

S5 and Figure S13, S14, S15, S16, S17). Target structures were

altered between the equilibrated structures of PTP1B in WPDopen
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and WPDclosed conformations. A set of TMD simulations was

performed to elucidate the effect of perturbation frequency on the

response of atomic variables (see Table S4).

Principal Components Analysis (PCA)
PCA is a conventional statistical tool used in dimension

reduction of multivariable data [92], hence a convenient tool to

handle the high number of degrees of freedom in proteins [93]. In

traditional application of PCA, snapshots of Ca coordinates are

placed in succeeding rows of a trajectory matrix X, in which each

row consists of 3N variables (coordinates), with N equal to number

of Ca atoms. Spectral decomposition of the covariance matrix (C)

of X gives the eigenvectors matrix P and eigenvalues matrix L,

whose diagonal elements li are the variances of the collective

coordinates on the eigenvector pi (principal axes).

C~
1

N
X{ �XXð Þ X{ �XXð ÞT~PLPT ð3Þ

Here, indices of eigenvectors are ranked in decreasing order of

eigenvalues, hence the first few eigenvectors are assumed to

capture the significant variation of the data. Collective coordinates

(ti) in principal component (PC) subspace can be determined via

projecting the mean-centered trajectory matrix (X ’~X{ �XX ) on a

subset of eigenvectors, such as the essential subspace (Pi):

ti~X ’Pi ð4Þ

Projecting the collective coordinates back to the original variable

space removes the orthogonal components to the reduced PC

plane, practically acting as a filter.

X̂X ’~tiP
T
i ð5Þ

Comparison of predicted and experimental residue
displacements

Overlap (I ) and correlation coefficient are two metrics used to

compare the residue displacements estimated via PCA with those

obtained from crystal structures [94]. Taking pij as the contribution

of the i th variable on the j th eigenvector from PCA, and di as the

displacement of i th variable (Cartesian coordinates of Ca atoms)

between two crystal structures, overlap of j th eigenvector is defined

as follows:

Ij~

P3N

i

pijdi

����
����

P3N

i

p2
ij

P3N

i

d2
i

� �1=2
ð6Þ

Overlap measures the similarity of the residue displacement

directions determined by the experimental and computational

methods. Correlation coefficient, on the other hand, measures the

similarity of the overall pattern of amplitudes of displacements:

cj~
1

N

PN
i

Rij{�RRj

� �
Di{�DDð Þ

PN
i~1

Rij{�RRj

� �2PN
i~1

Di{�DDð Þ2
� �1=2

ð7Þ

Here, Rij and Di are the amplitudes of displacement of the i th Ca

atom determined by the j th eigenvector and crystal structures,

respectively, while �RRj and �DD represent the average displacements

in each set. In the current study, a single eigenvector (j = 1) is used

in results obtained from TMD simulations, thus the second

subscript in p and R vectors and the single subscript in I and c

values are omitted. For the EMD simulation, eigenvectors are

denoted by ej, in which the subscript j represents the index of the

eigenvector.

Discrete Fourier Transform (DFT)
Discrete Fourier Transform (DFT) is the Fourier analysis

applied to discrete periodic data to decompose the signal into

harmonic sinusoidal components. For a discrete N-periodic time

series xn, n = 0, 1,…, N-1, DFT is computed as

Xk~
XN{1

n~0

xne{i2pkn
N ð8Þ

Here, Xk is a complex number representing both the amplitude

and phase of the kth sinusoidal component. The original series xn

can be recovered using inverse DFT (IDFT) as

xn~
1

N

XN{1

k~0

Xke
i2pkn

N ð9Þ

Parseval’s relation states that energy of a signal (E), which is equal

to the squared sum of signal values in time domain, can be also

obtained by the squared sum of the magnitude of the DFT

coefficients [54].

E~
XN{1

n~0

xnj j2~
1

N

XN{1

k~0

Xkj j2 ð10Þ

When the signal is mean-centered, i.e. deviation of the trajectory

from its mean value, power of the signal is equivalent to its MSF:

E

N
~P~

1

N

XN{1

n~0

xnj j2~MSF~
XN{1

k~0

Xk

N

����
����
2

ð11Þ

Hence, contribution of kth periodic component to MSF is equal to

Xk

N

����
����
2

(Text S6).

