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Pancreatic cancer is an almost universally lethal disease and despite extensive research over the last decades, this has not changed
significantly. Nevertheless, much progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma
(PDAC) suggesting that different therapeutic strategies based on these new insights are forthcoming. Increasing focus exists on
designing the so-called targeted treatment strategies in which the genetic characteristics of a tumor guide therapy. In the past,
the focus of research was on identifying the most frequently affected genes in PDAC, but with the complete sequencing of the
pancreatic cancer genome the focus has shifted to defining the biological function that the altered genes play. In this paper we
aimed to put the genetic alterations present in pancreatic cancer in the context of their role in signaling pathways. In addition, this
paper provides an update of the recent advances made in the development of the targeted treatment approach in PDAC.

1. Pancreatic Ductal Adenocarcinoma

Annually, approximately 43,140 people are diagnosed (inci-
dence 10–12: 100,000) with pancreatic ductal adenocarci-
noma (PDAC) in the Unites States and the mortality rate of
36,800, almost equals this number [1]. PDAC ranks fourth
on the list of cancer-related causes of death and despite
extensive clinical and scientific effort, the prognosis of this
exceptionally lethal disease has not improved significantly
over the past decades. Surgical resection, for which only a
minority (<20%) of patients qualify due to advanced stage
of disease at time of diagnosis, is currently the only chance
for cure, improving five-year survival rates from <4% if
left untreated to 25–30% after resection [2–4]. Though of
marginal impact, chemo(radiation) therapy administered in
(neo)adjuvant setting has been shown to increase short-term
survival rates in resectable and advanced stage disease [5–7].
Despite subtle progress over the years in terms of therapeutic
strategies, no major new treatment options have come
forward from numerous clinical trails. Nevertheless, much
progress has been made in understanding the pathogenesis

of PDAC during the past decades, suggesting that different
therapeutic strategies based on these new insights are on the
horizon [8–10].

PDAC, like all cancers, is fundamentally a genetic
disease caused by alterations in cancer-associated genes. The
identification of such specific mutated genes is critical for
understanding the pathogenesis of PDAC. Nevertheless, one
cannot achieve a reasonable overview by considering only
individual genes in a cancer cell because the neoplastic
potential of this cell is the end product of mutations
in multiple genes and changes in multiple pathways that
interact and reinforce each other. The rapidly expanding
knowledge of genetic and molecular alterations and their
role in pancreatic carcinogenesis has led to the question
whether it is possible to design a patient-specific therapy
based on the genetic fingerprint of an individual tumor.
Since an increasing focus exists on designing these so-called
targeted treatment strategies, this paper is aimed to put
genetic alterations pancreatic cells undergo during malignant
transformation in the context of their role in signaling
pathways. In addition, this paper provides an update of
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Figure 1: Progression model of pancreatic ductal adenocarcinoma from normal epithelium to invasively growing tumor. The progression is
associated with the stepwise accumulation of specific genetic alterations depicted below the pictures.

the most recent advances made in the development of the
targeted treatment approach in PDAC.

2. Precursors of PDAC

The development of invasive carcinoma in the pancreas
is a stepwise process. Similar to colon cancer, noninvasive
stages have been identified in PDAC preceding invasive
carcinoma [11]. In recently published research, the clonal
evolution of the earliest genetic alterations in tumor initi-
ating cells towards frankly invasive and metastasized PDAC
was followed and these studies indicated that such tumor
progression takes at least more than a decade [12, 13].
This creates an important window of opportunity for early
detection and much effort is put into attempts to map the
genetic changes that take place in the pancreatic ductal cells
of precursor lesions before they become invasive.

Since 2004, there have been clear guidelines for classify-
ing these precursor lesions of PDAC and three different types
have been identified: pancreatic intraepithelial neoplasia
(PanIN), mucinous cystic neoplasia (MCN), and intraductal
pancreatic mucinous neoplasia (IPMN) [14]. MCN and
IPMN are considered separate and specific entities that fall
beyond the scope of this review [15, 16]. By far, the most
common and also the generic precursor lesion of PDAC is
the PanIN lesion. PanINs are found in the smaller pancreatic
ducts and based on the degree of dysplasia reflected in
the cytonuclear atypia and architectural change can be
classified in four grades: PanIN-1A, PanIN-1B, PanIN-2,
and PanIN-3. The least severe abnormalities are seen in
PanIN-1 lesions; minimal cytonuclear atypia is present and
cell polarity is retained with a basally located nucleus.
The difference between PanIN-1A and -1B is that the cells
in PanIN-1A lesions are flat, whereas the cells in PanIN-
1B lesions are arranged in a micropapillary architecture.

PanIN-2 lesions are characterized by evident cytonuclear
atypia and infrequent mitoses. PanIN-3 lesions, also called
carcinoma-in-situ, demonstrate all of the hallmarks of cancer
including loss of polarity, nuclear atypia, frequent mitoses,
and budding of groups of cells in the lumen. Yet, the lesion
is confined within the basement membrane and no invasive
growth is present [14]. The increasing grades of dysplasia
in the various PanIN lesions manifest the morphological
steps of tumor progression that precede invasive PDAC.
These consecutive steps of tumor progression are genetically
accompanied by a cumulative occurrence of specific and gen-
eralized molecular genetic alterations. Typically, an interplay
between mutations in tumor-suppressor genes, oncogenes,
and genome maintenance genes ultimately results in the
development of PDAC.

