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Sonneratia apetala Buch-Ham., an exotic mangrove species with antidiabetic,
antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal
areas in China. The present work investigated the protective effects of Sonneratia
apetala leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice.
Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA
model by challenge for consecutive 7 days. Results revealed that SAL inhibited the
increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL
significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea
nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase
(XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes.
Moreover, it regulated oxidative stress markers including malondialdehyde (MDA),
catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content.
Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18
(IL-18), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), monocyte chemotactic
protein 1 (MCP-1), and transforming growth factor-β (TGF-β). SAL remarkably
reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and
subsequent phosphorylation of signal transducer and activator of transcription 3
(STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B
(NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA
transporters of organic anion transporter (OAT1), urate reabsorption transporter 1
(URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL
ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate
excretion, which are related to oxidative stress and inflammation, and the possible
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molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway.
Thus, SAL might be developed into a promising agent for HUA treatments.

Keywords: Sonneratia apetala leaves and branches, hyperuricemia, renal uric acid transporters, oxidative stress,
JAK/STAT pathway

INTRODUCTION

Hyperuricemia (HUA) is a metabolic disease caused by abnormal
purine metabolism or insufficient uric acid (UA) excretion,
characterized by elevated UA in the blood (Borghi, 2017;
Dehlin et al., 2020). Previous studies report that HUA is
highly related to hypertension, hyperlipidemia, fatty liver,
diabetes, and other diseases (Wang et al., 2014;
Jaruvongvanich et al., 2017; Jayachandran and Qu, 2020;
Kielstein et al., 2020). With improvement of people’s living
standard and change of dietary pattern, incidence of HUA is
increasing in recent years (Liu et al., 2014; Singh et al., 2019).
Hepatic overproduction and renal underexcretion of uric acid are
two of the main causes of HUA (Shekelle et al., 2017). UA
production is catalyzed by xanthine oxidase (XOD) in the
liver, whereas excretion of UA occurs in the kidney. XOD is
the key enzyme involved in the transformation of xanthine and
hypoxanthine (HX) into UA, which is distributed in the liver
(Maiuolo et al., 2016). On the other hand, during the process of
UA excretion, urate transporters play a vital role in reabsorption
and secretion of UA (Pan et al., 2020). Moreover, accumulation of
UA in the kidney can lead to UA crystals and cause inflammation
and oxidative stress, thereby leading to kidney injury (Chang
et al., 2014). In conclusion, reducing UA production, promoting
UA excretion, or (and) ameliorating the inflammation and
oxidative stress may be the potential therapeutic methods
of HUA.

In clinical practice, treatment of HUA is mainly achieved by
facilitating UA excretion or inhibiting XOD activity. The first-line
XOD inhibitors are allopurinol (AP) and febuxostat (FBX)
(Shekelle et al., 2017). However, less than 40% of patients can
reduce their serum UA levels to normal levels by taking AP, and
long-term use of AP can lead to liver and kidney injury (Yang
et al., 2015). Research also reported that patients treated with FBX
faced higher risk of cardiovascular death (Zhang et al., 2018). In
addition, as a transporter inhibitor, benzbromarone (BZM) is also
a first-line drug against HUA (Dong et al., 2019). Nevertheless,
long-term use of BZM was reported to cause serious
hepatotoxicity, which limited its clinical application (Shin
et al., 2011). Therefore, it is necessary to explore natural and
nontoxic therapeutic strategies for HUA. Mounting pieces of
evidence have suggested that natural medicine exhibited
significant effects in lowering UA (Chen et al., 2015; Liang
et al., 2019; Martins de Sá Müller et al., 2019). Therefore,
there is great potential for natural medicine to be developed as
an alternative drug against HUA in the future.

Sonneratia apetala Buch-Ham (S. apetala), an exotic member
of the mangrove, widely distributes in the coastal regions of
Bangladesh, India, China etc. (Patra et al., 2015; Hossain S.
J. et al., 2016; Hossain S. J. et al., 2016). Most of mangrove

plants have strong pharmacological activities due to the special
growth environment. S. apetala is extensively used by the
indigenous people for diuretic, antidiabetic, catharsis, and
sprains (Hossain S. J. et al., 2016; Sachithanandam et al.,
2019). Polysaccharides, polyphenols, and flavonoids were rich
in S. apetala (Bandaranayake, 2002; Rahmatullah et al., 2010; Teja
and Ravishankar, 2013; Patra et al., 2015). Previous study
suggested that S. apetala possessed potential abilities of free
radical scavenging and reducing power (Mukul et al., 2016).