Laplace domain representation of linear systems
Analysis of linear systems may be difficult in time domain

representation. A more convenient representation is achieved via

transfer functions (Gp) in Laplace domain. Transfer functions

contain all the dynamic and steady state information about a

system, thus classification of systems is easier in Laplace Domain.

For instance, a first order lag system is represented in time domain

with the following representation:

tp
dy tð Þ

dt
zy tð Þ~Kpu tð Þ ð12Þ

where tp and Kp are time constant and steady state gain,

respectively; u and y are the input and output of the system,

respectively. The transfer function representation of the same

system is shown as follows:

y sð Þ~ Kp

tpsz1
u sð Þ~Gp sð Þu sð Þ ð13Þ
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where s is the complex variable in Laplace domain [95]. In the

current study, a lead element, which increases the speed of

response, is added to the numerator of the transfer function, thus

the resulting system is a lead-lag system:

y sð Þ~ Kp tzsz1ð Þ
tpsz1

u sð Þ~Kp
tz
�
tp

z
1{tz

�
tp

tpsz1

 !
u sð Þ ð14Þ

In this equation, tz represents the time constant of the lead

element, and response characteristics depends on tp and tz/tp

ratio (Text S7).

Frequency response of linear systems
Frequency response analysis is a powerful tool particularly used

in process control systems. Frequency response, basically, is the

steadystate response of a system subject to a sustained sinusoidal

input [96]. If the input to a linear system, shown with Gp(s) in

Laplace domain, is a sine wave with frequency fo, then the output

at steady state (yss) will also be a sine wave at the same frequency

but at a different amplitude and a phase lag (h).

u~A sin 2pf0tð Þ ? yss~A’ sin 2pf0tzhð Þ ð15Þ

Bode plot is a useful tool in analyzing how the amplitude ratio

(AR), which is the ratio of the output amplitude (A9) to input

amplitude (A), changes with respect to different input signal

frequencies. In magnitude Bode plot, logarithmic scales are used,

and ordinate is plotted using 20log AR [95]. Many systems can be

described by a series of first-order lags, thus frequency response of

a first order system requires a special attention. A first order system

has a flat low-frequency and a decreasing high-frequency

asymptote, which intersect at the breakpoint frequency of 1/tp

(Figure S18). This process acts a low-pass filter, which passes

frequencies below the breakpoint frequency, and attenuates

frequencies above the breakpoint frequency.

Supporting Information

Figure S1 Crystal structures of PTP1B in WPDopen and
WPDclosed conformations. WPDopen (PDB ID: 2F6F) and

WPDclosed (PDB ID: 1SUG) structures are shown with blue and

red, respectively. Open and closed conformations of the WPD

loop are shown in ice blue and green, respectively.

(PDF)

Figure S2 RMSD of various structural elements of
PTP1B in EMD and TMD1 simulations from crystal
structures. (A) RMSD of PTP1B in MD (black) and TMD1

(blue) simulations from the WPDopen crystal structure (PDB ID:

2F6F). (B) RMSD of the WPD loop in EMD simulation from

WPDopen (black) and WPDclosed (gray, PDB ID: 1SUG) crystal

structures. (C) RMSD of the WPD loop in TMD1 simulation from

WPDopen (dark blue) and WPDclosed (light blue) crystal structures.

(D) RMSD of a7 (residues 281 to 298) in EMD simulation from

WPDopen (black) and WPDclosed (gray) crystal structures. RMSD of

the same region in TMD1 simulation from WPDopen (dark blue)

and WPDclosed (light blue) crystal structures. Disordered nature of

a7 is confirmed by EMD and TMD simulations.

(PDF)

Figure S3 Comparison of power spectral density func-
tions of EMD and TMD1 simulations. Power spectral density

per residue (or residue-averaged MSF) for (A) WPD loop, and (B)

residues on which TMD potential was not directly applied.

