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Therapeutic advance in progressive multiple sclerosis (MS) has been very slow. Based 
on the transformative role magnetic resonance imaging (MRI) contrast-enhancing lesions 
had on drug development for relapsing-remitting MS, we consider the lack of sensitive 
outcomes to be the greatest barrier for developing new treatments for progressive MS. The 
purpose of this study was to compare 58 prospectively acquired candidate outcomes in 
the real-world situation of progressive MS trials to select and validate the best-performing 
outcome. The 1-year pre-treatment period of adaptively designed IPPoMS (ClinicalTrials.
gov #NCT00950248) and RIVITaLISe (ClinicalTrials.gov #NCT01212094) Phase II trials 
served to determine the primary outcome for the subsequent blinded treatment phase 
by comparing 8 clinical, 1 electrophysiological, 1 optical coherence tomography, 7 MRI 
volumetric, 9 quantitative T1 MRI, and 32 diffusion tensor imaging MRI outcomes. Fifteen 
outcomes demonstrated significant progression over 1  year (Δ) in the predetermined 
analysis and seven out of these were validated in two independent cohorts. Validated 
MRI outcomes had limited correlations with clinical scales, relatively poor signal-to-noise 
ratios (SNR) and recorded overlapping values between healthy subjects and MS patients 
with moderate-severe disability. Clinical measures correlated better, even though each 
reflects a somewhat different disability domain. Therefore, using machine-learning tech-
niques, we developed a combinatorial weight-adjusted disability score (CombiWISE) 
that integrates four clinical scales: expanded disability status scale (EDSS), Scripps 

Abbreviations: Δ, relative yearly percentage change; 25FW, 25 foot walk; 9HPT, 9 hole peg test; CEL, contrast-enhancing lesion; 
CIS, clinically isolated syndrome; CMCT, central motor conduction time; CNR, contrast-to-noise ratio; CNS, central nervous 
system; CombiWISE, combinatorial weight-adjusted disability score; DTI, diffusion tensor imaging; EDSS, expanded dis-
ability status scale; FRD, false-rate discovery; HV, healthy volunteer; MRI, magnetic resonance imaging; MS, multiple sclerosis; 
MSFC, multiple sclerosis functional composite; NIND, non-inflammatory neurological disorders; OCT, optical coherence 
tomography; OIND, other inflammatory neurological disorders; PASAT, paced auditory serial addition test; PPMS, primary 
progressive MS; qMRI, quantitative MRI; qT1, quantitative T1; RIS, radiologically isolated syndrome; RNFL, retinal nerve 
fiber layer; ROI, region of interest; RRMS, relapsing-remitting MS; SC, spinal cord; SDMT, symbol digit modality test; SNR, 
signal-to-noise ratio; SNRS, Scripps neurological rating scale; SPMS, secondary progressive MS.
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inTrODUcTiOn

Therapeutic progress in relapsing-remitting multiple sclerosis 
(RRMS) has been facilitated by the recognition that contrast-
enhancing lesions (CELs) on brain magnetic resonance imaging 
(MRI) can serve as a predictive marker of multiple sclerosis 
(MS) relapses. Utilizing this outcome allowed rapid, inexpensive 
screening of candidate agents. In contrast to RRMS, therapeutic 
development for progressive MS patients, who have few CELs and 
MS relapses, has been extremely slow. These patients relentlessly 
accumulate neurological disability, albeit at a pace that requires 
observation of hundreds of patients for a minimum of 2–3 years 
to reliably detect moderate (30–50%) therapeutic effects using the 
expanded disability status scale (EDSS) (1). Such studies utilize 
the majority of available patients and, therefore, allow screening 
of only a handful of therapeutic agents each decade.

Consequently, more sensitive outcomes are necessary to 
facilitate broader therapeutic advances for progressive MS. 
While quantitative MRI (qMRI) measures have been promoted 
as candidate outcomes (2, 3), a comprehensive comparison of 
qMRI markers with clinical outcomes and with each other is 
missing. Therefore, we integrated systematic comparisons of 
clinical, electrophysiological, optical coherence tomography 
(OCT) and a large number of qMRI measures as an adaptive 
part of the IPPoMS (double-blind, placebo-controlled Phase I/II  
clinical trial of Idebenone in patients with Primary Progressive 
Multiple Sclerosis; NCT00950248) and RIVITaLISe (Double 
Blind Combination of Rituximab by Intravenous and Intrathecal 
Injection Versus Placebo in Patients With Low-Inflammatory 
Secondary Progressive Multiple Sclerosis; NCT01212094) clini-
cal trials and present the results.

MaTerials anD MeThODs

Trial Design
IPPoMS and RIVITaLISe trials were randomized, double-blind, 
placebo-controlled trials with an adaptive design. The 2-year 
randomized treatment phase was preceded by a 1-year pre-
treatment period, which served a dual purpose: (1) to determine 
a final primary outcome, by comparing 58 measures in the first 

≥30 subjects, and to perform a new power analysis/sample size 
re-calculation using the selected outcome (this is the adaptive 
part of the design and represents the work described in this 
paper) and (2) to collect individualized disease-progression data 
while off therapy, as the baseline-versus-treatment paradigm is 
expected to enhance power (4). The default primary outcome 
for both trials was progression of brain atrophy measured by 
Structural Image Evaluation using Normalization of Atrophy 
(SIENA) methodology (5).

Patient Population
Due to missing data, the first 35 primary progressive MS (PPMS; 
IPPOMS1 cohort) subjects who completed the IPPoMS pre-
treatment baseline (before randomization into placebo or active 
treatment arm) were included to yield a minimum of 30 subjects 
per outcome, as defined in the protocol. The problem of missing 
clinical data at the beginning of the trial was solved by launching 
a database system in September 2013 that allows the principal 
investigator to confirm in real time that all measures were 
acquired according to the protocol. Some MRI data were miss-
ing because of technical issues with MRI acquisition (e.g., MRI 
machine problems). MRI data could also be missing if computer 
programs failed to run on the particular patient’s MRI, usually 
due to poor quality of the MRI caused by movement artifacts. 
The data loss in both instances should be considered missing 
completely at random.

The RIVITaLISe trial was recently terminated for futility, 
after interim analysis of the pharmacodynamic markers in the 
target organ showed that the pre-determined criteria for protocol 
continuation were not reached (6). Accrual of only 29 second-
ary progressive MS (SPMS) patients who completed the 1-year 
pre-treatment baseline prevented us from performing protocol-
stipulated analysis of outcomes; therefore, we used this cohort 
(RIVITALISE cohort) as a validation cohort for the IPPOMS1 
results. Finally, to avoid uncertainty as to whether SPMS and 
PPMS patients are comparable when it comes to clinical and MRI 
outcomes, we included all 34 remaining IPPOMS patients who 
completed the year-long pre-treatment baseline as of June 2015 
and were not included in the IPPOMS1 as the second validation 
cohort (IPPOMS2 cohort).

neurological rating scale, 25 foot walk and 9 hole peg test. CombiWISE outperformed 
all clinical scales (Δ = 9.10%; p = 0.0003) and all MRI outcomes. CombiWISE recorded 
no overlapping values between healthy subjects and disabled MS patients, had high 
SNR, and predicted changes in EDSS in a longitudinal assessment of 98 progressive MS 
patients and in a cross-sectional cohort of 303 untreated subjects. One point change 
in EDSS corresponds on average to 7.50 point change in CombiWISE with a standard 
error of 0.10. The novel validated clinical outcome, CombiWISE, outperforms the current 
broadly utilized MRI brain atrophy outcome and more than doubles sensitivity in detect-
ing clinical deterioration in progressive MS in comparison to the scale traditionally used 
for regulatory approval, EDSS.

