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Abstract: Previous studies have showed that the VQ motif-containing proteins in Arabidopsis
thaliana and Oryza sativa play an important role in plant growth, development, and stress responses.
However, little is known about the functions of the VQ genes in Brassica rapa (Chinese cabbage). In
this study, we performed genome-wide identification, characterization, and expression analysis of
the VQ genes in Chinese cabbage, especially under adverse environment. We identified 57 VQ
genes and classified them into seven subgroups (I-VII), which were dispersedly distributed on
chromosomes 1 to 10. The expansion of these genes mainly contributed to segmental and tandem
duplication. Fifty-four VQ genes contained no introns and 50 VQ proteins were less than 300 amino
acids in length. Quantitative real-time PCR showed that the VQ genes were differentially expressed
in various tissues and during different abiotic stresses and plant hormone treatments. This study
provides a comprehensive overview of Chinese cabbage VQ genes and will benefit the molecular
breeding for resistance to stresses and disease, as well as further studies on the biological functions
of the VQ proteins.
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1. Introduction

To survive adverse environmental conditions, plants have evolved a wide range of complex
mechanisms to respond to external stimuli [1]. Such responses are controlled by a complex network
regulated by transcription factors (TFs) and other cofactors; though the cofactors do not bind DNA
like TFs, they could interact with TFs to co-regulate plant transcriptional machinery in response to
the surrounding environment [2].

Over the past several years, plant-specific VQ motif-containing proteins, which were named
after the highly conserved amino acid sequence “FxxxVOQxL/F/VTG”, were found in many
monocotyledon and dicotyledon plants [3-6]. VQ motif-containing proteins can interact with the
WRKY TFs [3] and play many important roles in plant growth and development. For example, the
N-terminal peptide of AtV Q8, predicted to be a chloroplast targeting signal and mutation in this gene,
results in pale-green and stunted-growth phenotypes [3]. IKU1, also named AtVQ14, is expressed in
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the endosperm during the early stages of seed development and directly regulates endosperm and
seed growth [7]. AtV(Q29 is expressed at a higher level in stem than root, rosette leaf, flower, and
silique, and its over-expression reduces the hypocotyl growth under the far-red and low intensity
of white light conditions [8]. In soybean, GmVQ1, -6 and -53 are highly expressed during seed
development [5].

VQ proteins also have a vital function in resistance to abiotic and biotic stresses. AtVQ9
was reported to act antagonistically with WRKY$8 to mediate responses to salt stress and decrease
the DNA-binding activity of WRKYS8 [9]. AtCaMBP25 (AtVQ15), a novel calmodulin-binding
protein, functions as a negative regulator of plant responses to osmotic stress [10]. MKS1, another
VQ motif protein (AtVQ21), acts as a substrate for MAP kinase 4 (MPK4) which functions as
a regulator of pathogen defense responses, and MKS1 was also found to form complexes with
WRKY25 and WRKY33 [11,12]. Nuclear-encoded sigma factor binding proteinl, SIB1 and SIB2,
which were renamed AtVQ23 and AtVQ16, respectively, can be rapidly and strongly induced
by pathogens [13,14] and were found to recognize the C-terminal WRKY domain and stimulate
the DNA-binding activity of WRKY33 [14]. Some AtVQ proteins were phosphorylated by
mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, and most of these MPK3/6-targeted
VQ proteins interacted with WRKY TFs to regulate plant immune responses [15,16].

At present, 34, 39, 74, and 18 VQ genes were identified in Arabidopsis thaliana [3], Oryza sativa [4],
Glycine max [5], and Vitis vinifera L. [6], respectively. Chinese cabbage (Brassica rapa L. ssp. pekinensis),
an important vegetable crop known for its high nutritional value, is widely cultivated in Asia.
However, to our knowledge, the VQ gene family from Chinese cabbage has not been characterized
in detail.

In this study, we performed a genome-wide bioinformatics analysis of the VQ motif-containing
proteins, including genome locations, evolutionary divergence, and gene structure. In addition,
expression patterns of these genes were analyzed by quantitative real-time PCR (qRT-PCR) in
different tissues and in response to abiotic stresses and hormone treatments. The detailed information
provided in this study will facilitate further research on functional characterization of the VQ genes
in Chinese cabbage.