Frequency components of EMD and TMD1 simulations are

represented with black and blue solid lines, respectively. Gray and

yellow dashed lines represent the least-squares lines fit to EMD

and TMD1 data, respectively. Base frequency and the upper

harmonics (peaks) are more clearly seen in the Ca atomic

trajectory spectrum of the WPD loop. Existence of peaks in the

power spectrum of regions on which TMD potential was not

directly applied shows that effects of local disturbance propagated

to the rest of the protein.

(PDF)

Figure S4 Transformation of reconstructed trajectories
to reconstructed in-phase trajectories using PCA. (A)

Reconstructed trajectories of three-Cartesian components of WPD

loop Ca atoms. (B) In-phase components obtained by employing

PCA on the trajectories shown in (A). (C) In-phase components

obtained by employing PCA on the reconstructed trajectories of

Ca atoms between residues 2 to 278.

(PDF)

Figure S5 Comparison of estimated and experimental
Ca displacement amplitudes. Amplitudes of Ca displace-

ments estimated using reconstructed in-phase trajectories are

compared with displacements obtained from the averages of all

crystal structures in WPDopen and WPDclosed conformation listed

in Table S1. Estimated and experimental displacements are shown

in blue and black, respectively.

(PDF)

Figure S6 Different conformations of L16 (Asp236 to
Ser243) adopted in crystal structures. Blue and red

represent L16I and L16II conformations adopted in WPDclosed

crystal structures, respectively, while ice blue and purple represents

L16I and L16II conformations adopted in WPDopen crystal

structures, respectively.

(PDF)

Figure S7 Amplitude of residue displacements predict-
ed from low-frequency TMD simulations. TMD1 (blue),

TMD2 (green) and TMD3 (red) simulations correspond to cycling

periods of 5 ns, 2 ns, and 1.2 ns, respectively.

(PDF)

Figure S8 Effect of sampling interval and perturbation
frequency on the frequency response of residues in
TMD1. (A) Power spectral density of all residues except a7

sampled at 0.5, 1, 2 and 5 ps intervals. Vertical green dotted lines

intersecting the frequency axis at ,6 ns21 represent the upper

frequency limit of power spectrum which is assumed to obey 1=f n

distribution. (B) Percent of perturbed Ca atoms identified using

different number of TMD simulation cycles ranging from one to

16.

(PDF)

Figure S9 Power spectral density of various perturbed
side-chain dihedral angles in the vicinity of WPD loop.
Power component at 0.2 and 0.4 ns21 are denoted by a square

and a triangle, respectively.

(PDF)

Figure S10 Sensitivity of phase angles of interatomic
distances to amplitudes of atomic fluctuations. (A) Two

approximately in-phase signals (atomic positions) with a phase

difference of p/33 and a unit difference between their amplitudes,

and (B) difference (interatomic distance) between the amplitudes of

these two signals; new signal is also approximately in-phase with

the first two signals. (C) Two approximately in-phase signals with a

phase difference of p/33 and 5% difference between their
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amplitudes, and (D) difference between the amplitudes of these

two signals; phase difference between new signal and the first two

signals is approximately p/2.

(PDF)

Figure S11 Atomic representations of in-phase fluctuat-
ing residues in the third and fourth clusters of atomic
variables. (A) The third cluster of in-phase fluctuations consists

of coupled motions of the backbone of R-loop, side-chains of

Asp181, Phe182 on the WPD loop, and Trp96, Tyr124 and

Leu160, which make hydrophobic interactions. (B) The fourth

cluster of in-phase fluctuations consists of coupled motions of the

backbones of b9, b10 and b11 and side-chains of Asn44, Gln61,

Trp100 and Leu160. Out of these four residues, the last two make

hydrophobic contacts. In both figures, residues with perturbed

side-chains are colored with respect their atoms (nitrogen in blue,

oxygen in red, carbon in gray), regions of backbones with

perturbed dihedral angles are colored in purple, and perturbed H-

bonds are shown with black dashed lines.