Keywords: multiple sclerosis, clinical trial, outcome measure, composite scale, progressive Ms, disability scale, 
quantitative Mri
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TaBle 1 | Demographic data.

iPPOMs1 
cohort

iPPOMs2 
cohort

riViTalise 
cohort

healthy 
volunteers

cross-sectional cohort

Diagnosis PPMS PPMS SPMS HV HV NIND OIND CIS/RIS RRMS PPMS SPMS

N (F/M) 17/18 15/19 18/11 2/5 7/12 40/11 15/12 14/5 56/35 18/24 33/21

Age 55.0 55.7 54.2 41.4 36.6 49.7 46.0 38.4 40.6 53.3 54.7
SD 7.8 7.1 7.4 13.1 11.1 10.0 15.8 13.8 10.9 9.4 7.9

Range 36.7–65.7 36.0–70.3 38.3–65.0 23.7–64.7 23.5–56.7 27.6–70.4 18.5–70.7 20.7–60.3 18.0–68.6 29.8–74.7 38.3–69.4

DD 12.4 13.6 23.7 NA NA 5.1 5.6 2.2 4.3 9.6 22.9
SD 9.2 8.1 8.3 NA NA 6.9 5.0 4.1 6.7 6.7 9.3

Range 1.6–38.7 1.6–31.5 7.0–42.3 NA NA 0.2–34.3 0.5–18.7 0.1–15.4 0.1–36.1 0.5–24.1 1.0–42.3

EDSS 5.6 5.0 6.1 0.3 0.4 2.3 3.3 1.1 1.8 4.6 5.9
SD 1.3 1.6 0.8 0.5 0.5 1.9 2.4 0.8 1.4 1.7 1.2

Range 2.0–6.5 2.0–6.5 2.5–6.5 0.0–1.0 0.0–1.0 0.0–6.5 0.0–8.0 0.0–2.5 0.0–6.5 1.5–6.5 2.0–7.0

SNRS 68.3 67.0 61.4 98.7 98.4 89.0 79.7 95.4 91.7 69.2 60.5
SD 10.4 11.8 9.4 2.2 2.2 11.2 16.4 5.3 9.2 14.5 12.7

Range 48–90 41–88 47.0–82.0 95–100 93–100 51–100 37–100 82–100 57–100 26–92 30–87

F, female; M, male; N, number; DD, disease duration; SD, standard deviation; EDSS, Expanded Disability Status Scale; SNRS, Scripps Neurological Rating Scale; PPMS, primary 
progressive multiple sclerosis; HV, healthy volunteers; SPMS, secondary progressive multiple sclerosis; NIND, non-inflammatory neurological disorders; OIND, other inflammatory 
neurological disorders; CIS, clinically isolated syndrome, RIS, radiologically isolated syndrome, RRMS, relapsing-remitting multiple sclerosis. Age, DD, EDSS, and SNRS are provided 
as an average of the group. Age and DD are in years.

3

Kosa et al. Outcomes for Progressive MS Trials

Frontiers in Neurology | www.frontiersin.org August 2016 | Volume 7 | Article 131

Additionally, 7 healthy volunteers (HV) who served as technical 
controls and 303 untreated subjects (cross-sectional cohort), who 
presented for a work-up of putative neuro-immunological diseases, 
were recruited under a natural history protocol (Comprehensive 
Multimodal Analysis of Neuroimmunological Diseases of the 
Central Nervous System, NCT00794352), to validate correlations 
between the new CombiWISE metric and traditional clinical 
scales. Demographic data for all subjects are in Table 1.

inclusion criteria
Eligible patients had clinically definite PPMS (IPPoMS trial) 
or SPMS (RIVITaLISe trial); aged 18–65  years (inclusive) with 
disability ranging from mild to moderate (EDSS 1–7, inclusive). 
Patients must not have received any immunomodulatory/immu-
nosuppressive therapies for a period of at least 3 months prior to 
enrollment and must not have had any exposure to idebenone, 
coenzyme-Q10, or other mitochondrial-function promoting 
supplements more than three times the recommended daily 
dose for a period of at least 1  month before enrollment in the 
IPPoMS trial. Exclusion criteria included pregnancy, abnormal 
screening blood tests exceeding predefined limits, and/or clini-
cally significant medical disorders that could expose the patient 
to undue risk or harm. A data safety monitoring board (DSMB) 
and institutional review board (IRB) approved a single patient 
exemption for a 70-year-old subject who otherwise fulfilled all 
inclusion criteria to be enrolled in the IPPoMS trial (Table 1).

Inclusion criteria for patients in the natural history protocol 
(cross-sectional cohort) were 18–75 years of age, presenting with 
a clinical syndrome consistent with immune-mediated central 
nervous system (CNS) disorder and/or neuroimaging evidence of 
inflammatory and/or demyelinating CNS disease. HV inclusion 
criteria were 18–75  years of age and vital signs within normal 
range at the time of screening visit. HV had to have no systemic 
disorder or CNS disease of any kind or other related risk factors.

study Oversight
All subjects provided written informed consent. The trials 
were approved by the Combined Neuroscience Institutional 
Review Board of the National Institutes of Health and relevant 
regulatory agencies. Monitoring was provided by Data and Safety 
Monitoring Boards.

Pre-Defined analysis of Outcomes
Because the SIENA methodology, the default primary trial 
outcome, calculated progression of brain atrophy as a percentage 
of baseline brain tissue, the same type of analysis was used for 
every other outcome; i.e., each biomarker quantified at month 
(Mo) 0  (before randomization) was expressed as a percentage 
of the Mo −12 value (considered to represent 100%). For each 
biomarker, we calculated a z-score as the average yearly change 
divided by the group standard deviation (SD). According to the 
protocol, z-scores (which are directly related to statistical power 
for a test of change) were designed to select the highest powered 
outcome. We observed a violation of the normality assumption 
in the analysis of some outcomes, questioning whether z-scores 
represented the best tool for outcome comparisons. As a com-
promise, in the IPPOMS1 cohort, we performed parametric 
statistical analysis after exclusion of outliers, without adjustment 
for multiple comparisons to obtain broad selection of candidate 
outcomes for validation. Outcomes from IPPOMS1 cohort at the 
5% significance level were tested in two independent validation 
cohorts, RIVITALISE and IPPOMS2, using step-down Sidak (7) 
adjustments for multiple comparisons.

clinical Outcomes
EDSS (8); Scripps Neurological Rating Scale (SNRS) (9); all com-
ponents of the Multiple Sclerosis Functional Composite (MSFC) 
(10), which includes 25 foot timed walk (25FW), 9 hole peg test 
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(9HPT), and the Paced Auditory Serial Addition Test (PASAT); 
and the written Symbol Digit Modality Test (SDMT) were col-
lected every 6 months.

electrophysiological Outcome
Single-pulse transcranial magnetic stimulation was performed 
using a Magstim 200. Motor evoked potentials were obtained 
using 130% resting threshold with mild activation of muscle. 
Central motor conduction time (CMCT) was calculated using the 
“F-wave method” (11). A total of six CMCTs were obtained: two 
from arms (at the abductor pollicis brevis) and four from legs (at 
the tibialis anterior and extensor digitorum brevis).

Optical coherence Tomography
Optical coherence tomography was obtained using the ZEISS 
Cirrus(TM) HD-OCT Model 4000. The retinal nerve fiber layer 
(RNFL) thickness was quantified in four quadrants.