2. Results

2.1. Identification and Sequence Analysis of VQ Genes in Chinese Cabbage

A total of 57 genes encoding highly conserved VQ motif-containing proteins were identified
in Chinese cabbage and the sequences were downloaded from the Brassica database [17]
(Tables S1 and S2). All the VQ genes were assigned specific names according to their A. thaliana
orthologs [18] (Table 1), which were determined based on the instructions of Gramene [19]. If two
or more Chinese cabbage genes had the same homologous gene in A. thaliana, one additional number
was added after their specific name to distinguish them [20]. For instances, Bra007265, Bra014675,
and Bra014674 were homologs of AtV(Q23, so they were named BrV(Q23-1, BrV(Q23-2, and BrvV(Q23-3,
respectively. Therefore, of the 57 BrVQs, 56 putative BrVQs were renamed based on the sequence
similarity to 29 AtVQ proteins, and the remaining one (Bra006328), whose ortholog was AT5G14640
(shaggy-like kinase 13), was also identified as a BrVQ protein and renamed BrVQ35. Subsequent
sequence analysis of these 57 BrV(Q genes showed that the CDS ranges from 282bp to 1707bp and
the predicted protein lengths vary in size from 93 to 568 amino acids (Table 1). The majority of the
proteins (50/57; 87.7%) contain 300 amino acids or less, whereas two proteins (3.5%), BrVQ14-1 and
BrVQ35, were more than 400 amino acids. This result was similar to previous studies in Arabidopsis [3]
and rice [4], where 85.3% and 89.7% of VQ proteins contain less than 300 amino acids, respectively.
Additionally, sequence analysis showed that the molecular weight of the BrVQ proteins ranged from
10.4 to 63.0 kDa and the theoretical isoelectric point (pI) from 4.67 to 10.53 (Table 1).
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Table 1. Properties of the Chinese cabbage VQ genes and proteins.

Gene Name Gene Locus Chr. No. Strand Direction Location CDS Protein
Length (aa) Mol.Wt. (KDa) pI

BrVQi1-1 Bra025998 A06 - 6,588,703-6,588,999 297 98 10.81 4.75
BrVQ1-2 Bra016616 A08 + 19,301,503-19,301,796 294 97 10.92 5.13
BrV(Q3-1 Bra025892 A06 - 8,759,573-8,760,265 693 230 25.07 8.67
BrVQ3-2 Bra012276 A07 + 8,889,633-8,890,172 540 179 19.29 5.1

BrvVQ4 Bra030082 A07 + 6,712,561-6,713,295 735 244 26.74 9.66
BrVQ5 Bra035492 A08 — 7,791,236-7,791,901 666 221 25.40 6.58
BrvVQ8 Bra033934 A02 — 108,00,121-10,800,534 414 137 15.36 10.19
BrV(Q9-1 Bra035028 A07 - 21,850,607-21,851,491 885 294 31.58 10.12
BrvVQ9-2 Bra008356 A02 - 14,998,946-14,999,815 870 289 31.19 10.39
BrV(Q10-1 Bra008359 A02 + 15,035,463-15,035,777 315 104 11.61 5.83
BrV(Q10-2 Bra003642 A07 — 14,203,152-14,203,469 318 105 11.69 5.01
BrV(Q10-3 Bra035035 A07 + 21,882,989-21,883,270 282 93 10.44 4.67
BrVQ11-1 Bra035182 A07 + 22,479,008-22,479,511 504 167 18.96 7.96
BrVQ11-2 Bra003566 A07 — 13,824,994-13,825,515 522 173 19.66 9.69
BrVQ11-3 Bra008473 A02 + 15,858,716-15,859,210 495 164 18.79 8.74
BrvVQ12 Bra039937 A09 + 31,714,821-31,715,237 417 138 16.09 9.66
Brv(Qi14-1 Bra023004 A03 + 8,183,495-8,184,808 1314 437 48.10 8.58
BrVQ14-2 Bra017329 A04 + 15,346,657-15,347,685 1029 342 37.24 10.53
BrV(Q14-3 Bra005358 A05 — 5,012,814-5,014,478 1185 394 43.13 10.09
BrVQ15 Bra016956 A04 — 17,404,492-17,405,181 690 229 24.84 7.87
BrVQ16-1 Bra000216 A03 + 9,940,673-9,941,098 426 141 15.57 8.91
BrvVQ16-2 Bra004604 A05 + 1,001,763-1,002,185 423 140 15.29 4.89
BrVQ18-1 Bra004825 A05 + 1,984,033-1,984,575 543 180 20.11 9.24
BrV(Q18-2 Bra037658 A04 + 18,293,805-18,294,347 543 180 19.98 9.33
BrV(Q19-1 Bra027262 A05 + 20,006,387-20,007,064 678 225 24.21 9.44
BrV(Q19-2 Bra021096 A01 + 23,997,911-23,998,561 651 216 23.49 9.33
BrVQ20 Bra037588 A01 + 22,145,216-22,146,079 864 287 30.28 6.54
BrV(Q21-1 Bra037569 A01 + 22,005,523-22,006,176 654 217 22.73 6.05
BrVQ21-2 Bra022345 A05 + 182,87,618-18,288,268 651 216 23.06 6.29
BrvVQ21-3 Bra001716 A03 — 18,018,055-18,018,699 645 214 22.95 6.22
Brv(Q22-1 Bra023849 A01 + 2,0411,389-20,411,979 591 196 20.61 9.69
Brv(Q22-2 Bra041035 Scaffold000402 - 11,806-12,390 585 194 20.40 9.89
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Table 1. Cont.