Telomere shortening is considered the initiating event in
pancreatic tumorigenesis by inducing genetic instability and
is discussed separately below. Another early event in PDAC
development is mutation of the oncogene KRAS2, which is
found altered in 20% of PanIN-1 lesions and this percentage
increases with progression to invasive carcinoma. The tumor
suppressor gene most commonly found mutated in PDAC is
CDKN2A. This gene is found mutated in, respectively, 30%,
50%, and 70% of PanIN-1, PanIN-2, and PanIN-3 lesions
[17]. Two additional important tumor suppressor genes in
PDAC are TP53 and SMAD4. In precursor lesions, mutations
in these genes are mainly observed in PanIN-3 lesions
in transition to invasive growth warranting TP53/SMAD4
defects as a late event in PDAC development [18, 19].
In Figure 1 and Table 1, the most commonly observed
specific genetic alterations in preinvasive lesions of PDAC are
mentioned, but many additional alterations exist. In order
to understand pancreatic carcinogenesis, the whole known
spectrum of alterations has to be considered as well as the
cellular interactions.
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Table 1: Most commonly affected genes in PDAC.

Type Gene Cellular function Affected in PDAC

Tumor suppressor genes
CDKN2A/p16 G1-S phase cell cycle inhibition 95%

SMAD4 TGFβ 55%

TP53 Cell-cycle arrest 75%

Oncogenes
KRAS2 ERK-MAPkinase signaling >90%

CyclinD Cell cycle progression 65%

BRAF ERK-MAPkinase signaling 5%

Genome maintenance genes
MLH1/MSH2 DNA damage (mismatch) repair 4%

BRCA2 DNA damage repair 7–10%

3. Molecular Characteristics and Regulatory
Pathways in PDAC

In 2008, Jones et al. used global genomic sequencing to
identify the genetic alterations in pancreatic cancer cells.
Over 21,000 genes were screened in 24 different PDAC
samples. On average, 63 relevant genetic alterations were
found per sample, emphasizing the extreme complexity of
this disease. These genetic alterations mostly affected 12,
partially overlapping, signaling pathways that consequently
contained abnormalities in the majority of cases [20, 21].
The identification of these pathways intelligently created a
comprehensible view of pancreatic carcinogenesis without
simplifying too much [21]. All previously known genetic
alterations were included and put into the context of the
pathways in which they function. Five of the pathways
describe specific cellular functions; apoptosis, DNA damage
repair, G1/S phase cell cycle progression, cell-cell adhesion
and invasion (Figure 2). The other pathways are signaling
cascades and can be divided into three groups: embryonic
signaling pathways, the MAPkinase signaling pathways, and
TGF-β signaling. The molecular characteristics of PDAC
are described within the context of these various specific
pathways in the subsequent paragraphs. Table 2 gives an
overview of the various affected pathways and their most
commonly mutated genes in PDAC.

For the acquisition of an accumulation of genetic
alterations by the neoplastic cells, genetic instability is a
precondition [22]. Telomere shortening is considered as the
initial neoplastic event that provides pancreatic epithelial
cells the genetic instability that leads to the subsequently
specific and generalized molecular alterations [23, 24].

3.1. Telomere Shortening. Telomere shortening is encoun-
tered in virtually all precursor lesions and invasive carcino-
mas [23, 25]. Telomeres are repeat sequences at the end of
linear chromosomes that prevent fusion between the ends
of these chromosomes. Pathologically short telomeres can
result in ring and dicentric chromosomes that form so-called
anaphase bridges during mitosis. Breakage of these anaphase
bridges generates highly recombinogenic-free DNA ends,
which in turn can result in chromosomal rearrangement.
These cycles of chromosome bridging and breakage, called
anaphase bridge-breakage-fusion cycles, repeat and thereby

Table 2: The 12 commonly affected signaling pathways in PDAC
accompanied by the most commonly affected genes from these
pathways.

Regulatory pathway Affected genes

Apoptosis TP53

DNA damage repair TP53

G1/S transition CDKN2A/p16, CyclinD

Cell-cell adhesion

Regulation of invasion

Integrin signaling

Homophilic cell adhesion CDH1

Embryonic signaling

Notch pathway

Hedgehog pathway

Wnt pathway

MAPK signaling

c-Jun N-terminal kinase

ERK KRAS2

TGF-β signaling SMAD4

create the genetic instability that facilitates tumor develop-
ment [26]. Telomerase, the gene that maintains telomere
length, shows low expression during early pancreatic tumori-
genesis before markedly increasing in the invasive tumor.
The re-expression of telomerase probably restores genomic
stability, enabling tumor progression by preventing further,
possibly lethal, chromosomal damage [25, 27].