Mr imaging
Magnetic resonance imaging of the brain was performed on a 
3T Signa HDx (3TA; GE, Milwaukee, WI, USA) equipped with 
16-channel head coil or on a 3T Skyra (3TD; Siemens, Malvern, 
PA, USA) with a 32-channel head coil. Follow-up MRIs were 
maintained on the same scanner as the first MRI. Seven HVs were 
scanned twice on each scanner to yield at least five technically 
adequate duplicates for test–retest reliability.

Magnetic resonance imaging of the brain on the 3TD 
included 3D-GRE with two flip angles for quantitative T1 (qT1) 
mapping [TR, 7.8 ms; TE, 3 ms; fractional anisotropy (FA), 3° 
and 18°; 1-mm isotropic resolution, TA 3.5 min each], and dif-
fusion tensor imaging (DTI) (TR, 13000 ms; TE, 95 ms; b-value, 
0 and 1000  s/mm2 in 2 repetitions of 30 directions; 2-mm 
isotropic resolution; acquisition time, 7.5  min). B1 correction 
for T1-mapping on the 3TD scanner was done with Bloch–
Siegert-based B1 mapping (12). On the 3TA, the T1-mapping 
was done with SPGR sequences with two flip angles (TR, 7.8 ms; 
TE, 3 ms; FA, 3° and 17°; 1-mm isotropic resolution; acquisition 
time, 4 min each), and DTI (TR, 16000 ms; TE, 50 ms; b-value, 0 
and 1100 s/mm2; 2.5-mm isotropic resolution; acquisition time, 
9 min). B1 correction for T1-mapping on the 3TA was achieved 
using DESPOT HiFi technique (13) with two additional scans 
acquired with FSPGR sequence (FA of 3 and inversion time of 
350 ms and 450 ms).

On each patient, additional clinical scans were acquired on 
the brain, including 3D-MPRAGE (TR, 3000 ms; TE, 3 ms; TI, 
900 ms; FA 8°; 1-mm isotropic resolution, TA 6 min), 3D-FLAIR 
(TR, 4800 ms; TE, 354 ms; TI, 1800 ms; 1-mm isotropic resolu-
tion; acquisition time, 7 min), and PD/T2 (TR, 3540 ms; TE, 13 
and 90 ms; 0.8-mm in-plane resolution; slice thickness, 2 mm; 
acquisition time, 4  min) on 3TD and 3D-FSPGR-BRAVO 
(TR, 1760 ms; TE, 3 ms; TI, 450 ms; FA 13°; 1-mm isotropic 
resolution; acquisition time, 5  min), 3D-FLAIR-CUBE (TR, 
6000 ms; TE, 154 ms; TI, 1800 ms; 1-mm isotropic resolution; 
acquisition time, 9  min), and PD/T2 (TR, 5325  ms; TE, 20 
and 120 ms; 1-mm in-plane resolution; slice thickness, 3 mm; 
acquisition time 4  min) on 3TA. If MRI contrast agent was 

administered, postgad T1-weighted images were acquired by 
repeating the 3D-GRE on the 3TD and 3D-FSPGE-BRAVO on 
the 3TA scanner.

The brain images were co-registered, skull-stripped, and 
tissue classified using LesionTOADS (14), and qT1-maps were 
created using JIST pipeline tools. DTI analysis was performed in 
three ways: (1) using TORTOISE (DTIT; https://science.nichd.
nih.gov/confluence/display/nihpd), with diffusion images reg-
istered to the average co-registered T2 images from the two time 
points of each subject, (2) in the native space of the DTI acquisi-
tion (DTIN) with Eddy correction, and (3) with eddy-correct 
and non-linear registration to anatomical images (DTIJ) in JIST 
using CATNAP and RESTORE tools (15, 16). Subject-specific 
regions of interest (ROIs) were drawn on the co-registered 
3D-MPRAGE or 3D-FSPGR-BRAVO images for volume, qT1, 
and DTIJ measurements (Figure S1 in Supplementary Material), 
and on the DTI (Figure S2 in Supplementary Material) images 
for the DTIN and DTIT analysis. Fourteen ROIs [two caudate, 
two putamen, four internal capsules (two anterior and two 
posterior limbs), two thalamus, midbrain, pons, medulla, and 
corpus callosum] were drawn in the brain. For symmetrical 
structures, ROIs in each hemisphere were analyzed as a single 
structure. ROIs were eroded (by two pixels for the majority of 
structures) in MIPAV to limit partial volume averaging. The 
ROIs drawn on the brain were copied on to the co-registered 
qT1-maps as well as co-registered tensor images to derive aver-
age quantitative values.

Percent change in brain volume was calculated using SIENA 
(V-SIENA (5); http://fsl.fmrib.ox.ac.uk/fsl), while volumes of 
brain (V-Brain), ventricles (V-Ventricles), cortical gray matter 
(V-CorticalGM) and thalamus (V-Thalamus) were calculated 
using LesionTOADS tissue segmentation. A cross-sectional area 
of the upper cervical SC at the level of Dens (A-CS-Dens) was 
calculated from manually drawn ROIs on individual GRE or 
SPGR images (using OSIRIX and MIPAV).

Data collection
The EDSS and SNRS were performed by the same clinician, who 
had no knowledge/intervention in collecting any other outcomes. 
9HPT, 25FW, PASAT, and SDMT were performed by non-clinical 
investigators, who had no knowledge/intervention in collecting 
other outcomes. MRI analyses were performed by another set of 
non-clinical personnel, who had no knowledge/intervention in 
collecting clinical outcomes.

Development of combinatorial  
Weight-adjusted Disability score
To mathematically optimize the new scale (i.e., CombiWISE) 
with relative weights of different subscales that are not distorted 
by individual observations, each clinical scale was re-scaled by 
its maximum achievable value so that all values lie between 0 
and 1 making the different scales directly comparable. The three 
longitudinal cohorts of progressive MS patients (IPPOMS1, 
IPPOMS2, and RIVITALISE) were combined and the subjects 
were then randomly permuted multiple times between training 
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and validation datasets with 70% of the subjects allocated to 
each training dataset. In order to efficiently estimate the con-
tributions of the failure to complete 9HPT or 25FW, the rand-
omization was constrained to balance the number of subjects 
in each training and validation dataset with failed attempts 
on non-dominant hand 9HPT (NDH-9HPT), dominant hand 
9HPT (DH-9HPT), 25FW, and a combination of NDH-9HPT 
and 25FW. For each of the constructed training datasets, a 
genetic algorithm (GA) implemented in the GA package (17) 
in R (18) was used to construct a linear combination of EDSS, 
SNRS, log25FW (log2 of average of two attempts on 25FW, or 
0 if at least one trial was unsuccessful), 25FWFAIL (1 if patient 
failed either attempt on 25FW; otherwise 0), logNDH-9HPT 
(log2 of average of two attempts on 9HPT with non-dominant 
hand; otherwise 0), NDHFAIL (1 if patient failed either attempt 
on 9HPT with non-dominant hand; otherwise 0), logDH-9HPT 
(log2 of average of two attempts on 9HPT with dominant hand; 
otherwise 0), DHFAIL (1 if patient failed either attempt on 9HPT 
with dominant hand, otherwise 0), PASAT, and SDMT that 
maximizes the evidence of a change over time (test statistic) 
from a linear mixed model (19) estimated using the nlme pack-
age (20). The model contained a random intercept for each 
subject (in order to account for three repeated measures on 
each subject; Mo −12, Mo −6, and Mo 0) and assumes a linear 
change over these times. The sign of the individual weights 
were constrained to be the direction of disease progression 
(i.e., positive for EDSS since higher values of EDSS indicate 
more progression, negative for SNRS since smaller values of 
SNRS indicate more progression). The scale was optimized for 
200 permutations, followed by dropping of four variables with 
weights routinely close to 0 (logDH-9HPT, DHFAIL, PASAT, and 
SDMT). The final weights after removing these unused variables 
were generated as an average of the selected weights from 500 
permutations of the training data set (referred to hereafter as 
relative weights that allow comparison of overall contributions 
of individual components to the developed scale), followed by 
their linear re-scaling to generate the CombiWISE scale that 
ranges from 0 to 100 (referred hereafter as computing weights 
that allow for construction of a scale with range specified above, 
with higher values indicating more disease severity). The perfor-
mance of CombiWISE against traditional clinical outcomes was 
measured in 500 permutations of the retained validation data 
sets. The R code for the development of the CombiWISE scale is 
available in Data S1 in the Supplementary Material. Table S1 in 
the Supplementary Material provides an embedded formula that 
calculates CombiWISE values based on entered EDSS, SNRS, 
25FW, and 9HPT-NDH.