Gene Name Gene Locus Chr. No. Strand Direction Location CDS Protein
Length (aa) Mol.Wt. (KDa) pI
Brv(Q23-1 Bra007265 A09 - 28,278,350-28,278,799 450 149 16.52 4.88
BrvV(Q23-2 Bra014675 A04 + 2,158,610-2,159,095 486 161 18.10 5.1
BrV(Q23-3 Bra014674 A04 + 2,155,783-2,156,247 465 154 17.35 5.17
BrV(Q24-1 Bra007279 A09 + 28,339,520-28,340,206 687 228 23.79 6.59
BrV(Q24-2 Bra014665 A04 — 2,098,440-2,099,141 702 233 24.57 8.05
BrVQ25-1 Bra007373 A09 + 28,879,454-28,879,999 546 181 20.12 6.19
BrvV(Q25-2 Bra014594 A04 — 1,651,117-1,651,650 534 177 19.56 6.7
Brv(Q26-1 Bra007505 A09 + 29,533,410-29,533,874 465 154 17.58 7.02
BrV(Q26-2 Bra014514 A04 - 1,142,901-1,143,341 441 146 16.68 8
BrV(Q26-3 Bra003400 A07 + 13,026,327-13,029,056 846 281 32.87 7.16
BrvVQ27 Bra039565 A01 — 11,929,165-11,929,719 555 184 19.83 9.76
BrVQ28 Bra013438 A01 + 5,666,359-5,666,979 621 206 23.15 5.37
BrVQ29-1 Bra010608 A08 + 15,506,771-15,507,115 345 114 12.72 9.05
BrvV(Q29-2 Bra017849 A03 + 30,916,676-30,917,020 345 114 12.84 9.05
BrVQ30-1 Bra010666 A08 + 15,875,832-15,876,719 888 295 32.18 6.18
BrVQ30-2 Bra011838 A01 - 282,249-283,121 873 290 31.74 7.94
BrVQ31 Bra005995 A03 + 1,534,982-153,5506 525 174 19.11 9.37
BrV(Q32-1 Bra022063 A02 + 18,984,720-18,985,412 693 230 25.41 10.26
BrV(Q32-2 Bra024996 A06 — 24,596,158-24,596,844 687 228 25.12 9.99
BrV(Q33-1 Bra003032 A10 + 5,893,364-5,894,047 684 227 25.28 9.99
BrVQ33-2 Bra022675 A02 — 8,093,063-8,093,788 726 241 26.93 9.75
BrVQ34-1 Bra024362 A06 + 15,221,647-15,222,738 1092 363 39.11 5.76
BrvV(Q34-2 Bra037806 A09 + 3,657,352-3,658,311 960 319 34.26 5.94
BrV(Q34-3 Bra031876 A02 + 27,356,488-27,357,465 978 325 35.03 6.65
BrVQ35 Bra006328 A03 - 3,034,196-3,038,533 1707 568 62.99 8.89
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Figure 1. Phylogenetic tree and conserved domain analysis in Chinese cabbage. (A) The phylogenetic

tree was determined in MEGAS5 using the neighbor-joining method with 1000 bootstrap replicates.

Based on the clustering of the VQ motif-containing proteins, we classified the proteins into seven

groups from subgroup I-VII; (B) Domain was analyzed by searching the PlantsP database.