(PDF)

Figure S12 Classification of the residues with respect to
their frequency responses. Blue and red colored residues

have monotonic decreasing and monotonic increasing frequency

responses, respectively. Concave functions may be fitted to the

frequency responses of yellow residues, indicating an under-

damped behavior. No definite trends in Bode plots of white

residues have been observed (see Table S5). Transparent regions

represent Ca atoms not being perturbed by the TMD potential.

(PDF)

Figure S13 Trajectory of w182 backbone dihedral angle
in TMD1 simulation. Black and maroon dashed lines represent

the angles adopted by w182 in WPDopen and WPDclosed crystal

structures. Yellow lines represent the trajectory of w182 from

WPDopen to WPDclosed conformations, while blue lines represent

the trajectory of w182 from WPDclosed to WPDopen conformations.

(PDF)

Figure S14 WPD loop conformational transition on the
reduced PC planes. Small black dots represent the whole

trajectory of WPD loop during TMD1 simulation. Pink and green

lines represent the WPD loop trajectory during the first loop

closing (WPDopenRWPDclosed) and the first loop opening

(WPDclosedRWPDopen), respectively. Blue and red filled circles

represent the WPDopen and WPDclosed crystal structures, respec-

tively. Yellow filled square and purple filled circles connected by

gray arrows denote the trajectory of WPD loop in the absence of

active water molecules in the WPDclosed state. Light gray crosses

represent an equilibrium simulation in WPDclosed conformation.

The numbers in parenthesis on the axis labels denote the

percentage of explanation offered by PCA.

(PDF)

Figure S15 Histograms of the backbone dihedral angles
of WPD loop residues. Blue and red lines represent the

averages of the dihedral angles adopted during the first 50 ps and

the last 50 ps in the first WPD loop transition.

(PDF)

Figure S16 Structural analysis of WPD loop in TMD9

simulation. (A) RMSD of the WPD loop from its conformation

in WPDopen (dark blue) and WPDclosed (light blue) crystal

structures. (B) Trajectory of w182 dihedral angle. Lines and

coloring are identical to those in Figure S13. (C) Histogram of the

backbone dihedral angles of Phe182.

(PDF)

Figure S17 Comparison of WPD loop conformational
transitions in TMD simulations with different spring
constants on the reduced PC planes. Projection of WPD

loop transitions on (A) PC1–PC2, and (B) PC1–PC3 planes. Black

and blue circles represent TMD simulations with spring constant

equal to 3000 kcal?mol21?Å22 and 500 kcal?mol21?Å22, respec-

tively. (C) Transition of WPD loop in the first cycle of both

simulations on PC1–PC2 plane. Black (TMD1) and blue lines

(TMD9) represent the WPD loop trajectory during the first loop

closing, while red (TMD1) and green (TMD9) represent the first

loop opening.

(PDF)

Figure S18 Time and frequency domain responses of
first order lag and lead-lag systems. (A) Step, and (B)

frequency responses of a first order lag system. In (B), breakpoint

frequency is equal to 1/tp = 0.1 rad/s. Unit step responses of

lead-lag processes with (C) tz/tp,1, and (D) tz/tp.1. Magni-

tude Bode plots of lead-lag processes with (E) tz/tp,1, and (F)

tz/tp.1.

(PDF)

Table S1 PDB IDs of the crystal structures used in the
current study.

(PDF)

Table S2 Overlap of residue displacements of recon-
structed trajectories determined from low frequency
TMD simulations.

(PDF)

Table S3 Number of perturbed Ca atoms determined
from low frequency TMD simulations.

(PDF)

Table S4 List of TMD simulations performed and
analyzed in the current study.

(PDF)

Table S5 Classification of magnitude Bode plot data of
Ca atoms.

(PDF)

Text S1 Single eigenvalue representation of collective
residue displacements.

(PDF)

Text S2 Conformations of L16 adopted in the crystal
structures of PTP1B.

(PDF)

Text S3 Determination of a single reconstructed trajec-
tory for each Ca atom.

(PDF)

Text S4 Robustness of the frequency response method
with respect of resolution of power spectra.

(PDF)

Text S5 Are trajectories produced by TMD simulations
realistic?