In our preliminary experiment, components of S. apetala
leaves and branches (SAL) were identified by HPLC-MS. The
result showed that the main components of SAL were gallic acid,
isorhamnetin, and vitexin. In the previous study, gallic acid was
demonstrated to have a significant inhibitory effect on XOD
in vitro (Lespade and Bercion, 2010). Moreover, vitexin could
inhibit the production of interleukin-1β (IL-1β), tumor necrosis
factor (TNF-α), and nitric oxide (NO) in macrophage RAW 267.4
cells challenged by lipopolysaccharides (LPS) (Rosa et al., 2016).
Furthermore, isorhamnetin has been reported to show anti-
hyperuricemia effects (Adachi et al., 2019). Therefore, SAL
might exert a favorable anti-hyperuricemia effect through the
hypouricemic, antioxidant, and anti-inflammatory properties of
these components. To our knowledge, there are no reports on the
chemical components of SAL and protective effect of SAL on
HUA. Thus, it was the first study to investigate the protective
effect of SAL against PO- and HX-induced HUA. For the first
time, SAL was demonstrated to possess anti-hyperuricemia effect.
Through further analysis, the signaling pathway against HUAwas
clarified. Additionally, the experiment is beneficial for utilization
and protection of mangrove plants. The results outlined might
add new dimension to the anti-hyperuricemia effect and
mechanism of S. apetala, which may arouse interest in its
further investigation.

Therefore, the aim of the current study was to investigate the
protective effects of SAL on HUA in mice. To further clarify the
mechanisms, effects of SAL on renal urate transporters, the Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) pathway was investigated through Western blot and
quantitative real-time polymerase chain reaction (qPCR)
analysis.

MATERIALS AND METHODS

Materials and Chemicals
S. apetala leaves and branches were obtained from Nansha Coast
Wetland in Guangzhou, China (2017GDZJ011). Potassium
oxonate (97%, 2207-75-2, PO) and HX (99%, 68-94-0) were
purchased from Sigma-Aldrich (United States). FBX (98%,
144060-53-7) was from Shanghai Yuanye Bio-Technology Co.
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LTD. (Shanghai, China). The biochemical assay kits of UA
(C012-2), creatinine (CRE, C011-2-1), blood urea nitrogen
(BUN, C013-2-1), glutathione (GSH, A006-2), catalase (CAT,
A007-1-1), superoxide dismutase (SOD, A001-3),
malondialdehyde (MDA, A003-1), and XOD (A002-1-1) were
the products of Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). The antibodies against JAK2 (ab108596),
p-JAK2 (ab195055), STAT3 (ab68153), p-STAT3 (ab131103),
and β-actin (ab8227) were obtained from Abcam Biosciences
(Inc., United States). Glucose transporter 9 (GLUT9, 26486-1-
AP) was purchased from Protein technology Co. LTD. (Inc.,
United States). Organic anion transporter (OAT1, DF6633), urate
reabsorption transporter 1 (URAT1, DF12340), nuclear factor
kappa-B P65 (NF-κB P65, AF5006), anti-histone H3 antibodies
(AF0863), and secondary antibodies (110191) were obtained
from Affinity Biosciences (Inc., United States). Other
chemicals and reagents were obtained from local suppliers.

Extraction of SAL
Fresh S. apetala leaves and branches were rinsed and extracted in
boiling distilled water twice for 5 h. After filtration, the extracting
solution was concentrated by reducing pressure and then freeze-
dried to obtain SAL (Liu et al., 2019).

Chemical Compositions Analysis
To determine the components of SAL, the ultra-performance
liquid chromatography (UPLC)/qExactive-mass spectrum (MS)
method was performed (Hossain S. J. et al., 2016). In brief, SAL
was dissolved in 80% methanol, centrifuged (20,000 × g, 4°C,
10 min), and the filtered with millipore filters (0.22 μm). The
filtrate was injected for UPLC analysis through an RP-C18
column (2.1 mm × 150 mm, 1.8 μm; Welch) at 35°C. The
mobile phases were 0.1% (v/v) formic acid dissolved in
purified water (A) and 0.1% (v/v) formic acid dissolved in
acetonitrile (B). The elution program was set with a gradient
procedure as follows: 0–1 min, 2% B; 1–10 min, 2–50% B;
10–20 min, 50–95% B; 20–25 min, 95% B; 25–26 min, 95–2%
B; and 26–30 min, 2% B. The injection volume of SAL was 5 μL
and eluted at 0.3 ml/min. The MS full scan range was
150–2,000 m/z. The collision gas and desolvation gas were
high-purity N2 and Ar, respectively. Finally, the results were
compared across the databases (mzCloud, mzVault, and
ChemSpider).