3.2. Apoptosis. Apoptosis, or programmed cell death, plays
an essential role in cancer development since resistance to
apoptosis is a key factor in the survival of a cancer cell
(Figure 3). Apoptosis is induced by executioner caspases
upon activation by the apoptosome complex. This complex
consists, among others, of cytochrome C, Caspase-9, and
Apaf1 and is released from the mitochondria when pro-
apoptotic signaling by Bak/Bax outweighs antiapoptotic
signaling by Bcl2, Bcl-X(L) or Mcl-1. Inhibitors of apoptosis
proteins (IAPs) can inhibit apoptosis at the end of the
signaling cascade by direct inhibition of the executioner
caspases. In PDAC, genes implicated in the apoptosis path-
way were found altered in all tumors studied [21]. Also,
previous reports document impaired apoptotic signaling
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Figure 2: Cellular functions affected in pancreatic cancer.
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Figure 3: Apoptosis. Apoptosis is induced by executioner caspases upon activation by the apoptosome complex. This complex consists,
among others, of cytochrome C, Caspase-9, and Apaf1 and is released from the mitochondria when proapoptotic signaling by Bak/Bax
outweighs antiapoptotic signaling by Bcl2/Bcl-X(L). PI3K activates Akt through phosphorylation which subsequently activates NF-κB. NF-
κB stimulates antiapoptotic signaling by Bcl2 and Bcl-X(L). Inhibitors of apoptosis proteins (IAPs) can inhibit apoptosis at the end of the
signaling cascade by direct inhibition of the executioner caspases.

in this disease. For example, a high fraction of apoptotic
cells has been correlated with longer overall survival as
well as absence of nodal involvement [28]. Moreover, most
chemotherapeutics act through apoptosis induction whereby
therapy resistance often is the result of defective apoptosis
pathways. Antiapoptotic genes BCL-2, BCL-X(L), and MCL-
1 are expressed in, respectively, 13%, 54%, and 86% of
PDAC samples as shown by immunohistochemistry, and
repression of BCL-2 and MCL-1 was shown to enhance

apoptosis in PDAC [29, 30]. The observed apoptotic effect
was even more pronounced when treatment was combined
with gemcitabine [31].

NF-κB is a transcription factor that regulates several
different cellular mechanisms, of which most importantly
apoptosis. NF-κB stimulates antiapoptotic signaling by tar-
geting BCL-2 and BCL-X(L) [32–34]. The NF-κB signaling
pathway is activated by a variety of different mechanisms in
PDAC amongst others oncogenic K-ras signaling [35].
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Oncogenic K-ras signaling also activates phosphatidyli-
nositol 3-kinase (PI3K), another important protein in apop-
tosis. PI3K activates Akt through phosphorylation which
subsequently activates NF-κB. The AKT2 gene located on
chromosome 19q is amplified in 10–20% of pancreatic
cancers [36, 37], whereas PI3K/Akt signaling is activated
in approximately 60% of PDACs [38]. PI3K signaling also
involves mammalian target of rapamycin (mTOR), a down-
stream target of Akt. Activation of mTOR has been observed
in approximately 75% of PDACs [39]. Therefore, inhibition
of mTOR is an interesting target for therapy for which
there are currently FDA approved inhibitors on the market.
Although the exact role of the PI3K/Akt/mTOR pathway
in pancreatic cancer remains to be elucidated, signaling of
this pathway was shown to inhibit apoptosis, and inhibition
of the pathway increased cellular sensitivity to gemcitabine
[40, 41].

3.3. DNA Damage Repair. DNA damage control genes are
responsible for safeguarding the integrity of DNA as they
code for proteins that repair any damage that occurs in
the cell during its lifespan. An important DNA damage
repair gene is TP53, a tumor suppressor gene located on
chromosome 17p that is frequently disrupted in many
different human malignancies. TP53 expression is lost in
50–75% of PDACs [42, 43]. P53 is involved in the cellular
response to genotoxic stress where it mediates cell cycle arrest
and apoptosis upon DNA damage. Therefore, loss of TP53
signaling results in a decrease in apoptosis and increases
the opportunity for genetic alterations to accumulate in the
cells.

Germline BRCA2 gene mutations are responsible for
∼10% of familial pancreatic cancer but mutations in this
gene are also observed in approximately 7–10% of sporadic
PDAC. The BRCA2 protein is involved in DNA damage
repair, especially interstrand cross-linking repair [44–46].
The BRCA2 gene will be further discussed in the paragraph
on hereditary PDAC.

A third group of DNA damage repair genes involved in
the development of PDAC is the mismatch repair family
(MMR) of genes. The MMR proteins target base substitution
mismatches and insertion-deletion mismatches that arise as
a result of errors occurring during replication. Alterations in
the mismatch repair genes MLH1, MSH2, MSH6, and PMS2
eventually lead to microsatellite instability (MSI) and this
genetic instability makes the genome vulnerable for the accu-
mulation of other, more specific genetic alterations. Tumors
of the pancreas with MSI are relatively rare compared
to other malignancies of the digestive tract and are found
in only 5% of pancreatic carcinomas. Pancreatic cancers
with MSI have a distinct microscopic morphology that
resembles their counterpart in the colon and are simi-
larly called medullary type carcinomas [47–49]. Remark-
ably, microsatellite instable tumors have a significantly
better prognosis compared to their microsatellite-stable
counterparts [47, 48]. PDACs with MSI exhibit a higher
antitumor reaction by T-lymphocytes and this could possibly
be the reason for a better outcome [49].

3.4. G1/S Phase Cell-Cycle Progression. Cell-cycle progression
and regulation is affected in virtually all cancers as is the
case for PDAC. Alterations in genes regulating G1/S-phase
transition play an important role in facilitating the uncon-
trolled growth rate of cancer cells. The most commonly
affected tumor suppressor gene in PDAC involved in G1/S
phase transition is the CDKN2A gene [50, 51]. This gene
is located on the short arm of chromosome 9 (9p21) and
is known for its involvement in hereditary melanoma when
mutated in the germline [52]. The gene is inactivated in
>90% of all PDACs, either by homozygous deletion (40%) or
an intragenic mutation combined with loss of heterogeneity
of the remaining wild type allele (40%) [50, 53]. Promoter
hypermethylation is the cause for loss of CDKN2A function
in 15% of the cases [50]. P16, the protein product of
CDKN2A inhibits phosphorylation of Rb-1, thereby prevent-
ing G1/S transition and acting as an inhibitory cell-cycle
regulator [54]. Loss of p16 expression therefore leads to
uncontrolled G1/S transition and unregulated cell division,
which facilitates tumor progression [55].