2.2. Phylogenetic Tree, Gene Structure, and Conserved Domains Analysis in Chinese Cabbage

A phylogenetic tree was constructed on the basis of the full-length BrVQ protein sequences
using the neighbor-joining method. The 57 BrVQ proteins can be divided into seven subgroups,
with 10 proteins in subgroup I, five each in II and III, seven in IV, eight in V, 10 in VI, and 12
proteins in subgroup VII, respectively (Figure 1A). In addition, a large number of homologous genes
have bootstrap value and alignment identity of more than 70% (Figure 1A, Table S3), implying that
the putative BrVQ homologous genes have highly similar sequences. Moreover, the gene structure
analysis showed that most BrVQ genes (54 genes; 94.7%) had no intron, whereas only three genes
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(BrVQ14-3, BrVQ26-3, and BrV(Q35) contained one, four and 14 introns, respectively (Figure 2). The
finding is consistent with a previous study [8] where the authors found as many as 30 genes in
Arabidopsis and 37 genes in rice with no intron. We further performed motif analysis using the PlantsP
database and found all BrVQ proteins contain a conserved VQ motif (Figure 1B). The same VQ motif
(motif 1) was also detected in all BrVQ proteins when we did an independent analysis using the online
tool MEME (Figure 3). By MEME analysis, we also found nine other motifs in the BrVQ proteins,
including motif 2 in 19 BrVQ proteins, motif 3 in nine BrVQ proteins, motif 4 in five BrVQ proteins,
motif 5 in seven BrVQ proteins, motif 6 in three BrVQ proteins, motif 7 in 10 BrVQ proteins, motif 8 in
seven BrVQ proteins, motif 9 in four BrVQ proteins, and motif 10 in three BrVQ proteins, respectively

(Figure 3).
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Figure 2. Intron and exon structure of the VQ genes in Chinese cabbage. The majority of the BrvVQ

genes only have one exon, except BrVQ14-3, BrV(Q26-3, and BrV(Q35, which have one, four, and 14

introns, respectively.
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Figure 3. Motif analysis of the VQ proteins in Chinese cabbage. Distribution of the BrVQ conserved
motifs in Chinese cabbage was analyzed by the online tool MEME.

2.3. Multiple Sequence Alignment and Motif Analysis

Multiple sequence alignment was constructed based on the types of B. rapa VQ domain proteins
(Figure 4). In previous studies, six types of AtVQ proteins (LTG, LTS, LTD, FIG, VTG, YTG) [3]
and four types of OsVQ proteins (ITG, LTG, VTG, FTG) [4] were identified. In our study, six
types of VQ motifs, including FxxxVOxLTG (43/57), FxxxVQXFTG (8/57), FxxxVQxVTG (3/57),
FxxxVQXLTS (1/57), FxxxVQxLTV (1/57), and FxxxVQxYTG (1/57), were identified in Chinese
cabbage (Figure 4). Compared to the AtVQ and OsVQ proteins, no BrVQ protein contained
the FxxxVQXLTD, FxxxVHxVTG, or FxxxVQXxITG motifs, while a unique and conserved sequence
“FxxxVQXLTV” was found in the BrVQ32-1 protein.

2.4. Chromosome Mapping and Syntenic Analysis of VQ Genes in B. rapa

We mapped the physical locations of the BrV(Q genes on 10 chromosomes of B.rapa except one
gene, BrV(Q22-2, which was located on Scaffold000402 (Table 1, Figure 5). Chromosomes 4 and 7 have
the highest number of BrV(Q genes (eight genes each). Chromosomes 1, 2, 3, 9, 5, 6, and 8 contain
seven, seven, six, six, five, four, and four VQ genes, respectively, whereas chromosome 10 harbors
the fewest (only one gene). To get a better understanding of the BrV(Q gene evolution mechanism,
we searched for the syntenic genes and possible BrVQ gene duplication events between A. thaliana
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and B.rapa with the BRAD program [17,21]. The results suggested that a total of 53 BrVQ genes
derived from 13 blocks of seven tPCK (translocation Proto-Calepineae Karyotype) chromosomes of
the ancestor, respectively, and were distributed on three subgenomes (LF, MF1, and MF2, which
stands for less fractionized, more fractionized 1, and more fractionized 2, respectively), including
21 genes on LF, 23 genes on MF1, and 12 genes on MF2 (Table 2). A syntenic relationship between the
53 BrVQ genes and the 28 AtVQ genes was also detected. However, four genes (BrVQ3-1, BrV(Q3-2,
BrVQ22-2, and BrVQ35) in the B.rapa genome had no syntenic relationship with any A.thaliana VQ
gene. On the other hand, six AtVQ genes (-2, -3, -6, -7, -13, and -17) were not in synteny with any
B.rapa VQ genes. On average, for each AtV(Q gene, there were one to three copies of a BrV(Q gene.
Seven BrV(Q loci (the term “locus” instead of “gene” is used here according to the recommendations
by Krishnamurthy et al. [22]) maintained three copies whereas other BrVQ loci maintained either a
single copy (13 loci) or two copies (11 loci). Additionally, a total of 41 BrV(Q genes were detected
to have counterparts on segmental duplication, with every member of the segmentally duplicated
genes dispersedly distributed on a different chromosome except for four genes (BrVQ10-2/10-3,
BrVQ11-1/11-2) (Figure 5). Interestingly, one tandemly duplicated gene (BrV(Q23-2/23-3) was found
on chromosome 4 (Table 2, Figure 5) with a BrV(Q23-2 protein sharing 83% similarity with BrV(Q23-3
(Table S3).