Animal Experiments
Eight-week-old male Kunming mice were supplied by
Guangdong Medical Laboratory Animal Center (Guangzhou,
China, No.44007200077071). All the mice were acclimated for
one week with a 12-h light/dark cycle, a controlled temperature
(22 ± 2°C), and a relative humidity of 55 ± 5% before experiment.
The mice were allowed to obtain food and water freely. The
experiment was conducted under the supervision of the
Laboratory Animal Ethics Committee of Guangzhou
University of Chinese Medicine [SYXK (Yue) 2018-0085] and
in accordance with Regulations for the Administration of Affairs
Concerning Experimental Animals (Ethics NO.20200602006).

In brief, mice were randomly divided into seven groups (n �
10): intact, vehicle, BZM (10 mg/kg), FBX (10 mg/kg), and SAL
groups (50, 100, and 200 mg/kg) (Liu et al., 2019). Except those
in the intact group, all the mice were intragastrically given HX
(300 mg/kg) and intraperitoneally injected with PO (300 mg/kg)
(Lu et al., 2019). One h after administration with PO and HX,
mice in SAL-treated groups, the BZM group, and the FBX group
were given a corresponding dose of SAL, BZM, or FBX, while
those in the intact and vehicle groups were fed with equal
volumes of 0.5% of carboxymethylcellulose sodium (CMC-
Na) solution by gastric gavage. All the operations were
conducted once daily for consecutive 1 week. After the last
treatment, all the mice were fasted for 4 h. Subsequently, the
mice were anesthetized using 3% of pentobarbital sodium
(Jiewei et al., 2018). Blood samples were obtained from the
orbit and centrifuged for 10 min (1,000 rpm, 4°C) after clotting
at room temperature for 120 min. Serum was obtained and
stored at −80°C for the further analysis. Afterward, all the
animals were sacrificed, and the kidney tissues were weighed
and collected for following biochemistry analysis. The kidney
index was calculated according to the following formula: the
kidney index of the mice � (kidney weight of the mice/body
weight of the mice) × 100%.

Kidney Histopathology
Fresh kidney tissues were rinsed thoroughly, fixed, and then
embedded in paraffin. Subsequently, 5 -mμ tissues were cut and
finally dyed with hematoxylin and eosin (H and E) or periodic
acid-Schiff (PAS) routinely. Finally, kidney histopathological
changes were examined using a microscope at × 200
magnification.

Reactive Oxygen Species Assays
To detect the level of ROS in the kidney, dihydroethidium (DHE)
staining was adopted according to the methods, as previously
described (Semprun-Prieto et al., 2011). Fresh kidney tissues were
prepared into 5-μm cryosections. The slices were then incubated
with the DHE (100 μmol/L) in the dark for 30 min at 37°C. The
results were quantified as fluorescence intensity.

Serum Biochemical Assays
The serum of the mice was obtained by centrifugation
(3,500 rpm, 10 min, and 4°C) after being kept at 25°C for 2 h.
Then the activities of serum UA, CRE, and BUN were measured
by respective commercials kits.

XOD Activity Assay
The liver tissues were homogenized and centrifuged at 3,000 rpm
for 10 min (4°C). Subsequently, the supernatant was used for the
measurement of XOD activity by a commercial kit.

Kidney Biochemical Assays
The supernatant of renal homogenate was obtained by the
method of 2.8. Subsequently, under instruction of
manufacture’s protocols, the renal GSH, MDA levels, and
SOD, CAT activities were measured by using commercial kits.
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Enzyme-Linked Immunosorbent Assays
Following the manufacturer’s instructions, the levels of
interleukin-6 (IL-6), interleukin-18 (IL-18), IL-1β, and TNF-α
in the kidney were detected by using ELISA kits obtained from
MLBIO Biotechnology Co., Ltd. (Shanghai, China).

Quantitative Real-Time Polymerase Chain
Reaction
To isolate the total ribonucleic acid (RNA) from kidneys of the
mice, Trizol reagent was used according to manufacturer’s
instruction. The RNA purity was identified to be between 1.8
and 2.0. The obtained RNA was then reverse-transcribed into
cDNA. The mRNA expressions of IL-1β, IL-6, IL-18, TNF-α,
monocyte chemotactic protein 1 (MCP-1), transforming growth
factor-β (TGF-β), suppressor of cytokine signaling 3 (SOCS3),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
determined by using HiScript® II Q RT SuperMix (+ gDNA
wiper) and ChamQ™ SYBR® qPCR Master Mix Kit (Livak and
Schmittgen, 2001). The sequences of primers, shown in Table 1,
were designed by online primer design software (Sangon Biotech
Co., LTD., Shanghai). The relative quantifications of genes
expression were calculated using the 2−ΔΔCq method with
GAPDH served as a normalization control.