Other genes involved in cell cycle progression that
occasionally show alterations in PDAC are FBXW7, CHD1
and APC2, although much less frequently than CDKN2A
[21, 56].

3.5. Cell Adhesion and Invasion. In normal pancreatic tissue,
cells are anchored to each other and their surroundings
via multiple connections. A decrease in these interactions
can allow cells to detach from their surrounding and
migrate/metastasize. As such, cell to cell adhesion and
interaction play an important role in carcinogenesis. The
connection between epithelial cells is mostly mediated by the
adherent junctions composed of E-cadherin and catenins.
E-cadherin proteins interlock with each other in the extra-
cellular space, while intracellularly the E-cadherin protein is
bound to actin filaments through catenins. Reduced expres-
sion of E-cadherin and α- and ß-catenins was demonstrated
in approximately 60%, 40%, and 60% of pancreatic cancer
samples, respectively [57, 58]. Reduced expression of E-
cadherin is correlated with tumor dedifferentiation and
correlates with tumor stage and lymph node involvement
[57, 59]. Not only is the interaction between epithelial cells
important in the preservation of the integrity of the tissue,
the interactions between the neoplastic cells and extracellular
matrix also play an important role, especially in PDAC,
because stromal tissue surrounds most tumor cells. Integrins
comprise a large family of cell surface receptors and they
act as a bridge between the extracellular matrix (ECM) and
the cytoskeleton [60]. These integrins direct cell migration
and play an important role in invasion. In addition to
this, integrins also regulate cell proliferation and apoptosis.
Integrin-ECM interactions are vital for cell survival but since
apoptosis pathways are often affected in PDAC, loss of the
interaction does not necessarily lead to apoptosis in cancer
cells. Integrin signaling can activate the ERK, JNK MAPK
pathway and the PI3K pathway, important pathways in
pancreatic tumorigenesis. In approximately two-thirds of the
PDAC cases, a defect in integrin signaling can be identified
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Figure 4: MAPkinase signalling. Mitogen-activated phosphorylated kinase signaling occurs through a common pathway. A cellular stimulus
results in phosphorylation of MAP3K, which in turn phosphorylates MAP2K. MAP2K subsequently phosphorylates MAPK, resulting in
altered transcription of the MAPK target genes. The different components of the two MAPK signaling pathways often affected in PDAC, the
ERK pathway and the JNK pathway, are depicted in the boxes on each side of the signaling cascade.

[21]. Different components of integrin signaling can be
deregulated; for example, Integrin α6β1 expression has been
correlated with metastatic behavior in pancreatic cancer cell
lines [61]. Furthermore, Niu et al. investigated the role of
αvβ6 integrin in PDAC and found that αvβ6 inhibition
resulted in a significant reduction in cell proliferation and
invasion. Apoptosis was induced and more remarkably, αvβ6
integrin knockdown increased gemcitabine sensitivity [62].

Another group of proteins involved in cell adhesion is
the a-disintegrin and metalloproteinase (ADAM) protein
family. ADAM proteins are cell surface proteins that activate
MAPK pathways and integrin signaling through the release
of growth factors. ADAM proteins have the ability to cleave
ECM components and influence integrin/ECM interactions.
ADAMs have only recently caught attention, thus not much
is known about the specific role these proteins play in
pancreatic carcinogenesis, though upregulation of different
ADAM proteins has been reported in PDAC [63, 64].
Jones et al. found genetic alterations in various different
ADAM proteins [21]. Because ADAM proteins influence
many different substrates through autocrine and paracrine
signaling, they may comprise promising new targets for
therapy development.

3.6. MAPK Signaling Pathways . There are three major mito-
gen activated phosphorylated kinases (MAPK): extracellular

signal-regulated kinase (ERK), c-Jun N-terminal kinase
(JNK), and p38. All MAPK signaling pathways consist of the
same basic kinase components. Stimulation of an upstream
MAP2K kinase (MAP3K) by growth factors, stress, or other
extracellular signals leads to phosphorylation of a MAPK
kinase (MAP2K), culminating in the phosphorylation of a
terminal MAPK (Figure 4).

The most influential of the three MAPK pathways in
PDAC is the ERK pathway. It consists of the Raf protein
(MAP3K) that phosphorylates MEK (MAP2K), which in
turn phosphorylates ERK (MAPK), the latter influencing
transcription of different target genes. This signaling cascade
results in the activation of multiple oncogenic cellular func-
tions. The most commonly mutated oncogene in PDAC is the
KRAS2 gene, of which the protein product Ras is an upstream
activator of ERK signaling. KRAS2 is located on chromosome
12p and the protein has an intrinsic GTP-ase activity. In
PDAC, the gene is virtually always activated by a point
mutation in codon 12, the GTP binding domain, leading to a
constitutively active Ras protein [65, 66]. Therefore, it can be
considered a molecular switch that in this fashion remains
in the “on” position firing its oncogenic stimuli. As said
before, KRAS2 gene mutations are an early phenomenon in
the development of PDAC, and the KRAS2 gene is mutated in
∼95% of PDACs. Interestingly, the few tumors that contain
wild-type KRAS2 often have a mutation in the BRAF gene,
an oncogene located on chromosome 7q. The BRAF gene is
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mutated in approximately 5% of the PDACs and Raf, the
protein product of BRAF, is a downstream target in the
Ras signaling pathway. This explains the mutually exclusive
nature of KRAS2 and BRAF mutations in PDAC [56]. The
high frequency and early nature of KRAS2 mutations suggest
an initiating role in PDAC development as confirmed in
several studies on genetically engineered mice [67, 68].
Besides the effects Ras has on the ERK-pathway, Ras also
influences multiple other genes among which NF-κB and
PI3K/Akt as discussed above.