(PDF)

Text S6 Relation between power of a signal and atomic
MSF.

(PDF)

Text S7 Time and frequency responses of first order lag
and lead-lag systems.

(PDF)

Frequency Response Analysis of Proteins

PLOS Computational Biology | www.ploscompbiol.org 13 September 2013 | Volume 9 | Issue 9 | e1003238



Author Contributions

Conceived and designed the experiments: BA. Performed the experiments:

DE BA. Analyzed the data: DE BA. Contributed reagents/materials/

analysis tools: BA. Wrote the paper: BA.

References

1. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in

enzyme activity. Annu Rev Biophys Biomol Struct 32: 69–92.

2. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, et al. (2007)

Intrinsic motions along an enzymatic reaction trajectory. Nature 450: 838–844.

3. Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant

role in determining the structural changes induced upon inhibitor binding. Proc
Natl Acad Sci U S A 106: 14349–14354.

4. Alakent B, Kurkcuoglu Z, Doruker P (2012) Functional Dynamics of Proteins
Elucidated by Statistical Analysis of Simulation Data. Current Physical

Chemistry 2: 443–451.

5. Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IE, et al. (1985) Protein

states and proteinquakes. Proc Natl Acad Sci U S A 82: 5000–5004.

6. Elber R, Karplus M (1987) Multiple conformational states of proteins: a

molecular dynamics analysis of myoglobin. Science 235: 318–321.

7. Garcia AE (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett

68: 2696–2699.

8. Tilton RF, Jr., Dewan JC, Petsko GA (1992) Effects of temperature on protein

structure and dynamics: X-ray crystallographic studies of the protein
ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry

31: 2469–2481.

9. Vitkup D, Ringe D, Petsko GA, Karplus M (2000) Solvent mobility and the

protein ‘glass’ transition. Nat Struct Biol 7: 34–38.

10. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, et al. (1995) Mechanism of

CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature

376: 313–320.

11. Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism

of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochem-
istry 36: 586–603.

12. Brown NR, Noble ME, Lawrie AM, Morris MC, Tunnah P, et al. (1999) Effects
of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and

activity. J Biol Chem 274: 8746–8756.

13. Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R (2000) Folding and binding

cascades: dynamic landscapes and population shifts. Protein Sci 9: 10–19.

14. Tsai CJ, del Sol A, Nussinov R (2008) Allostery: absence of a change in shape

does not imply that allostery is not at play. J Mol Biol 378: 1–11.

15. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17:

1295–1307.

16. Rod TH, Radkiewicz JL, Brooks CL, 3rd (2003) Correlated motion and the

effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci U S A
100: 6980–6985.

17. Schmid FF, Meuwly M (2007) All-atom simulations of structures and energetics
of c-di-GMP-bound and free PleD. J Mol Biol 374: 1270–1285.

18. Cansu S, Doruker P (2008) Dimerization affects collective dynamics of
triosephosphate isomerase. Biochemistry 47: 1358–1368.

19. Nguyen PH (2006) Complexity of free energy landscapes of peptides revealed by
nonlinear principal component analysis. Proteins 65: 898–913.

20. Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Low-dimensional,
free-energy landscapes of protein-folding reactions by nonlinear dimensionality

reduction. Proc Natl Acad Sci U S A 103: 9885–9890.

21. Lange OF, Grubmuller H (2008) Full correlation analysis of conformational

protein dynamics. Proteins 70: 1294–1312.

22. Sakuraba S, Joti Y, Kitao A (2010) Detecting coupled collective motions in

protein by independent subspace analysis. J Chem Phys 133: 185102.

23. Moritsugu K, Njunda BM, Smith JC (2010) Theory and normal-mode analysis

of change in protein vibrational dynamics on ligand binding. J Phys Chem B

114: 1479–1485.

24. Alakent B, Baskan S, Doruker P (2011) Effect of ligand binding on the

intraminimum dynamics of proteins. J Comput Chem 32: 483–496.

25. Bode C, Kovacs IA, Szalay MS, Palotai R, Korcsmaros T, et al. (2007) Network

analysis of protein dynamics. FEBS Lett 581: 2776–2782.