Western Blot Analysis
The kidney tissues were extracted with protein lysis buffer
containing phenylmethanesulfonyl fluoride (PMSF) and
protease inhibitor cocktail to obtain the total protein. Besides,
extraction of cytoplasmic and nucleus protein was performed
using the extraction kit (Thermo). The protein concentration was
measured by the Bicinchoninic Acid (BCA) Protein Assay Kit.
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) was used to separate the protein samples, which were then
transferred onto a polyvinylidene fluoride (PVDF) membrane.
After blocking with 5% skimmed milk, the membranes were
incubated with primary antibody and a horseradish peroxidase

(HRP) goat anti-rabbit antibody (Abo-Youssef et al., 2020). The
bands were detected by electrochemiluminescence (ECL) reagent.
The density of each band was analyzed using ImageJ.

Statistical Analysis
All the data were expressed as mean ± standard deviation (SD),
and statistical analysis was performed by SPSS software 23.0. The
data were analyzed by one-way analysis of variance (ANOVA)
followed by Dunnett’s test. The figures were processed using
GraphPad Prism 8.0.1. The value of p <0.05 was regarded as
statistical significance.

RESULTS

Chemical Composition of SAL
SAL was obtained from S. apetala leaves by boiling water
extraction, achieving a yield of 4.23%. The positive and
negative ion chromatograms of SAL are shown in Figure 1,
and the characterization of the compounds is presented in
Table 2.

Effects of SAL on Renal Histopathology
To investigate the effect of SAL on renal morphological changes
in HUA mice, H and E and PAS staining were performed. As
shown in results of H and E staining (Figure 2A), themorphology
of the kidney cells in the intact group was in a healthy condition.
The glomeruli, renal tubules, renal cortex, and medulla were
clearly structured. In contrast, the HUA mice showed
inflammatory cellular infiltration, along with obvious edema,
necrosis, and balloon-like changes in the glomeruli,
surrounding renal tubules and renal tubular epithelial cells.
The appearance of kidneys in the vehicle group confirmed that
the HUA model was established successfully. BZM and FBX
treatment reduced the degree of edema and diminished the
inflammatory cellular infiltration in the renal interstitium
significantly. Moreover, all the renal pathological changes were
also ameliorated by the SAL in a dose-dependent manner.

As presented in results of PAS staining (Figure 2B), the
glomeruli basement membrane of HUA mice was significantly
thickened compared with the intact group. The BZM and FBX
treatment partially attenuated the thickened basement
membrane. Moreover, the SAL treatment mitigated the
thickening of glomeruli basement membrane dose-dependently.

Effect of SAL on the UA, CRE, and BUN
Levels in Serum
To validate the effects anti-hyperuricemia and nephroprotective
effects of SAL in HUA mice, UA, CRE, and BUN levels in serum
were determined. As shown in Figures 3B–D, the levels of serum
UA, CRE, and BUN in the vehicle group were significantly (p <
0.01, p < 0.01, and p < 0.01, respectively) increased compared to
those in the intact group, which suggested that the HUA model
was established successfully. The renal index in the vehicle group
was also increased markedly (p < 0.01). BZM significantly
decreased the levels of serum UA, CRE, and BUN (p < 0.01,

TABLE 1 | Primer sequences.

Targeted gene Direction and sequence
(59 to 39)

IL-1β Forward: TCGCAGCAGCACATCAACAAGAG
Reverse: TGCTCATGTCCTCATCCTGGAAGG

IL-6 Forward: CTTCTTGGGACTGATGCTGGTGAC
Reverse: AGGTCTGTTGGGAGTGGTATCCTC

IL-18 Forward: CAAAGTGCCAGTGAACCCCAGAC
Reverse: ACAGAGAGGGTCACAGCCAGTC

TNF-α Forward: GCCTCTTCTCATTCCTGCTTGTGG
Reverse: GTGGTTTGTGAGTGTGAGGGTCTG

MCP-1 Forward: CCACTCACCTGCTGCTACTCATTC
Reverse: CTTCTTTGGGACACCTGCTGCTG

TGF-β Forward: CAGGCTCTGGAGAACAGCACATC
Reverse: TGGGAATCTGGGCACTTGTTGAAG

SOCS3 Forward: GACCAAGAACCTACGCATCCAGTG
Reverse: GCACCAGCTTGAGTACACAGTCG

GAPDH Forward: GGTTGTCTCCTGCGACTTCA
Reverse: TGGTCCAGGGTTTCTTACTCC
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p < 0.01, and p < 0.01, respectively). FBX also decreased the levels
of UA, CRE, and BUN in serum (p < 0.01, p < 0.01, and p < 0.01,
respectively). When compared with the vehicle group, SAL at 50,
100, and 200 mg/kg also reduced the levels of UA, CRE, and BUN
dose-dependently.