VQ motif
BVQ1-1 NSRVRSEPMKVVFI NTRYI QTBARS[Ks! JEE( JEKNAVVAEGPFEFSA. . .. ... QGYGGK. . 55
BrvQ1-2 MSRVRSEPVKVVFI NTQYVQTDARS[EKT VI{®EL  GKNAI VADGPFEFSS. . . .. ... HGYGSK. . 55
BrvQ3-1 QLLPPRGPVI | YTVSPKI | HTHPNNENMTL QRL"GKTSTPT\ PSSSSPYPLALDYTSASRDTSAV 65
BIVQ3-2 QSQQPRGPVI | YTVSPKI | HTHPNNGIVGL MRL I GNTSASTASSSVSQSI LAPNNMSATVDT. . . 62
BIVQ4 RQVTTRSESGNPYP. TTFVCABTSSKQVIEM I G. SSDRPKQHNTSSLKPNPTHQPDPRSSPSQ 63
BrvQ8 RRHGRAAPVVI YAHSPKVI HTRAENgMAL QRL"GLEGI RRRNPNDVNESSL SVLTTEEASVGTD 65
BrvQe-1 QPQHQAI NHGNL HQHQPPVYNI NKNDgRD!' QKL"GSP. AHERI SAPPQAQPVHHPKAQQ. . SSRLH 62
BrVQg-2 PP. . . | NHGNLHQHQPPVYNI SKSDROVIUEKLJGSP. AHERI SAPP. . PI HHPRPQQ. . SSRLH 57
BIVQ10-1 RGKVKQEPNVKVVF| NTQYVETBARS[KNVISEL || GKDAI VAAGPYESPS. . . . . AYAYDGGNKSG 60
BrVQ10-2 RGKVKPEPMKVVF| NTQYVETDTRSGKTVREL | GKDAI VAPGPFESPSTSD. . VRCYGGGSKI V. 63
BVQ10-3 .. ... . NKVVFI NTQYVETDARSGKNVIIEEL | GKDAI VAAGPFESPSTSD. . DRCYGGGNRVG 55
BVQ11-1 PNHHQQPPSYVT DPNTNFVQADPSNGRNI MeKLUGA. PPELS. ... ... ... ......... TAQ 44
BrVQ11-2 QNHHQLP. TYATDPNTMFVCADPSNERNI WIeKL Y GASPPELSA. . . . ..o oo oo ... VSAAR 47
BVQ11-3 KNHHSORPSYATDPNTVFVOADPSNGRNI WSELIGA. PPELSP. ... ... ... ... ... VSTAQ 47
BVQ12 AS........ L GRVHPRVYRVEPVNGKEL MJeRL | GAPQDHERDEVHQVETKPLLKVQ. . . . HGLY 53
BrVQ14-1 ANANA. . .. ARPQGQPQVYNI SKTDFRSMIRQL | GSP. ARESLPRPPPONS. SPKPQ. .. STRLQ 56
BVQ14-2 AHANL AAEAARPQAQPQVYNI NRSDRSI MEQL | GSP. SRESLPGPP. ONN. SPKPQ. . . NTRLQ 59
BVQ14-3 ANANAT. . . ARPQACPQVYSVSKNDFRSVIEQL | GSP. SRESLPRPPPONNNSPRPQ. . . NTRLQ 58
BVQ16-1 TSNDNKPI KVRY| SNPNRVETCPSKREL MEEL | GODAAEL PPEPTT. . YAAAD. . .. .. .. ... 52
BVQ162 TSN. NKPI KVRY| SNPMRVETCASKREL MRFL | GONAADL PPGPTT. . FAAKD. . ... . ... .. 51
BrvQ18-1 .......IRI'l H FAPEVI KIDVKNERSL % SL"GKPTAGEVKTDKKRANSRVST. ........8 49
LTG BrvQ18-2 .. .....1RIl H FAPEVI KPDVKNERSL {{eSL | GKPAAVEVKTGKRSARPRI PT. . ... ... .S 49
BrvQ19-1 HHHI | TR. . SDHYP. TTFVQADTSTgKQ QIVL"GTSSPF\'S. .. PDS. .. PRPPPSP. .. SGKST 53