26. Kong Y, Karplus M (2007) The signaling pathway of rhodopsin. Structure 15:

611–623.

27. Zhang Z, Wriggers W (2006) Local feature analysis: a statistical theory for

reproducible essential dynamics of large macromolecules. Proteins 64: 391–403.

28. Laine E, Auclair C, Tchertanov L (2012) Allosteric communication across the

native and mutated KIT receptor tyrosine kinase. PLoS Comput Biol 8:
e1002661.

29. Kamberaj H, van der Vaart A (2009) Extracting the Causality of Correlated
Motions from Molecular Dynamics Simulations. Biophys J 97: 1747–1755.

30. Ota N, Agard DA (2005) Intramolecular signaling pathways revealed by
modeling anisotropic thermal diffusion. J Mol Biol 351: 345–354.

31. Sharp K, Skinner JJ (2006) Pump-probe molecular dynamics as a tool for
studying protein motion and long range coupling. Proteins 65: 347–361.

32. Leitner D M (2008) Energy flow in Proteins. Annu Rev Phys Chem 59: 233–259.

33. Ho BK, Perahia D, Buckle AM (2012) Hybrid approaches to molecular

simulation. Curr Opin Struct Biol 22: 386–393.

34. Ho BK, Agard DA (2009) Probing the flexibility of large conformational changes
in protein structures through local perturbations. PLoS Comput Biol 5:

e1000343.

35. Dubay KH, Bothma JP, Geissler PL (2011) Long-range intra-protein

communication can be transmitted by correlated side-chain fluctuations alone.
PLoS Comput Biol 7: e1002168.

36. Atilgan C, Atilgan AR (2009) Perturbation-response scanning reveals ligand

entry-exit mechanisms of ferric binding protein. PLoS Comput Biol 5:

e1000544.

37. Gerek ZN, Ozkan SB (2011) Change in allosteric network affects binding
affinities of PDZ domains: analysis through perturbation response scanning.

PLoS Comput Biol 7: e1002154.

38. Lu H-M, Liang J (2009), Perturbation-based Markovian Transmission Model for

Probing Allosteric Dynamics of Large Macromolecular Assembling: A Study of
GroEL-GroES, PLoS Comput Biol 5: e1000526.

39. Neel BG, Tonks NK (1997) Protein tyrosine phosphatases in signal transduction.
Curr Opin Cell Biol 9: 193–204.

40. Zhang ZY, Zhou B, Xie L (2002) Modulation of protein kinase signaling by

protein phosphatases and inhibitors. Pharmacol Ther 93: 307–317.

41. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, et al. (1999)

Increased insulin sensitivity and obesity resistance in mice lacking the protein
tyrosine phosphatase-1B gene. Science 283: 1544–1548.

42. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, et al.
(2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2: 489–495.

43. Stuible M, Doody KM, Tremblay ML (2008) PTP1B and TC-PTP: regulators of

transformation and tumorigenesis. Cancer Metastasis Rev 27: 215–230.

44. Barford D, Flint AJ, Tonks NK (1994) Crystal structure of human protein

tyrosine phosphatase 1B. Science 263: 1397–1404.

45. Jia Z, Barford D, Flint AJ, Tonks NK (1995) Structural basis for phosphotyrosine
peptide recognition by protein tyrosine phosphatase 1B. Science 268: 1754–

1758.

46. Pedersen AK, Peters GG, Moller KB, Iversen LF, Kastrup JS (2004) Water-

molecule network and active-site flexibility of apo protein tyrosine phosphatase
1B. Acta Crystallogr D Biol Crystallogr 60: 1527–1534.

47. Khajehpour M, Wu L, Liu S, Zhadin N, Zhang ZY, et al. (2007) Loop dynamics
and ligand binding kinetics in the reaction catalyzed by the Yersinia protein

tyrosine phosphatase. Biochemistry 46: 4370–4378.

48. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, et al. (2004) Allosteric

inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11: 730–737.

49. Montalibet J, Skorey K, McKay D, Scapin G, Asante-Appiah E, et al. (2006)
Residues distant from the active site influence protein-tyrosine phosphatase 1B

inhibitor binding. J Biol Chem 281: 5258–5266.