statistical Methods
For each biomarker, the relative percentage change over 1 year 
(=  100  ×  (score at period 0  −  score at period −12)/score at 
period −12) was calculated and used as an outcome measure. For 
most biomarkers, the relative change had normal or near-normal 
(both kurtosis and skewness between −1 and 1) distributions 
(based on Shapiro–Wilk test) after excluding a few extreme 
outliers [<Q1-3IQR, or >Q3+3IQR, where Q1 and Q3 are 
the first and third quartiles and IQR is the interquartile range 

(Q3−Q1)]. One-sample t-tests were performed to test the null 
hypothesis: μ  =  0 (the mean relative change equals to 0) for 
each biomarker in the IPPOMS1 cohort. The same test was 
performed for IPPOMS2 and RIVITALISE cohorts separately 
for any biomarkers with p < 0.05 in IPPOMS1, with each set of 
p-values corrected for multiple testing using step-down Sidak 
method (7).

The power analysis was performed for both a two-group par-
allel design and a one-group baseline-versus-treatment design. 
Since IPPoMS is a 2-year randomized controlled trial, for each 
biomarker, the relative change in 2 years [= 100 × (measure score 
in 2 year − baseline)/baseline] was used as an outcome measure, 
which was assumed to follow a normal distribution, has changed 
linearly over time and had homogeneity of variance. The drug was 
assumed to have 50%, 40%, or 30% effect. The mean and SD from 
the observed relative change in the first year without treatment 
was used for the calculations.

For a two-group design, a two-tailed two-sample t-test was 
used to test the null hypothesis: μ1 = μ2, where μ1 is placebo group 
mean change and μ2 is treated group mean change. For example, 
for an outcome variable with 10% measured relative change in 
the 1-year pre-treatment period, the placebo group mean was 
expected to change 20% over 2 years of treatment, and the treated 
group mean was expected to change 10% (12% and 14%) if the 
drug had 50% (40% and 30%, respectively) efficacy.

For the one-group design, two-tailed one-sample t-test was 
used to test the null hypothesis: μ = μ0, where μ0 is null hypothesis 
mean and μ is the alternative hypothesis mean, with analogously 
estimated 50% (40% and 30%) drug effects.

For each biomarker, the sample sizes were estimated to reject 
the null hypotheses with 80% power at the 5% significance level 
(not adjusted for multiple outcomes) for the two designs.

The individual biomarker and power analyses were performed 
using SAS 9.2 and GraphPad Prism 6 software.

resUlTs

The results for all 58 measured variables are summarized in 
Table 2.

standard clinical scales
Both EDSS [Δ = 6.48% (SD = 14.15%); p = 0.0116] and SNRS 
[Δ  =  −4.54% (8.71); p  =  0.0046] demonstrated statistically 
significant progression, with SNRS having a higher z-score (0.52 
vs. 0.46; Table 2). 25FW also showed statistically significant pro-
gression over the period of 1 year [Δ = 64.52% (SD = 193.12%); 
p = 0.0029]. MSFC or its remaining individual components (i.e., 
9HPT and PASAT) did not show any evidence of a significant 
change between Mo −12 and Mo 0. Similarly, SDMT did not show 
significant yearly progression.

electrophysiological Measures
In order to calculate one electrophysiological outcome, we have 
added six CMCT values to create a composite Σ CMCT measure. 
The group change over 1  year was not statistically significant 
[Δ = 5.07% (21.18); p = 0.1852].
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TaBle 2 | statistical information for all measured variables.

category  
(no. of measures)

Biomarker 
abbreviation

Biomarker description iPPOMs1 iPPOMs2 riViTalise

Mean% 
Δ

sD z-scorea p-value  
Δ (t-test)b

p-value  
Δ (t-test)c

p-value  
Δ (t-test)c

Clinical (8) EDSS Expanded Disability Status Scale 6.48 14.15 0.4580 0.0116 0.0109 0.3293d

SNRS Scripps Neurological Rating Scale −4.54 8.71 0.5212 0.0046 0.0052 0.0766

25FW 25 Foot Walk (average of two attempts) 64.52 193.12 0.3341 0.0029 0.1537 0.3293

9HPT 9 Hole Peg test (average of two attempts  
per hand)

18.73 86.89 0.2156 0.1341

PASAT Paces Auditory Serial Addition Test 5.72 23.88 0.2395 0.3438

MSFC MS functional composite (Composite of 25FW, 
9HPT, and PASAT)

−11.24 277.32 0.0405 0.3197

SDMT Symbol Digit Modality Test (# correct) −2.26 12.13 0.1863 0.2930

CombiWISE Composite of EDSS, SNRS, 25FW, and 9HPT 9.10 13.23 0.6878 0.0003 0.0107 0.0445

Electrophysiological 
(1)

Σ CMCT Sum of 6 central motor conduction times, one per 
each upper and two per each lower extremity

5.07 21.18 0.2394 0.1852

Imaging-volumetric 
(7)

V-SIENA Change in brain volume (SIENA method) −0.70 1.70 0.4118 0.0178 0.0980 0.6454

V-Brain Brain volume (LesionTOADS method) −0.12 2.17 0.0553 0.9803
V-Ventricles Ventricular volume (LesionTOADS method) 3.45 7.01 0.4922 0.0081 0.0032 0.0249
V-CorticalGM Volume of cortical gray matter (LesionTOADS 

method)
1.26 15.71 0.0802 0.4792

V-Thalamus Volume of thalamus (LesionTOADS method) −3.84 8.86 0.4334 0.0084 0.4416 0.4314
V-Caudate +  
Putamen

Volume of caudate and putamen (LesionTOADS 
method)

−1.61 13.65 0.1179 0.3879

A-CS-Dens Cross-sectional area of spinal cord (dens level) −0.31 23.04 0.0135 0.9418

Imaging-OCT (1) OCT Optical coherence tomography −1.48 4.72 0.3136 0.0970

Imaging-qT1 (9) qT1-IC qT1 of anterior limb of internal capsule 1.71 4.84 0.3533 0.1155
qT1-CC qT1 of corpus callosum 1.21 5.64 0.2145 0.2507
qT1-Caudate qT1 of the head of the caudate nucleus 1.71 5.84 0.2928 0.2369
qT1-Putamen qT1 of putamen 0.99 5.47 0.1810 0.3304
qT1-Thalamus qT1 of thalamus 2.09 5.00 0.4180 0.0296 0.6820 0.4314
qT1-Midbrain qT1 of midbrain (axial section) 0.93 5.22 0.1782 0.3394
qT1-Pons qT1 of pons (sagittal section) 0.00 5.06 0.0000 0.9975
qT1-Medulla qT1 of medulla (axial section) 0.19 5.95 0.0319 0.8598
qT1-SC-Dens qT1 of spinal cord (dens level; axial section) 1.46 31.53 0.0463 0.1655