The second MAPK pathway often affected in PDAC is
the JNK pathway. In the whole genome sequence analysis
study by Jones et al. mentioned earlier, in all but one
of the sequenced samples a genetic alteration in the JNK
pathway was identified [21]. In this signaling cascade
the MAP3Ks, Ask1, MEKK1, and MLK phosphorylate the
MAP2Ks, MKK4, and MKK7 which in turn phosphorylate
JNK. The JNK pathway becomes activated upon cellular
stress but more importantly, the pathway is activated by
proinflammatory cytokines such as tumor necrosis factor α
(TNF-α) or interleukin 1 (IL1) [69]. MKK4 expression is
lost in approximately 4–15% of PDACs [70, 71]. Remarkably,
the JNK pathway has both tumor suppressor and oncogenic
functions that have to be further investigated. Also it should
be noted that the Kras and the JNK pathways interact;
phosphorylation of JNK is partly responsible for induction
of angiogenesis through Kras [72]. Recent studies have also
connected MKK4 and its downstream targets (JNK and p38)
to the TGF-β pathway.

3.7. TGF-β Pathway. The transforming growth factor β
(TGF-β) pathway has been linked to PDAC for many years.
TGF-β signaling is involved in a wide range of cellular
processes [73]: It is one of the most potent cell prolifera-
tion inhibitors and has many other cellular responsibilities
including differentiation, apoptosis, and angiogenesis [74].
Binding of a TGF-β family ligand to the TGF-βII receptor
leads to phosphorylation of the TGF-βI receptor and thereby
activation of the TGF-β receptor substrates capable of
signal transduction, that is, the Smad family proteins. Eight
different SMAD genes have been described. Once activated,
the receptor subsequently phosphorylates a regulatory Smad
(Smad1–3, 5, 8), allowing this protein to associate with
Smad4. The latter aids the regulatory Smad complex in
its transfer to the nucleus where subsequent transcription
of the target genes is induced. Inhibitory Smads regulate
Smad-signaling through inhibition of the TGF-β receptor
phosphorylation. Thus far, Smad7 is the only characterized
inhibitory Smad (Figure 5) [73].

TGF-β influences cellular proliferation through inhi-
bition of G1/S-transition. This is accomplished though
expression of cyclin kinase inhibitors such as p15, p21, and
p27 [75]. Also, TGF-β signaling represses c-Myc expression,
an ubiquitous promoter of cell cycle progression. Jones et
al. found altered TGF-β pathway expression in all their
PDAC samples [21]. The most commonly affected protein
in the TGF-β pathway is Smad4. Smad4 is inactivated in
∼55% of PDACs [76, 77]. Patients with preserved Smad4

signaling have a significantly longer survival than patients
with Smad4 loss [77–79]. Also, Iacobuzio-Donahue et al.
found a significantly higher percentage of Smad4 loss
in patients who had died from PDAC with widespread
metastatic disease compared to patients who died of locally
advanced tumors [79]. Loss of Smad4 expression is not
only a prognosticator but it can also serve as a diagnostic
biomarker since sensitive and specific antibodies are available
that can be used to characterize Smad4 protein expression by
immunohistochemistry (Figure 6) [78].

Other proteins in the TGF-β pathway that are occasion-
ally found altered in PDAC are the TGF-βRII (4%) and TGF-
βRI (1%) [80]. Apart from binding to the TGF-βR, TGF-β
ligands can also activate other signaling pathways including
the MAPK pathways ERK and JNK [81–83]. This depicts the
fact that although TGF-β signaling has a tumor suppressive
function in the normal epithelium, it can promote tumor
progression in late disease stages. Further research has to be
conducted to determine the true potential of this pathway for
the development of targeting agents.

3.8. Embryonic Pathways. Not surprisingly, since embryoge-
nesis shares many characteristics with carcinogenesis, differ-
ent embryonic pathways are involved in tumor development.
There are three embryonic pathways involved in pancreatic
carcinogenesis: Notch, Hedgehog, and Wnt (Figure 7).

The Notch pathway plays an important role in pancreatic
organogenesis, but after formation of the pancreas, signaling
is largely restricted to a putative progenitor population
known as centroacinar cells [84–87]. Several studies have
shown upregulation of Notch pathway activity in PDAC
and inhibition of this pathway resulted in decreased tumor
proliferation and increased apoptosis [87–90]. Somatic point
mutations in one of the four Notch-receptor genes do not
seem to be the driving force behind altered Notch signaling
in pancreatic cancer [90]. Still, 100% of the PDAC samples
in a genome-wide sequencing study revealed alterations in
the Notch pathway [21]. Notch signaling interacts with many
other oncogenic pathways including the Hedgehog pathway,
KRAS signaling and the NF-κB pathway.