50. Picha KM, Patel SS, Mandiyan S, Koehn J, Wennogle LP (2007) The role of the

C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity
and substrate binding. J Biol Chem 282: 2911–2917.

51. Peters GH, Frimurer TM, Andersen JN, Olsen OH (1999) Molecular dynamics

simulations of protein-tyrosine phosphatase 1B. I. ligand-induced changes in the

protein motions. Biophys J 77: 505–515.

52. Olmez EO, Alakent B (2011) Alpha7 helix plays an important role in the
conformational stability of PTP1B. J Biomol Struct Dyn 28: 675–693.

53. Ozcan A, Olmez EO, Alakent B (2013) Effects of protonation state of Asp181
and position of active site water molecules on the conformation of PTP1B.

Proteins 81: 788–804.

54. Manolakis DG, Ingle VK (2011) Applied digital signal processing: theory and

practice. New York: Cambridge University Press. xv, 991 p. p.

55. Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon
ligand binding: linear response theory. Phys Rev Lett 94: 078102.

56. Nishihara Y, Kata S, Hayashi S (2010) Protein collective motions coupled to
ligand migration in myoglobin. Biophys J 98: 1649–1657.

57. Montgomery DC, Runger GC (2011) Applied statistics and probability for

engineers. Hoboken, NJ: Wiley. xv, 768 p. p.

58. Altis A, Nguyen PH, Hegger R, Stock G (2007) Dihedral angle principal

component analysis of molecular dynamics simulations. J Chem Phys 126:
244111.

59. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state

of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773–

777.

60. Pannifer ADB, Flint AJ, Tonks NK, Barford D (1998) Visualization of the
cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray

crystallography. Journal of Biological Chemistry 273: 10454–10462.

61. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, et al. (2001)

Structural and evolutionary relationships among protein tyrosine phosphatase
domains. Mol Cell Biol 21: 7117–7136.

Frequency Response Analysis of Proteins

PLOS Computational Biology | www.ploscompbiol.org 14 September 2013 | Volume 9 | Issue 9 | e1003238



62. Hoff RH, Hengge AC, Wu L, Keng YF, Zhang ZY (2000) Effects on General

Acid Catalysis from Mutations of the Invariant Trypothan and Arginine
Residues in the Protein Tyrosine Phosphatase from Yersinia. Biochemistry 39:

46–54.

63. Zhao Y, Wu L, Noh SJ, Guan KL, Zhang ZY (1998) Altering the Nucleophile
Specificity of a Protein-Tyrosine Phosphatase-Catalyzed Reaction: Probing the

Function of the Invariant Glutamine Residues. J Biol Chem 273: 5484–5492.
64. Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge, UK ; New

York: Cambridge University Press. xiii, 716 p. p.

65. Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, et al. (2007) Ligand
binding and circular permutation modify residue interaction network in DHFR.

PLoS Comput Biol 3: e117.
66. Aftabuddin M, Kundu S (2007) Hydrophobic, hydrophilic, and charged amino

acid networks within protein. Biophys J 93: 225–231.
67. Bikadi Z, Demko L, Hazai E (2007) Functional and structural characterization

of a protein based on analysis of its hydrogen bonding network by hydrogen

bonding plot. Arch Biochem Biophys 461: 225–234.
68. Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise.

Reviews of Modern Physics 53: 497–516.
69. Dewey TG, Bann JG (1992) Protein dynamics and 1/f noise. Biophys J 63: 594–

598.

70. Carlini P, Bizzarri AR, Cannistraro S (2002) Temporal fluctuations in the
potential energy of proteins: 1/fa noise and diffusion. Physica D 165: 242–250.

71. Bouchaud JP, Comtet A, Georges A, Le Doussal P (1987) Anomalous diffusion
in random media of any dimensionality. Journal de Physique 48: 1445–1450.

72. Alakent B, Doruker P, Camurdan MC (2004) Time series analysis of collective
motions in proteins. J Chem Phys 120: 1072–1088.