Imaging-DTI  
Tortoise (32)

DTI-T-IC Radial diffusivity of internal capsule (anterior) 0.78 9.56 0.0816 0.6584
DTI-II-IC Axial diffusivity of internal capsule (anterior) 3.69 12.19 0.3027 0.1455
DTI-MD-IC Mean diffusivity of internal capsule (anterior) 2.23 6.85 0.3255 0.0853
DTI-FA-IC Fractional anisotropy of internal capsule (anterior) 2.47 11.26 0.2194 0.4937
DTI-T-ICPost Radial diffusivity of internal capsule (posterior) 1.30 11.15 0.1166 0.5279
DTI-II-ICPost Axial diffusivity of internal capsule (posterior) 2.66 8.68 0.3065 0.1064
DTI-MD-ICPost Mean diffusivity of internal capsule (posterior) 1.89 6.25 0.3024 0.1080
DTI-FA-ICPost Fractional anisotropy of internal capsule (posterior) 1.24 7.12 0.1742 0.7887
DTI-T-CC Radial diffusivity of corpus callosum −1.77 14.81 0.1195 0.5172
DTI-II-CC Axial diffusivity of corpus callosum 1.69 7.51 0.2250 0.4837
DTI-MD-CC Mean diffusivity of corpus callosum 0.59 7.12 0.0829 0.6513
DTI-FA-CC Fractional anisotropy of corpus callosum 1.40 4.15 0.3373 0.1439
DTI-T-Caudate Radial diffusivity of the head of the caudate 4.78 8.89 0.5377 0.0063 0.0032 0.0783
DTI-II-Caudate Axial diffusivity of the head of the caudate 3.14 7.52 0.4176 0.0294 0.0035 0.0342
DTI-MD-Caudate Mean diffusivity of the head of the caudate 4.06 7.72 0.5259 0.0074 0.0032 0.0457
DTI-FA-Caudate Fractional anisotropy of the head of the caudate −2.48 14.25 0.1740 0.3480
DTI-T-Putamen Radial diffusivity of the putamen 0.92 7.16 0.1285 0.9322
DTI-II-Putamen Axial diffusivity of the putamen 2.18 6.59 0.3308 0.0810
DTI-MD-Putamen Mean diffusivity of the putamen 1.40 6.62 0.2115 0.5137
DTI-FA-Putamen Fractional anisotropy of the putamen 7.27 18.92 0.3842 0.0443 0.0052 0.6454
DTI-T-Thalamus Radial diffusivity of the thalamus 1.16 5.64 0.2057 0.2674
DTI-II-Thalamus Axial diffusivity of the thalamus 1.63 6.22 0.2621 0.1608
DTI-MD-Thalamus Mean diffusivity of the thalamus 1.35 5.40 0.2500 0.1817
DTI-FA-Thalamus Fractional anisotropy of the thalamus 2.21 11.16 0.1980 0.2874
DTI-T-Midbrain Radial diffusivity of the midbrain (axial section) 3.17 10.42 0.3042 0.1063
DTI-II-Midbrain Axial diffusivity of the midbrain (axial section) 3.40 10.91 0.3116 0.1558
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category  
(no. of measures)

Biomarker 
abbreviation

Biomarker description iPPOMs1 iPPOMs2 riViTalise

Mean% 
Δ

sD z-scorea p-value  
Δ (t-test)b

p-value  
Δ (t-test)c

p-value  
Δ (t-test)c

DTI-MD-Midbrain Mean diffusivity of the midbrain (axial section) 3.01 7.99 0.3767 0.0484 0.0433 0.0018
DTI-FA-Midbrain Fractional anisotropy of the midbrain (axial section) 1.60 11.73 0.1364 0.8951
DTI-T-Medulla Radial diffusivity of the medulla (axial section) 6.58 10.61 0.6202 0.0020 0.0034 0.0157
DTI-II-Medulla Axial diffusivity of the medulla (axial section) 2.13 7.16 0.2975 0.1132
DTI-MD-Medulla Mean diffusivity of the medulla (axial section) 4.46 8.17 0.5459 0.0057 0.0032 0.0138
DTI-FA-Medulla Fractional anisotropy of the medulla (axial section) −5.19 14.96 0.3469 0.0673

One-sample t-test was used to calculate p-values for the tests for the yearly change for each variable. P-values in bold highlight variables that showed significant at the 5% level.
az-score was calculated by dividing the mean group change over 1 year by the group SD.
bRaw p-values are displayed.
cOnly variables that showed statistical significance in IPPOMS1 cohort were subjected to statistical testing in IPPOMS2 and RIVITALISE cohorts. p-values are adjusted for tests 
performed on 15 variables using step-down Sidak method.
dt-test performed on the whole dataset – outlier removal would eliminate 32% of subjects from the cohort.
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Mri Volumetric Outcomes
While change in the brain volume measured by LesionTOADS 
(V-Brain) was not statistically significant, the percent change 
in brain volume calculated by SIENA was significantly reduced 
over 1 year [V-SIENA; Δ = −0.70% (1.70); p = 0.0178] with a 
z-score of 0.41. Brain tissue segmentation revealed no evidence 
of a change in cortical gray matter (V-CorticalGM), caudate and 
putamen, but statistically significant decrease in thalamic volume 
[V-Thalamus Δ = −3.84% (8.86); p = 0.0084] and enlargement of 
ventricles [V-Ventricles; Δ = 3.45% (7.01); p = 0.0081]. Both of 
these segmented volumetric outcomes achieved higher z-scores 
than whole brain atrophy (V-SIENA).

None of the cross-sectional areas of the upper cervical SC 
changed significantly over 1  year; therefore, we only highlight 
the best-performing of these outcomes, measured at the level of 
dens (C1).

Optical coherence Tomography
Because the temporal quadrant of retinal nerve fiber layer has the 
most-pronounced thinning in MS (21), we have used the sum of 
the temporal quadrants from both eyes as a single OCT measure. 
This biomarker did not show evidence of progression over 1 year.

Mri Tissue integrity Measures: qT1
Only one of the nine qT1 biomarkers, measured in manually 
segmented ROIs corresponding to thalamus (qT1-Thalamus) 
showed statistically significant change over 1  year [Δ  =  2.09% 
(5.00); p = 0.0296].

Mri Tissue integrity Measures: DTi
Initially, we used the identical co-registration method (i.e., 
JIST; DTIJ) for qT1 and DTI measures of CNS tissue integrity. 
However, DTIJ data demonstrated unacceptably high scan-rescan 
variability in HVs (at times > 100%), which led us to re-analyze 
DTI scans using two different technologies: (1) we drew separate 
ROIs for Mo −12 and Mo 0 on un-registered native DTI scans 
(DTIN) and (2) we co-registered DTI scans to anatomical images 
using TORTOISE algorithm (DTIT). The DTIT method outper-
formed DTIN for all DTI biomarkers and, therefore, only DTIT 
data are presented.

Seven DTI outcomes measured in four brain structures 
changed significantly over 1  year in the IPPOMS1 cohort: 
radial- [Δ = 4.78% (8.89); p = 0.0063], axial- [Δ = 3.14% (7.52); 
p = 0.0294], and mean diffusivity (MD) of the head of the cau-
date nucleus [Δ = 4.06% (7.72); p = 0.0074], FA of the putamen 
[Δ = 7.27% (18.92); p = 0.0443], MD of the midbrain [Δ = 3.01% 
(7.99); p = 0.0484] and the radial- [Δ = 6.58% (10.61); p = 0.0020] 
and MD of the medulla [Δ = 4.46% (8.17); p = 0.0057].