Effect of SAL on the Activity of XOD in Liver
To illuminate whether SAL could affect uric production in mice,
XOD activity in liver was measured. As shown in Figure 4, hepatic
XOD activity of the vehicle group was markedly elevated in mice
(p < 0.01) compared to the intact group. On the contrary, FBX
remarkedly inhibited the XOD activity in HUA mice (p < 0.01).
However, BZM showed no inhibitory effect (p > 0.05) on XOD
activity. Surprisingly, SAL attenuated the elevated XOD activity in
the liver at 50, 100, and 200mg/kg (p < 0.01 for all). Therefore, SAL
might ameliorate HUA by suppressing UA production.

Effect of SAL on Oxidative Stress
To evaluate ameliorative effect of SAL on renal oxidative stress in the
HUA mice, activities of antioxidant enzymes were analyzed. As
shown in Figure 5, compared with those of the intact group, the
renal GSH level and SOD and CAT activity decreased significantly,
while the MDA level increased significantly in the vehicle group.
However, the BZM and FBX treatment could restore the renal SOD,
CAT activity, MDA, and the GSH level in the HUAmice. Moreover,
administration with SAL significantly increased the activities of
SOD, GSH, and CAT (p < 0.01 for all) and reduced the level of
MDA, especially at 100 and 200mg/kg (p < 0.01 for both),
suggesting that SAL could suppress oxidative stress in the HUA
mice. In addition, the ROS level markedly elevated in the vehicle
group compared with the intact group and decreased in both BZM-
and FBX-treated groups (Figure 6). Meanwhile, SAL at 50, 100, and
200mg/kg decreased the ROS intensity significantly (p< 0.01 for all),

FIGURE 1 | Chemical composition of SAL. (A) Positive mode; (B) negative mode.

TABLE 2 | Identification of the chemical constituents in SAL.

Number Retention
time
(min)

Ion mode Extraction
mass
(Da)

Found
mass
(Da)

Error
(ppm)

Formula Identification Peak
area
(%)

1 1.61 − 134.0200 134.0201 0.6715 C4H6O5 L-(-)-Malic acid 0.7299
2 4.18 + 153.1159 153.1152 −4.9636 C9H17NO2 (4E)-3-Hydroxy-2,4-dimethyl-4-

heptenamide
8.8478

3 4.82 − 170.0205 170.0203 −1.5880 C7H6O5 Gallic acid 9.8934
4 10.79 + 178.0994 178.0992 −0.7861 C11H14O2 4-Isobutylbenzoic acid 0.2395
5 10.86 − 335.1158 335.1153 −1.3428 C20H17NO4 Berberine 0.1830
6 12.75 + 150.1045 150.1044 −0.5330 C10H14O Carvone 0.1451
7 13.54 − 316.0583 316.0582 −0.2848 C16H12O7 Isorhamnetin 6.5621
8 13.89 + 432.1057 432.1052 −1.1571 C21H20O10 Vitexin 1.8300
9 16.25 − 132.0575 132.0577 1.5145 C9H8O trans-Cinnamaldehyde 0.1165
10 16.29 + 314.2457 314.2454 −1.1456 C18H34O4 (+/−)12(13)-DiHOME 2.8721
11 18.99 + 350.2063 350.2064 0.2570 C20H30O5 Andrographolide 0.2457
12 21.40 − 337.3345 337.3337 −2.2233 C22H43NO Erucamide 0.3520
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which showed obvious inhibitory effects on ROS production.
Therefore, these results indicated that SAL might suppress renal
oxidative stress in HUA mice.