73. Kannan N, Vishveshwara S (1999) Identification of side-chain clusters in protein

structures by a graph spectral method. J Mol Biol 292: 441–464.
74. Davis IW, Arendall WB, 3rd, Richardson DC, Richardson JS (2006) The

backrub motion: how protein backbone shrugs when a sidechain dances.
Structure 14: 265–274.

75. Cote Y, Senet P, Delarue P, Maisuradze GG, Scheraga HA (2012) Anomalous

diffusion and dynamical correlation between the side chains and the main chain
of proteins in their native state. Proc Natl Acad Sci U S A 109: 10346–10351.

76. Hartigan JA (1975) Clustering algorithms. New York,: Wiley. xiii, 351 p. p.
77. Tehver R, Chen J, Thirumalai D (2009) Allostery Wiring Diagrams in the

Transitions that Drive the GroEL Reaction Cycle. J Mol Biol 387: 390–406.
78. Schneider R, Beumer C, Simard JR, Grutter C, Rauh D (2013) Selective

Detection of Allosteric Phosphatase Inhibitors. J Am Chem Soc: 135, 6838–6841.

79. Critton DA, Tautz L, Page R (2011) Visualizing active-site dynamics in single
crystals of HePTP: opening of the WPD loop involves coordinated movement of

the E loop. J Mol Biol 405: 619–629.

80. Ovchinnikov V, Karplus M (2012) Analysis and Elimination of a Bias in

Targeted Molecular Dynamics Simulations of Conformational Transitions:

Application to Calmodulin. J Phys Chem B 116: 8584–8603.

81. Parker TS, Chua LO (1987) Chaos - a Tutorial for Engineers. Proceedings of the

Ieee 75: 982–1008.

82. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank. Nucleic Acids Res 28: 235–242.

83. Zhang ZY, Dixon JE (1993) Active site labeling of the Yersinia protein tyrosine

phosphatase: the determination of the pKa of the active site cysteine and the

function of the conserved histidine 402. Biochemistry 32: 9340–9345.

84. Lohse DL, Denu JM, Santoro N, Dixon JE (1997) Roles of aspartic acid-181 and

serine-222 in intermediate formation and hydrolysis of the mammalian protein-

tyrosine-phosphatase PTP1. Biochemistry 36: 4568–4575.

85. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics.

J Mol Graph 14: 33–38, 27–38.

86. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, et al. (1995) A Smooth

Particle Mesh Ewald Method. J Chem Phys 103: 8577–8593.

87. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable

molecular dynamics with NAMD. J Comput Chem 26: 1781–1802.

88. Brooks BR, Brooks CL, 3rd, Mackerell AD, Jr., Nilsson L, Petrella RJ, et al.

(2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:

1545–1614.

89. Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L (2001) Structure,

dynamics and electrostatics of the active site of glutaredoxin 3 from

Escherichia coli: comparison with functionally related proteins. J Mol Biol

310: 449–470.

90. van der Vaart A, Karplus M (2005) Simulation of Conformational Transitions

by the Restricted Perturbation-Targeted Molecular Dynamics Method, J Chem

Phys 112: 113903.

91. Schubert HL, Fauman EB, Stuckey JA, Dixon JE, Saper MA (1995) A ligand-

induced conformational change in the Yersinia protein tyrosine phosphatase.

Protein Sci 4: 1904–1913.

92. Jackson JE (1980) Principal Components and Factor-Analysis .1. Principal

Components. Journal of Quality Technology 12: 201–213.

93. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins.

Proteins 17: 412–425.

94. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from

normal mode calculations. Protein Eng 14: 1–6.

95. Luyben WL (1990) Process modeling, simulation, and control for chemical

engineers. New York: McGraw-Hill. xxiii, 725 p. p.

96. Brosilow C, Joseph B (2002) Techniques of model-based control. Upper Saddle

River, N.J.: Prentice Hall. xxi, 680 p. p.

Frequency Response Analysis of Proteins

PLOS Computational Biology | www.ploscompbiol.org 15 September 2013 | Volume 9 | Issue 9 | e1003238