Validation of Biomarkers that reached 
statistical significance in the iPPOMs1 
cohort in Two additional longitudinal 
Progressive Ms cohorts (riViTalise 
and iPPOMs2)
Fifteen outcomes that reached statistical significance based on 
unadjusted p-values in the IPPOMS1 cohort were evaluated for 
statistically significant progression over 1 year in two independ-
ent validation cohorts consisting of PPMS (IPPOMS2) and SPMS 
(RIVITALISE) patients with identical inclusion criteria. Eleven 
outcomes also showed statistical significance in the IPPOMS2 
cohort after adjustment for multiple comparisons, but only six 
outcomes validated in the smaller RIVITALISE cohort (Table 2).

From clinical measures, SNRS barely missed the cut-off for 
statistical significance in the RIVITALISE cohort. From MRI 
volumetric measures, only ventricular volume (V-Ventricles) 
validated in both cohorts. Finally, from MRI measures of CNS 
tissue integrity, MD was the most successful DTI biomarker 
and it validated significant progression when measured in three 
ROIs: the head of the caudate nuclei, midbrain, and medulla. 
Additionally, radial diffusivity of the medulla and axial diffusiv-
ity of caudate nuclei also demonstrated statistically significant 
change in both validation cohorts.

correlations between Validated 
Outcomes and eDss
Because clinical progression as measured by EDSS has been an 
accepted outcome for regulatory approval of MS treatments, we 
evaluated correlations between validated outcomes and EDSS, in 
cross-sectional (i.e., including Mo −12 data for 98 progressive 
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FigUre 1 | correlation matrix for 14 clinical and Mri measures in the 
cohort of 98 progressive Ms patients. Correlation matrix for Mo −12 
cross-sectional data (above the diagonal) and relative percentage change (Δ) 
over 1 year (below the diagonal) in the progressive MS cohort. The heatmap 
shows positive (shades of blue) and negative (shades of red) Spearman 
correlations. Black border of a window indicates Spearman correlation with 
p < 0.0018 (the Bonferroni-adjusted significance level for multiple 
comparisons of 28 tested variables). For exact values of Spearman correlation 
coefficients, p-values, and number observations, see Table S2 in 
Supplementary Material.
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MS patients from all three longitudinal cohorts) and longitudinal 
(i.e., correlations between yearly changes measured in identical 
98 patients) paradigms. We also included other clinical scales in 
the correlation matrix for instructive purposes [Figure 1 (exact 
correlation coefficients, p-values, and number of observations are 
in Table S2 in Supplementary Material)].

In the cross-sectional paradigm, we observed strong to mod-
erate correlations between all clinical outcomes that had small 
p-values, with exception of the cognitive test PASAT, which was 
only moderately correlated with another cognitive test SDMT. We 
also observed statistically significant correlations of relatively mild 
strength between ventricular volume and clinical biomarkers that 
capture cognition and fine finger movements/coordination (i.e., 
SDMT, MSFC, PASAT, and 9HPT), but not with EDSS. Finally, 
DTI measures were generally correlated with each other, but not 
with any clinical outcome.

As expected, fewer correlations were observed in the longitu-
dinal paradigm: CombiWISE (see below) was the only scale that 
showed strong, statistically significant correlation of its yearly 
change with three out of four clinical outcomes (EDSS, SNRS, 
and 25FW) that contribute to its computation. By contrast, 
yearly change in MSFC, another composite scale, demonstrated 

significant, but weak correlation with only one (25FW) of its three 
components. Again, strong correlations were observed between 
different DTI measures. However, no statistically significant cor-
relation was observed between MRI measures and clinical scales 
in the longitudinal paradigm.

composite clinical score: combiWise
The discrepancy between strong correlations among clinical 
scales in the cross-sectional paradigm and the lack of correlations 
in the 1 year longitudinal study indicate that like other outcomes, 
tested clinical scales suffer from low sensitivity confounded by 
measurement noise. Repeated measurements can enhance signal-
to-noise ratio (SNR). To the extent to which clinical scales capture 
overlapping elements of disability, they represent a form of 
repeated measures. For example, slight worsening in one clinical 
score but improvement in another may reflect performance noise 
rather than true disability. A structural substrate to observed 
change is expected to affect overlapping domains of several 
clinical scores congruently. Thus, using a combination of clinical 
scales with overlapping elements amplifies the true disability and 
limits measurement noise. However, differences in z-scores also 
indicate that clinical scales differ in sensitivity and specificity. 
Therefore, combination of clinical scales should be based on their 
measured performance, giving a greater weight to the measures 
that have higher sensitivity and lower measurement noise. We 
tested this hypothesis by first constructing a conceptual model of 
the combinatorial weight-adjusted disability score (CombiWISE 
v.0; see Figure S3 in Supplementary Material for details) based 
on the collected clinical data exclusively in the IPPOMS1 cohort. 
We then validated its sensitivity for longitudinal change and 
superiority against other clinical measures in IPPOMS2 and 
RIVITALISE cohorts (Figure  S3 in Supplementary Material). 
Because CombiWISE v.0 represented only one possible model 
from measured data, we next employed statistical modeling using 
a GA (22–24) to numerically optimize CombiWISE for its ability 
to detect yearly changes across a suite of random permutations 
of the acquired data from all 98 progressive MS patients (see 
Materials and Methods).

The 200 permutations of the training/validation data for 
the weights generated from the attempt to use all 10 measured 
clinical variables [i.e., 9HPT was evaluated independently 
for the dominant (logDH-9HPT) or non-dominant hand 
(logNDH-9HPT) and the failure to perform either of them 
(DHFAIL, NDHFAIL) or log25FW (25FWFAIL) were captured 
as separate variables, leading to a total of four 9HPT and 
two 25FW measures tested] demonstrated that cognitive 
scales (PASAT and SDMT) were always at the boundary of 
0, because their direction of change was often opposite to 
expected clinical progression (i.e., they either did not change 
or demonstrated a learning effect; Figure  2A). Surprisingly, 
permutations also revealed differences between logDH-9HPT 
and logNDH-9HPT, with the latter achieving higher weights, 
while logDH-9HPT weights were close to zero in most 
cases. Consequently, to reduce variability of CombiWISE, 
we removed the aforementioned four clinical outcomes that 
did not reliably capture disease progression. Five hundred 
additional GAs (using the same constrained permutation 
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FigUre 2 | Development of mathematically optimized combiWise scale. (a) A bean plot (25) of variability in relative weights constructed from 200 
permutations of training data using the genetic algorithm. (B) A bean plot of variability in weights for optimization across 500 permutations of training data using 
reduced set of clinical scales. (a,B) Black lines represent the individual weight results, red lines show the average of weights for each contributing scale, yellow 
areas represent non-parametric density curves of distribution of individual weights. (c) Mean relative weights and computing weights from the contributing clinical 
scales for CombiWISE calculation. Relative weights allow for comparing the level of contribution of individual scales while the computing weights are rescaled 
versions that produce a metric ranging from 0 to 100. (D) A bean plot of 500 permutations of validation data test-statistics for CombiWISE in addition to individual 
clinical scales and the Multiple Sclerosis Functional Composite (MSFC) scale. Black lines represent individual test statistics, red lines show average of test statistics 
for each scale, yellow areas represent non-parametric density curves of individual test statistics, blue lines correspond to cut-offs for 5% significance level tests.
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procedure of training/validation data splits) with the remain-
ing six clinical variables (Figure  2B) achieved mean weights 
that were proportionally comparable to the weights utilized in 
the conceptually generated CombiWISE v.0 (i.e., weights based 
on measured z-scores in the IPPOMS1 cohort), with following 
hierarchy: SNRS > EDSS > log25FW = 25FWFAIL > logNDH-
9HPT  =  NDHFAIL (Figure  2C). The measured weights were 
rescaled so that optimized CombiWISE ranges from 0 to 100 
(higher numbers correspond to increasing disability), calcu-
lated based on the following formula:

 

CombiWISE EDSS SNRS= + −
+ +
33 166 3 803 0 407

2 409 25 18 05
. . * . *
. * .log FW 66 25

1 305 9 10 751
*

. * . *
FW

 logNDH- HPT  NDH
FAIL

FAIL+ +  

In order to assess the performance of the optimized 
CombiWISE, we compared the resulting test statistics for 
500 permutations of the withheld validation data sets for the 
t-statistics for the linear time change in the mixed model 
(Figure 2D). We observed that CombiWISE outperformed all 
other clinical scales. In 93.4% of the 500 permuted validation 
datasets, CombiWISE generates a larger test statistic than SNRS, 
which is the highest performing single clinical scale, with an 
average gain of 0.85 t-statistic units and a maximum gain of over 
2.5 units. CombiWISE also outperformed EDSS and log25FW 
in over 97% of the permuted validation datasets with average 
gains of approximately 1.45 and 2 t-statistic units, respectively. 
This gain in t-statistic corresponds to higher power in detect-
ing clinical changes over time, particularly if the changes are 
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relatively small (Figure S4 in Supplementary Material), as would 
be expected in a Phase II trial.

CombiWISE correlates strongly with all clinical scales, includ-
ing cognitive SDMT (which does not contribute to CombiWISE) 
in the cross-sectional evaluation of >300 untreated neurological 
patients and HVs (Figure  3A). Furthermore, CombiWISE can 
reliably detect linear progression of clinical disability in all 
three progressive MS cohorts, often even in intervals as short as 
6 months (Figure 3B). In contrast to MRI measures, which have 
generally high technical/biological variability (i.e., SNR computed 
as the average of absolute yearly change in patients divided by 
the average of absolute scan-re scan difference in HVs; Table S3 
in Supplementary Material), with successful MRI biomarkers 
having SNR between 1.45 and 2.94, CombiWISE has SNR 7.66, 
even when we used a more stringent definition of SNR, computed 
as average absolute yearly difference in patients divided by aver-
age absolute yearly changes in HVs. Finally, CombiWISE shows 
no overlap of values between HVs and progressive MS patients 
(Figure 3C) in contrast to MRI measures. For comparison, we 
selected the best-performing MRI variable – radial diffusivity 
of medulla – that shows complete overlap of the values between 
HVs and moderately to severely disabled progressive MS patients 
(Figure 3D).

Power analysis
In power calculation, CombiWISE is the best-performing out-
come in IPPOMS1 cohort (Figure 4, Table S4 in Supplementary 
Material). In a parallel-group design, a 2-year treatment study 
with 1:1 randomization, 34, 53, and 95 subjects per arm are 
required to detect 50%, 40% versus 30% drug effect, respectively, 
with 80% power, 5% significance level and two-sided compari-
sons (Figure 4A). In a baseline-versus-treatment paradigm, 19, 
28, and 49 subjects per arm are needed to detect 50%, 40% versus 
30% drug effect on CombiWISE, respectively (Figure  4B). We 
included EDSS in the Figure 4 for direct comparison.

DiscUssiOn

There remains a large unmet need for development of therapies 
for progressive MS. While at any given time, multiple candidate 
therapies are available, the present bottleneck resides in the 
inability to screen them in small, but adequately powered, Phase 
II trials that can correctly predict efficacy on FDA-accepted 
clinical endpoint utilized for Phase III trials. This study provides 
a comprehensive comparison of outcomes in the same patient 
group(s) within a real-world situation of Phase II clinical trials.

The reason for implementing pre-specified comparison of 
large number of candidate outcomes into progressive MS tri-
als initiated 7 years ago was the fact that such comparison was 
lacking in the public domain then, and still is lacking today; 
surprisingly, the papers that describe candidate new outcomes do 
not compare these with the traditional outcomes, such as EDSS 
(2, 10). Nevertheless, the excellent experience with MRI CELs as 
highly sensitive and reproducible outcome in RRMS poised the 
MS field to trust the superiority of MRI outcomes over clinical 
outcomes for progressive MS, in the absence of factual evidence. 
This belief in superiority of MRI outcomes is virtually universal, 

as evidenced by the fact that brain atrophy represents the primary 
outcome in the vast majority of currently ongoing Phase II trials 
in progressive MS (26).

Despite the fact that we validated six qMRI measures as reli-
ably changing in three progressive MS cohorts over 1  year, we 
found that they had low to absent correlations with clinical scales 
and a strong overlap of values between HVs and MS patients. 
From tested volumetric measures, enlargement of ventricles 
measured by LesionTOADS was the most reproducible MRI 
outcome, which outperforms the SIENA brain volume change 
measurement, but did not outperform CombiWISE in any of the 
tested cohorts. This MRI outcome showed modest correlations 
with cognitive scales and the 9HPT, at least in the cross-sectional 
paradigm, proving its biological relevance. However, its lack of 
correlation with EDSS (and SNRS, 25FW, or CombiWISE) makes 
it questionable whether the efficacy on brain atrophy observed in 
Phase II trials will correctly predict efficacy on clinical outcomes 
in Phase III studies. In fact, simultaneously measured changes in 
brain atrophy and clinical parameters were already contradictory 
in a Phase II progressive MS trial (27). For these multiple reasons, 
CombiWISE is a better outcome for Phase II trials of progressive 
MS than ventricular or brain atrophy.

The remaining MRI markers that reproducibly progressed 
in all three cohorts were DTI biomarkers measured in the head 
of the caudate nucleus, midbrain, and medulla. These putative 
biomarkers of CNS tissue integrity were all correlated with each 
other, but did not correlate with clinical outcomes, even when we 
re-analyzed data separately for each of the scanners, to avoid influ-
ence of the observed “scanner effect” (Figure S6 in Supplementary 
Material). The most concerning observation was a broad overlap 
of DTI-derived measurements between HVs who lack neurologi-
cal disability and moderately-severely disabled MS patients. If the 
measured yearly increase in DTI outcomes in the MS cohort truly 
reflected yearly increase in CNS tissue destruction, then extrapo-
lating such a yearly rise in DTI parameters across the long disease 
duration of our MS cohort would position this cohort way above 
the HVs. Instead, relatively high scan–rescan variability in HVs 
in comparison to the yearly changes measured in MS cohorts (i.e., 
low SNR), prominent scanner effect (Figure S7 in Supplementary 
Material) and also statistically significant, scan-date-related lon-
gitudinal drift of DTI data measured across 3 years (Figure S8 in 
Supplementary Material), suggest that technical aspects of MRI 
scanning, rather than biological changes are more likely the cause 
of the measured yearly increase in DTI parameters.