Effect of SAL on Renal Inflammatory
Cytokines
To further investigate whether SAL could also suppress renal
inflammation in vivo, levels of inflammatory cytokines involving
IL-1β, IL-6, IL-18, and TNF-α were determined by ELISA and
RT-PCR. Remarkable elevated levels of the renal inflammatory
cytokines were observed in the vehicle group (p < 0.01 for all).
However, treatment with SAL significantly decreased the levels of
these inflammatory cytokines in the kidneys of the HUAmice. Of
note, SAL at 200 mg/kg exhibited the same effect on reducing the
levels of the inflammatory cytokines compared to the BZM and
FBX treated groups (Figure 7).

Effects of SAL on the NF-κB/JAK/STAT
Signaling Pathway
The JAK/STAT signal pathway is closely related to inflammation
that regulates the expression of inflammatory cytokines. As

shown in Figure 8, the protein levels of p-JAK2 and p-STAT3
(p < 0.01 for both) were significantly increased in HUA mice
compared to those in mice from the intact group. Compared to
the vehicle group, SAL downregulated renal protein expression of
p-JAK2 and p-STAT3 in a dose-dependent manner. Besides, the
gene expression of MCP-1, TGF-β, and SOCS3 were increased
significantly in the vehicle group. Contrarily, mRNA levels of all
these downstream targets were reduced by treatment with BZM,
FBX, and SAL (p < 0.01 for all). Moreover, after challenge with
PO andHX, the protein level of nuclear NF-κB p65 was increased,
whereas that of cytosol NF-κB p65 was decreased in the HUA
mice (p < 0.01 for both). As shown in Figure 9, treatment with
BZM, FBX, or SAL attenuated the translocation of NF-κB p65
from the cytoplasm to the nucleus. Furthermore, SAL at
200 mg/kg showed greater effects on reduction of nuclear NF-
κB p65 and augmentation of cytosol NF-κB p65 (p < 0.01, both)
relative to BZM and FBX (Figure 9).

Effects of SAL on the Expression of Uric
Acid Transporters
To study whether SAL could directly promote the urate excretion,
we measured the protein levels of renal urate transporters by

FIGURE 2 | Effects of SAL on renal histopathology. (A)H and E; (B) PAS. Magnification: × 200. Scale bars: 100 μm. Black arrows: glomerulus; sessile arrows: renal
tubules; green arrows: epithelial cells exfoliation; red arrows: inflammatory infiltration; blue arrows: incrassated basement membrane.
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Western blot, which was associated with uric acid reabsorption
and excretion (Figure 10). After hyperuricemia induction, the
protein levels of URAT1 and GLUT9 were significantly
upregulated compared to the intact group (p < 0.01 for both),
whereas those of OAT1 declined (p < 0.01). Treatment with SAL
obviously inhibited the elevation of URAT1, GLUT9 expression,
and dramatically reversed the decrease in OAT1 expression.

DISCUSSION

In this study, the phytochemical constituents and the anti-
hyperuricemic effect of SAL were demonstrated. PO and HX are
widely used to establish the experimental animal models for HUA
(Lu et al., 2019). After oral administration of HX and intraperitoneal
injection of PO combined for a week, a dramatic increase in the UA
level in the vehicle group mice was observed, which suggested the
successful establishment of HUA model (Ichida et al., 2012). In
addition, the results showed that the HUAmice induced by PO and
HX were also accompanied by renal injury. The levels of CRE and
BUN were significantly increased, and the kidney index was also
significantly increased, suggesting that the function of kidney was
damaged. However, SAL remarkably lowered the level of UA via
HUA mice, confirming the hypouricemic effect of SAL.
Additionally, when the kidney is exposed to high UA or damage,
increased CRE and BUN levels are regarded as two important
biochemical indexes (Wang et al., 2018). Results showed that
SAL dose-dependently attenuated the rise of serum CRE and
BUN, indicating that SAL could alleviate HUA. Additionally, this
study further confirmed the protective effect of SAL on HUA-
induced kidney injury through histopathological examination (H
and E and PAS staining). The results showed that the renal tubules of
the vehicle mice were significantly dilated, and epithelial cells were
severely necrotic or even shedding. The glomeruli necrosis was also
observed, mostly with atrophy and thickening of the basement
membrane. After SAL treatment, the histopathological damage
mentioned before were all alleviated. In summary, SAL exerts a
favorable anti-HUA effect and has a protective effect on kidney
damage caused by HUA.

FIGURE 3 | Effect of SAL on the levels of UA, CRE, and BUN in serum. (A) Kidney index; level of (B) UA; (C) CRE; (D) BUN in serum. All data are expressed as
mean ± SD (n � 8). ##p < 0.01 vs. the intact group, *p < 0.05, **p < 0.01 vs. the vehicle group.