The second embryonic pathway often affected in PDAC
is the Hedgehog (Hh) pathway. This signaling cascade
plays an important role in the organogenesis of the gastro-
intestinal tract. Surprisingly, Hh signaling is absent in the
developing pancreas [91, 92] but the pathway is activated
in 70% of PDACs [93]. Some of the Hh signaling targets
are components of other signaling pathways involved in
PDAC such as Wnt proteins, TGF-β, and CyclinD [94–96].
Although it has long been common knowledge that Hh
signaling is active in PDAC, its exact role in tumorigenesis
is unclear. It seems that neoplastic epithelial cells do not have
the ability to react to Hh signaling. Instead, Hh ligands are
expressed in the epithelial cells and it has been suggested that
these affect the stromal compartment of a tumor through
paracrine signaling. In one particular study, the strong
desmoplastic reaction characteristic for PDAC was shown to
be further enhanced when Hh signaling was activated [96].
In addition, inhibition of the Hh pathway decreased the total
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Figure 6: SMAD4 immunohistochemistry. Loss of SMAD4 expres-
sion is clearly depicted in the PDAC cells. Arrows: single cell with
clear histological changes exhibiting SMAD4 loss, surrounded by
SMAD4 wild-type cells.

volume of orthotopically implanted tumors by inhibiting the
stromal component in mice [97]. Another study showed that

treatment with an Hh pathway inhibitor produced a clear
decrease in tumor growth primarily through a decrease in
number of stromal cells [98]. Similarly, disruption of Hh
signaling in a transgenic mouse model increased response
to chemotherapy [99]. This improved response was due to
a diminished desmoplastic reaction and better accessibility
of the tumor cells for the chemotherapeutic agent. In short,
there seems to be an important role for Hh signaling
in the stromal component of PDAC. Moreover, since the
desmoplastic reaction has been related to resistance to
therapy it warrants further investigation of Hh and its role
in the development of PDAC. Clinical trials with inhibitors
of hedgehog signaling are in progress.

The third embryonic pathway, Wnt, shows increased
activity in approximately 30–65% of PDACs, and an increase
in Wnt-target expression correlates with poorer differentia-
tion and poor prognosis [100–102]. Active Wnt expression
results in the transcription of different target genes including
CyclinD, matrix metalloproteinase 7 (MMP7), and c-MYC.
CyclinD is overexpressed in 65% of PDACs and stimulates
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G1/S transition. Expression of this protein is associated with
poor prognosis [103]. MMP7, a member of the matrix
metalloproteinase family, degrades extracellular matrix pro-
teins, and MMP7 expression is implicated in metastases.
Overexpression of this protein is found in practically all
PDACs [104]. C-Myc is a transcription factor that regulates
thousands of genes involving a large spectrum of cellular
functions including cell proliferation, differentiation, death,
and tissue reorganization. Amplification of CMYC is iden-
tified in 20–50% of all PDACs [105]. The Wnt signaling
cascade can be activated through interactions with the Hh,
NF-κB, TGF-β, and Notch pathways [106–108].

4. Genetic Susceptibility

Approximately 5–10% of patients with pancreatic cancer
have a positive family history for the disease. Having a first-
degree relative with PDAC doubles the chance of developing
pancreatic cancer compared to individuals without such a
history, and the risk increases with increasing number of
affected relatives suggesting a hereditary component. Some
of these PDACs arise in the setting of a known familial cancer
syndrome; however, in most instances the genetic basis for
the familial aggregation is not known [109].

To date, at least 5 hereditary disorders that significantly
increase the chance of pancreatic cancer development have

been described. These include familial atypical multiple
melanoma and mole (FAMMM) syndrome, Peutz-Jeghers
syndrome, hereditary pancreatitis, familial breast cancer, and
other syndromes related to alterations in Fanconi anemia
genes, and the Lynch syndrome (Table 3).

The FAMMM syndrome is caused by germline mutations
in the CDKN2A gene. As stated before, this gene is often
somatically mutated in sporadic pancreatic cancer. Patients
suffering from this syndrome have a 20–34-fold risk of
developing PDAC [110]. This risk is especially high when the
mutation is a specific 19-base-pair deletion in CDKN2A: the
p16-Leiden deletion [111].

Peutz-Jeghers syndrome is caused by mutations in the
STK11/LKB1 gene, a serine threonine kinase involved in
a large number of cellular functions, from control of
cell polarity to metabolism. Patients suffering from this
syndrome have a 132-fold increased risk of developing PDAC
with a 30–60% lifetime risk of PDAC at age 70 [112–114].

Patients with hereditary pancreatitis develop recurrent
episodes of pancreatitis, starting at a young age. The
syndrome is most commonly caused by mutations in the
cationic trypsinogen gene PRSS1 [115]. Another gene that
is occasionally found altered in patients with hereditary
pancreatitis is the serine peptidase inhibitor SPINK1 [116].
Carriers of either of these mutations have a highly increased
risk of developing pancreatic cancer with a lifetime risk of
25–40% at age 60.
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Table 3: Hereditary syndromes associated with an increased risk of PDAC development.