These observations caution against uncritical interpretations 
that changes in qMRI parameters reflect unequivocally structural 
alterations of CNS tissue. An informative review (28) highlights 
this erroneous assumption: MRI does not measure brain struc-
ture; instead, it infers brain structure from the radio-frequency 
signals of energized hydrogen protons, which are affected by 
both technical parameters of magnetic fields and magnetic 
properties of the surrounding tissue. Quantitative data derived 
from advanced imaging techniques, such as DTI, are computed 
from mathematical models, parameters of which are influenced 
by scanner hardware, sequences, and post-processing methods 
(29). Furthermore, MRI, as a physical–chemical measure, is also 
influenced by biological phenomena that have nothing to do with 
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FigUre 3 | combinatorial weight-adjusted disability score (combiWise) correlates highly with other clinical scales and shows statistically 
significant progression in three independent cohorts. (a) Spearman correlations between CombiWISE and standard clinical scores (EDSS, SNRS, 25FW, 
9HPT, SDMT, and MSFC) in the cross-sectional cohort of 303 untreated subjects with different types of MS, other inflammatory and non-inflammatory CNS 
conditions, and healthy volunteers. The Y-axis scales for 25FW and 9HTP are log2-transformed; ****p < 0.0001. (B) Longitudinal data for CombiWISE calculated 
from clinical scores collected every 6 months (Mo −12, Mo −6, and Mo 0) during the pre-treatment baseline for PPMS subjects in the IPPoMS trial and for a cohort 
of 29 untreated SPMS subjects showing statistically significant worsening of the clinical status over periods of 6 to 12 months in both PPMS and SPMS subjects. 
Statistical significance was determined by one-way ANOVA test on repeated measures. The red bars show mean for each group, *p < 0.05, **p < 0.01, 
***p < 0.001, displayed that p-values were adjusted for multiple comparisons by Holm–Sidak test. (c) Longitudinal data for CombiWISE collected during the 
pre-treatment baseline of the IPPoMS trial show statistically significant increase in CombiWISE over 1 year. CombiWISE data collected on healthy subjects with a 
yearly follow-up visit show no overlap with the data of moderately to severely disabled PPMS patients, as well as no appreciable change over 1 year. Red bars 
represent the mean of the group. (D) Comparison of measured change and the overlap of values between IPPoMS and HV cohorts for the best-performing DTI 
biomarker (axial diffusivity of the medulla). Red bars represent the mean of the group.
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the structural integrity of CNS tissue, such as changes in body 
weight, lipid levels, hydration, and use of alcohol or pharma-
ceutical agents (28). While these confounding factors are easily 
controlled in animal experiments from which pathological-MRI 
correlations have been derived (30, 31), they are impossible to 
eliminate in the real-world experience of human clinical trials 
performed on multiple MRI scanners and spanning several years.

Thus, reliance on MRI markers as the primary outcome in 
progressive MS trials is currently not advisable because of their 
lack of surrogacy with clinical scales. Surrogacy (32) requires 
that the biomarker predicts results on clinical outcomes, and 
does so in a considerably shorter time-period than clinical 
scales. While correlation with clinical scales is not sufficient, 
it is nevertheless a prerequisite for surrogacy and none of the 
MRI markers tested in the current study fulfills this condition in 
relationship to EDSS, SNRS, 25FW, or CombiWISE. We cannot 

generalize our conclusions to magnetic resonance spectroscopy 
or magnetization transfer biomarkers (33–36), which we did 
not test. Hopefully, future studies of these potentially promising 
biomarkers will include longitudinal assessment of their vari-
ance, influence of scanner(s), and sequences, overlap with data 
generated in HVs and direct comparison with the simultaneously 
acquired clinical scales.

Strong to moderate correlations between different clinical 
scales indicate that these do reflect evolution of underlying disease. 
Nevertheless, their sensitivity for yearly disease progression is low, 
as none of them demonstrated statistically significant progression 
in all three longitudinal cohorts and yearly changes measured by 
different scales did not correlate. While SDMT correlated stronger 
with the remaining clinical scales than PASAT did, the modeling 
permutations found both cognitive tests insensitive to reliably 
detect yearly progression in small Phase II trials. The idea that 
a composite score could amplify changes in individual clinical 
scales has been tested before. Goodkin introduced a composite 
outcome consisting of designated changes in any of the four uti-
lized clinical scales (37) and demonstrated superior sensitivity of 
such composite (38). An analogous composite primary endpoint 
was used in recently announced negative trials of natalizumab 
(ASCEND trial, NCT01416181) and opicinumab (anti-Lingo-1 
SYNERGY trial, NCT01864148). Unfortunately, the specificity 
of such an inclusive composite has not been published. The 
National MS Society Clinical Outcomes Assessment Task Force 
recommended development of a composite clinical measure in 
which individual components “should have high reliability” (39). 
The result of this effort was the MSFC (10), introduced without 
direct comparison to EDSS. In follow-up studies, MSFC change 
had considerably lower power than EDSS for detecting sustained 
disability in PPMS subjects (40). Our measurements concur with 
this conclusion.

In contrast to aforementioned efforts, we used statistical 
modeling to optimize a composite clinical metric that “weighs” 
simultaneously captured data from several clinical scales, selected 
based on their ability to detect MS disease progression in a major-
ity of modeling cohort permutations. CombiWISE is based on 
the intersection of these scales, benefiting from the noise-limiting 
feature of combining partially overlapping measurements. Strong 
correlations of CombiWISE with traditional clinical outcomes 
observed in multiple cohorts and its excellent SNR fully support 
the stated conceptual advantages of this scale; because EDSS rep-
resents only 28% of the CombiWISE score, retaining strong, sta-
tistically significant correlations between changes in CombiWISE 
and EDSS in a small, year-long study is actually not intuitive (see 
Figure S5 in Supplementary Material for formal assessment of this 
statement). The reason why CombiWISE is more than twice as 
sensitive as EDSS in detecting progression of disability lies in the 
discreteness of EDSS: while a patient may remain on any given 
EDSS step for a long time, CombiWISE can detect continuous 
disease progression as measured by three alternative clinical 
scales. Yet, thanks to the strong correlation between CombiWISE 
and EDSS, one can calculate from the resulting regression slopes 
that 1 point change in EDSS corresponds on average to a 7.50 
point change on CombiWISE with a standard error of 0.10, 
allowing extrapolation of clinical meaning from the CombiWISE 

FigUre 4 | Power analysis for the selected seven statistically 
significant variables. Power analysis shows number of required subjects 
per arm (accumulated sample size as effect size drops across bars) 
considering 80% nominal power, statistical significance level of 5% and either 
(a) parallel or (B) baseline vs. treatment group design for the 2-year study 
considering 30% (sum of black, gray, hatched bars), 40% (sum of gray and 
hatched bars), and 50% (hatched bars) drug effect.
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measurements. Finally, CombiWISE provides approximately 
normally distributed data (Figure S9 in Supplementary Material), 
permitting the use of parametric statistical techniques even in 
small cohorts. We observed that both conceptually devised and 
the numerically-optimized version of CombiWISE detect signifi-
cant disease progression in all three longitudinal progressive MS 
cohorts, in intervals as short as 6 months. Thus, using CombiWISE 
as a continuous variable captured every 6 months should provide 
further advantage over event-driven outcomes, such as the 
one used in a trial of ocrelizumab in PPMS (ORATORIO trial; 
NCT01194570). While relatively low numbers of patients in each 
of the three independent longitudinal cohorts (i.e., N = 29–35) 
may be viewed as a limitation, it proves that CombiWISE 
reproducibly measures yearly disease progression in cohorts that 
correspond in size to the treatment versus placebo arms of the 
economical Phase II trials.

In conclusion, CombiWISE has validated as the most sensitive 
clinical outcome for progressive MS. It has consistently higher 
sensitivity for detecting longitudinal changes in progressive MS in 
comparison to MRI measures of brain atrophy, currently broadly 
utilized in Phase II progressive MS trials. In contrast to all tested 
MRI measures, CombiWISE can predict changes in EDSS, presently 
used for regulatory approval. Substituting EDSS with CombiWISE 
requires over 100 fewer subjects per arm (200 versus 95) in a 
parallel-group design to detect a 30% drug effect in a 2-year study.
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