FIGURE 4 | Effect of SAL on the activity of XOD in liver. All data are
expressed as mean ± SD (n � 8). ##p < 0.01 vs. the intact group, **p < 0.01 vs.
the vehicle group.
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FIGURE 5 | Activity of antioxidant enzymes. (A) CAT; (B) GSH; (C) MDA; (D) SOD. All data are expressed as mean ± SD (n � 8). ##p < 0.01 vs. the intact group,
*p < 0.05, **p < 0.01 vs. the vehicle group.

FIGURE 6 | Effects of SAL onmarkers of oxidative stress. (A)DHE staining of the renal tissues; (B) fluorescence area intensity. All data are expressed asmean ± SD
(n � 3). ##p < 0.01 vs. the intact group, **p < 0.01 vs. the vehicle group.
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Generally, the level of UA in the blood is regulated by a balance
between UA production and excretion (Kumar et al., 2011; Ichida
et al., 2012). HUA occurs when the balance of synthesis and
elimination is broken. XOD is the key enzyme for regulating
transformation of hypoxanthine and xanthine into UA (Kumar
et al., 2011). Clinically, XOD inhibitors, such as allopurinol and FBX,
are used as first-line options to treat HUA (Lin et al., 2017; Chou

et al., 2018). Results in the present study indicated that SAL
significantly decreased the XOD activity in the liver of the HUA
mice, but the inhibitory effect of SAL is much weaker than FBX.
Hence, SAL was able to reduce UA production by decreasing the
activity of XOD, which might be the effect of gallic acid. It was
reported that gallic acid inhibits XOD in vitro. Moreover, urate
transporters in the kidney are closely associated with UA excretion

FIGURE 7 | Effect of SAL on renal inflammatory cytokines. Renal (A) IL-1β; (B) IL-6; (C) IL-18; (D) TNF-α; mRNA expression of (E) IL-1β; (F) IL-6; (G) IL-18; (H) TNF-
α. All data are expressed as mean ± SD (n � 8). ##p < 0.01 vs. the intact group, **p < 0.01 vs. the vehicle group.
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FIGURE 8 | Effects of SAL on the JAK/STAT signal pathway. (A) The expression levels of the JAK2, p-JAK2, STAT3, and p-STAT3; quantitative results of Western
blot analyses for (B) p-JAK2/JAK2; (C) p-STAT3/STAT3; relative mRNA expression of (D)MCP-1; (E) TGF-β; and (F) SOCS3. β-actin was used as a loading control. All
data are expressed as mean ± SD (n � 3). ##p < 0.01 vs. the intact group, **p < 0.01 vs. the vehicle group.

FIGURE 9 | Effects of SAL on the NF-κB signaling pathway. (A) Cytosol NF-κB P65; (B) Nuclear NF-κB P65.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 69821910

Wu et al. SAL Protect Against Hyperuricemia

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Ichida et al., 2012). The excretion of UA includes urate reabsorption
and secretion. URAT1 and GLUT9 mainly participate in urate
reabsorption, whereas OAT1 is an important mediator for
primary renal urate secretion (So and Thorens, 2010; Zhou et al.,
2019). Results indicated a significant decrease in the protein levels of
URAT1 and GLUT9 and a distinct increase in those of OAT1 in
SAL-treated groups compared to the HUA group, which was
consistent with previous studies. Moreover, the effects of 100 and
200mg/kg SAL on the protein expression of GLUT9, URAT1, and
OAT1 were superior to those of FBX, and the effect of 200 mg/kg
SAL on URAT1 protein expression was stronger than that on the
URAT1 inhibitor BZM. Summarily, SAL can not only reduce the
production of uric acid by downregulating XOD activity in the liver
but also promote the excretion of uric acid by regulating the protein
expression of related renal uric acid transporters.

HUAhas also been reported to be closely associatedwith oxidative
stress (Tomiyama et al., 2018; Zhou et al., 2018). In the condition of
HUA, excess UA is mainly distributed in vascular cells or adipocytes
(Zhou et al., 2014). UA activates NADPH oxidase and subsequently
produces ROS (Bergamini et al., 2009). Thus, to prevent HUA, it
might be a feasible way to suppress the oxidative stress produced by
UA. In the current study, it was confirmed that there was an oxidative
imbalance in the kidney tissues of HUA mice. SAL significantly
increased the activities of the antioxidant enzymes, including SOD,
CAT, and GSH, and also suppressed the production of ROS and
MDA. These results are in line with many studies (Hong et al., 2014;
Wang et al., 2016; Mehmood et al., 2020). In addition, 200mg/kg of
SAL has a stronger effect on CAT, GSH activity, andMDA level than
BZM, and its ameliorative effect on GSH activity is better than that of
FBX. The results demonstrated that SAL significantly alleviatedHUA
by inhibiting renal oxidative stress.