Syndrome Affected gene(s) Relative risk of PDAC

Familial atypical multiple melanoma and mole syndrome CDKN2A 20–34

Peutz-Jeghers syndrome LKB1 >100

Hereditary pancreatitis PRSS1/SPINK1 ∼90

Familial breast cancer BRCA1/2 3–10

Lynch syndrome mismatch repair genes unknown

The two BRCA genes are best known for their role in
familial breast and ovarian cancers but BRCA2 also plays a
role in pancreatic cancer development. Carriers of germline
BRCA2 gene mutations have a 3–10-fold increased risk of
developing PDAC. A specific interest goes to the Ashkenazi
Jewish population as approximately 1% of Ashkenazi Jews
are carriers of a founder BRCA2 mutation, 6174delT [117].

Fanconi anemia is a hereditary cancer susceptibility
disorder, with occurrence of multiple haematological malig-
nancies. The Brca2 protein interacts with different Fan-
coni anemia pathway components, and the corresponding
encoding genes, especially FANCC and FANCG, have also
been reported to increase the chance of PDAC development
when mutated. Recently, PALB2, yet another FANC gene,was
reported to be responsible for ∼3% of the cases of familial
pancreatic cancer [118, 119]. PALB2 encodes a protein that
enables the localization and binding of Brca2 to sites of
double-strand DNA breaks.

Lynch syndrome is caused by germline mutations in a
number of DNA mismatch repair genes. Patients suffering
from the syndrome have a slightly increased chance of
developing pancreatic cancer although there is still some
debate about the exact role in PDAC development [120].

Identification of germline mutations in the previously
discussed genes is of great importance, not only for screening
purposes but also because they could potentially hold
therapeutic consequences. Furthermore, no genetic basis for
cancer susceptibility is identified in most cases of families
exhibiting high numbers of PDAC affected individuals.
More research on genetic susceptibility for PDAC will have
to be conducted to explain the genetic basis for disease
development.

5. Treatment of PDAC

Adjuvant therapy after resection of the tumor consisting
of gemcitabine has been the treatment of choice since
1997 when it was shown to improve both disease-free
and overall survival [5, 6]. Several studies examining the
effect of adding other therapeutic agents to gemcitabine
have been conducted over the past years with disappointing
results [121, 122]. Only the addition of erlotinib showed
slight improvement of overall survival [123]. A recently
published report confirmed the earlier observed limited
beneficial effect of adding erlotinib; however, the authors
concluded that this was no justification for a phase III
trail [124]. Reports comparing single-agent gemcitabine to

adjuvant chemoradiation therapy have been inconclusive.
Chemoradiation therapy has been implicated in the USA
since the Gastro-Intestinal Tumor Study Group trial was
published which showed longer overall survival in patients
treated with adjuvant chemoradiation [125, 126]. In Europe,
however, a similar study failed to find a significant survival
advantage for the group receiving additional radiotherapy
thus chemoradiation therapy did not become the standard
treatment [127]. Although the most recent reports on this
subject suggest a significant advantage for the addition of
radiotherapy, there is still controversy about this subject and
more research needs to be done before radiation therapy can
be included as standard first-line of treatment for PDAC in
Europe [125]. It has been suggested that neoadjuvant treat-
ment with chemotherapy, radiation therapy, or chemoradia-
tion therapy, could downstage borderline resectable tumors.
Several recent studies have shown promising results for
treating borderline resectable tumors with chemoradiation,
enabling resection and approaching similar survival rates
as truly resectable tumors [128–131]. This is still under
investigation and future studies will have to be conducted to
justify the use of neoadjuvant treatment.

Approximately 80% of patients present with locally or
systemically advanced disease-making resection redundant.
For these patients, only palliative treatment options remain.
Single-agent gemcitabine is currently recommended as stan-
dard first-line chemotherapy for patients with advanced
disease [5].

Since the arrival of whole genome sequencing, it has
become possible to identify all the genomic alterations
that lead to the development of pancreatic cancer. The
next logical step is to translate this knowledge into better
treatment options. Until recently, no targeted agents were
found to improve outcome in the clinical setting although
many studies have shown promise in the in vitro setting. In
the past year, a group used mutation analysis to guide their
treatment strategy for the first time [132]. Earlier studies
had shown that PDAC cell lines harboring mutations in
the above-mentioned BRCA2 gene, but also other genes
related to the Fanconi Anemia syndrome (FANCC, FANCG)
responded better to treatment with interstrand cross linking
(ICL) agents than FANC/BRCA wild-type tumors [133]. The
FANC/BRCA pathway is involved in the repair of double
stranded DNA-breaks. As ICL-forming agents induce this
type of DNA damage, susceptibility of FANC/BRCA mutated
tumors to the ICL-forming agents seemed reasonable.
Showalter et al. performed mutation analysis for BRCA2 and
one patient harboring a mutation in this gene was treated
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with cisplatin, an ICL agent, in addition to gemcitabine
showing favorable results (the patient is still alive after
32 months). In theory, PDACs carrying PALB2 mutations
should be sensitive to the same targeted therapeutic as PALB2
is a binding partner of BRCA2. Trials justifying use of ICL
agents in PALB2 mutated PDAC still have to be conducted.

We have recently seen a Peutz-Jeghers syndrome patient
with pancreatic cancer whose tumor showed complete loss
of LKB1, an inhibitor of mTOR. This patient responded
to treatment with everolimus, one of the known mTOR
inhibitors used in clinical setting. Specifically, the tumor
diminished in size by more than 50% within 6 months but
became resistant thereafter [134].