In clinical practice, inseparably linked to oxidative stress,
inflammation is a pathological feature of hyperuricemia and renal
diseases (Joosten et al., 2020). Accumulation of UA triggers renal
injury by production of pro-inflammatory cytokines. Besides,
oxidative stress can also aggravate the inflammatory responses via
activation of the NF-κB pathway (Mehmood et al., 2020). Thus, the
effect against the activation of the NF-κB pathwaymight be related to
the antioxidant activity. NF-κB p65 is reserved in an inactive form
within the cytoplasm. When it is activated, it translocates into the
nucleus and activates translation and transcription of pro-
inflammatory cytokines, including TNF-α, IL-6, IL-18, and IL-1β
(Baeuerle and Baltimore, 1996). In the present study, increases in the
levels of TNF-α, IL-6, IL-18, and IL-1β were observed in HUAmice,
which is consistent with previous studies (Isaka et al., 2016; Zhou
et al., 2018). On the contrary, results of ELISA and qPCR analysis
indicated that SAL supplement obviously diminished rises in
expression and generation of TNF-α, IL-6, IL-18, and IL-1β in the
HUA mice. Moreover, interleukin receptors can activate the JAK2
receptor, which activates the kinase function of JAK2, leading to
phosphorylation (Takizawa et al., 2001). Subsequently, STAT3
protein binds to the phosphorylated receptor, where STAT3 is
phosphorylated by JAK2. Finally, the p-STAT3 protein
translocates into the nucleus and is involved in the signal
transduction and gene regulation of a variety of important
inflammatory cytokines, including SOCS3, TGF-β, and MCP-1.
MCP-1, an inflammatory factor secreted by monocytes or
macrophages, participates in the pathological process of
glomerulonephritis (Chen et al., 2019). Additionally, SOCS3
negatively regulated the JAK/STAT signaling pathway (Simon
et al., 2020; Xin et al., 2020). Previous studies have shown that the
JAK/STAT signaling pathway in HUA mice was activated and the

FIGURE 10 | Effects of SAL on the expression of uric acid transporters. (A) The expression levels of the URAT1, GLUT9, and OAT1; quantitative results of Western
blot analyses for (B) GLUT9; (C) URAT1; (D) OAT1. β-actin was used as a loading control. All data are expressed as mean ± SD (n � 3). ##p < 0.01 vs. the intact group,
**p < 0.01 vs. the vehicle group.
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level of SOCS3was overexpressed. After the induction of PO andHX,
the phosphorylation level of JAK2 and STAT3 in the kidney of HUA
mice was significantly increased, and the mRNA level of SOCS3 was
significantly increased. However, the treatment with SAL significantly
suppressed JAK2 activation and STAT3 phosphorylation. Besides,
SAL treatment decreased the gene expression of SOCS3, TGF-β, and
MCP-1, showing that SAL can inhibit the activation of the JAK2-
STAT3 signaling pathway. Based on previous literature (Rosa et al.,
2016; Adachi et al., 2019), it was deduced that anti-inflammatory
active ingredient of SAL might be vitexin and isorhamnetin. In
conclusion, this study demonstrated that SAL ameliorated HUA
via suppressing the JAK/STAT signaling pathway (Figure 11).

However, does SAL suppress renal oxidative stress and
inflammatory response by inhibiting UA production or
promoting excretion? In our study, we found that SAL not
only inhibited UA production but also facilitated UA
excretion. SAL could inhibit XOD activity, but not as much as
FBX. SAL played a crucial role in promoting UA excretion in
mice with HUA, whose effect was much stronger than BZM. It
thus seems plausible that improvement of renal damage in HUA
by SAL might be due to the regulatory role in UA metabolism.

CONCLUSION

In conclusion, our study demonstrated the anti-hyperuricemic
and nephroprotective effects of SAL in PO/HX-induced HUA
mice. The anti-hyperuricemia effect of SAL attributed to the dual
roles of regulating the UA production and excretion.
Furthermore, SAL possessed nephroprotective effects via
attenuation of the HUA-induced oxidative stress and
inflammatory reaction, which was related to its ability to
inhibit the JAK/STAT/NF-κB signaling pathway. This evidence
suggests that SAL should be considered in the development of
novel chemopreventive or chemotherapeutic agent for HUA and
UA nephropathy and tested in further clinical studies of novel
drug development.
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