Inhibition of Kras signaling with farnesyl transferase
inhibitors used in the past did not have a beneficial effect
(reviewed by [135]). In 2010, a new therapeutic agent was
identified targeting the Kras pathway. Protein Kinase C
iota (PKC iota) was shown to drive transformed growth in
pancreatic cancer cell lines via inhibition of oncogenic Kras
activity, and inhibition of PKC iota resulted in a significant
reduction of metastases and invasion in preclinical models
[136]. Further research has to be done to map the effective-
ness of inhibiting PKC iota in vivo.

MTAP, a gene located near CDKN2A, is codeleted with
the CDKN2A gene in 30% of the pancreatic cancers. MTAP
might be a possible therapeutic target as approaches to
selectively target cells with MTAP defects have already been
developed [137, 138]. However, these have not been tested in
a clinical setting yet.

It seems logical that over the next few years multiple small
steps, hopefully adding up to significant progress, will be
taken on the road to targeted treatment of PDAC.

6. Conclusion

The aim of this review was to emphasize the complexity of
tumorigenesis in pancreatic ductal adenocarcinoma and to
provide an introductory overview of the pathways affected
in PDAC. As the knowledge on tumorigenesis of PDAC
expands rapidly, so do the possibilities to design more
effective treatment. The arrival of genome sequencing has
offered the opportunity to establish an overview of the
genetic alterations that lead to tumor development and this
could subsequently play an important role in our search
for new therapeutic targets. The complexity of the genetics
accompanying PDAC indicates that it is impossible to design
a treatment that fits all. From this can be deducted that
personalized treatment based on tumor genotyping will
probably be most effective and feasible. The use of ICL agents
for tumors harboring BRCA2 mutations is the first step in
that direction.

Based on the data presented in this review, it seems
advisable to shift the focus of research from most commonly
affected genes to the most commonly affected pathways
as some important yet rare alterations could be missed.
The interactions all these pathways undergo are extensive
and complex as mentioned earlier. When considering per-
sonalizing treatment, designing workable and quick tumor

characterizing assays and targeting pathways rather than
individual genes seems to hold the future of cancer therapy
in PDAC.
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[29] N. Virkajärvi, P. Pääkkö, and Y. Soini, “Apoptotic index and
apoptosis influencing proteins bcl-2, mcl-1, bax and caspases
3, 6 and 8 in pancreatic carcinoma,” Histopathology, vol. 33,
no. 5, pp. 432–439, 1998.

[30] J. D. Evans, P. A. Cornford, A. Dodson, W. Greenhalf, C.
S. Foster, and J. P. Neoptolemos, “Detailed tissue expression
of bcl-2, bax, bak and bcl-x in the normal human pancreas
and in chronic pancreatitis, ampullary and pancreatic ductal
adenocarcinomas,” Pancreatology, vol. 1, no. 3, pp. 254–262,
2001.

[31] S. Banerjee, M. Choi, A. Aboukameel et al., “Preclinical
studies of apogossypolone, a novel pan inhibitor of Bcl-
2 and Mcl-1, synergistically potentiates cytotoxic effect of
gemcitabine in pancreatic cancer cells,” Pancreas, vol. 39, no.
3, pp. 323–331, 2010.

[32] C. Y. Wang, M. W. Mayo, R. G. Korneluk, D. V. Goeddel, and
A. S. Baldwin, “NF-κB antiapoptosis: induction of TRAF1
and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8
activation,” Science, vol. 281, no. 5383, pp. 1680–1683, 1998.

[33] C. Y. Wang, D. C. Guttridge, M. W. Mayo, and A. S. Baldwin,
“NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1
to preferentially suppress chemotherapy-induced apoptosis,”
Molecular and Cellular Biology, vol. 19, no. 9, pp. 5923–5929,
1999.

[34] S. Kreuz, D. Siegmund, P. Scheurich, and H. Wajant, “NF-
κB inducers upregulate cFLIP, a cycloheximide-sensitive
inhibitor of death receptor signaling,” Molecular and Cellular
Biology, vol. 21, no. 12, pp. 3964–3973, 2001.

[35] B. Holcomb, M. Yip-Schneider, and C. M. Schmidt, “The
role of nuclear factor κB in pancreatic cancer and the clinical
applications of targeted therapy,” Pancreas, vol. 36, no. 3, pp.
225–235, 2008.

[36] J. Q. Cheng, B. Ruggeri, W. M. Klein et al., “Amplification
of AKT2 in human pancreatic cancer cells and inhibition
of AKT2 expression and tumorigenicity by antisense RNA,”



Pathology Research International 13

Proceedings of the National Academy of Sciences of the United
States of America, vol. 93, no. 8, pp. 3636–3641, 1996.

[37] B. A. Ruggeri, L. Huang, M. Wood, J. Q. Cheng, and J.
R. Testa, “Amplification and overexpression of the AKT2
oncogene in a subset of human pancreatic ductal adenocar-
cinomas,” Molecular Carcinogenesis, vol. 21, no. 2, pp. 81–86,
1998.

[38] M. G. Schlieman, B. N. Fahy, R. Ramsamooj, L. Beckett, and
R. J. Bold, “Incidence, mechanism and prognostic value of
activated AKT in pancreas cancer,” British Journal of Cancer,
vol. 89, no. 11, pp. 2110–2115, 2003.

[39] A. M. Bellizzi, M. Bloomston, X. P. Zhou, O. H. Iwenofu, and
W. L. Frankel, “The mTOR pathway is frequently activated in
pancreatic ductal adenocarcinoma and chronic pancreatitis,”
Applied Immunohistochemistry and Molecular Morphology,
vol. 18, no. 5, pp. 442–447, 2010.
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