BIVQ19-2 HQHI | TR. . SDHYP. TTFVCADTSSEKOVIEMIJGSSSPRS. . . PDS. .. PRPPTTP. .. PGKGN 53
BIVQ20 TAAKPRQPVI | YTNTPKVI HTNPKDGNVAL OKLnGNSHSEEDSGGSSSAVTDRGGKSI NRSVSDL 65
BrvQ21-1 PLYAAREPVVI YAVSPKVVHT TASDgNVN QRL"GI SSAVFLESGNG. . . . ... ... ... a7
BrvQ21-2 QPYAPREPVVI YAVSPKVVHT TTSDgMNVIUERL I Gl SSEVFLESRND. . J 47
BVQ21-3 PLYAPREPVVI YAVSPKVVHT TTSDVNVII&RUYIGI SAGYFHESGNG. . . ... ... ......... 47
BrVQ23-1 ASA. NKAI KVRY| SNPMKVKTCASKREL WeEL | GQDAVD. QPEPVFSPSTVSDLSPS. . . . . . . 56
BrVQ23-2 ASR. NKPI KVRY| SNPNRVKTCASKREL MeEL ) GQDAVDL EL EPEFSPSAVSDDSSS. . . . . . . 57
BrVQ23-3 ASR. NKPI KVRY| SNPNRVKTCASKREL MEEL i GODAVDL EL EPEFSPSAVSDHSPS. . . . . . . 57
BVQ251  ....... I RI | HI YAPEI | KTDVANGREL WJ8SL GKPEDHGYSKTKPRRDTHRLHHRQVLDNT. N 57
BrVQ25-2 ......IRIIH YAPEI | KTDVANZREL ¥8SL L GKPEDHGYSKTKPRRGTR. . . . GQVQDNI 53
BVQ26-1  ....... I RI| HI FAPEI | NTDVKNGRTL\8SLYGKTEI TKTSPKKK. . . TNIPA. .. ... ... P 46
BVQ262  ....... I RI 1 HI FAPEI | NTDVKNGRTL JJ8SLY GKPDI TKTGSRKKTRRTNI HA. .. ... . .. P 49
BVQ26-3 ... IRIIHI FAPEI | NTDVKNGRTL MESI I GKPEI TKTGSKKKI TRTNIPA. .. ... ... P 49
BrvQ29-1 SP. . ... ... LNPNVHPHVYRVEPVNZKEL % RL"GAP. EHEP. . . ... ... ... e 33
BrVQ29-2 SP........ LKSVHPQUYRVEPANGKEL\MERLYGAP. EHDD. . .. ... ................ 33
BrVQ31-1 MNNQGSONVATCKPVTTFVHT DTDTFREVIEERLIGPSESNAAAI P. . .. ... ... .. .. EAT 48
BIVQ31-2 WNNQGSGNVAT CKPVTTFVHTDTDTFREVIRHL GPSESNAAAVP. . . . . ... EAT 48
BrvQ3z-2 QNP. ... QALVYNI NKTDFERSI QQL"GLG SASSVNF‘PQSTNSNPPKPP. . NSRLV 50
BrvQ33-1 PHHEQHQHL SNPYP. TTFVQADTSTgKQVYeNLJGSSSTDT. . . NTGKHHEAPSPVN. . . NNKGG 58
BrvQ33-2 HHHDQHQHL SNPYP. TTFVQADTSTgKQvi| NL"G, SSTDT. . . KTENHHKAPSPVN. . . NNKVG 57
BIVQ22-2 . ARRR. SRAS. RRTPTTLLNTDTSNGRAMYSQF )| GGPSAVSFGSG. NTTSGFSLTS. . . . . . SSD 55

BrvQ27 . TRRR. SRAS. RRTPTTLLNTDTA

ARA QQF"GGPSAIVAFGS‘ .. PSSGFSLT. ...... SSG 52
BrvQ2s ETSGRRSRASRRAVPTTLLNANPS

FRAL (MeKFY GRSSGGESNRRRGPVTLDFGSPTTI SKEAI F 65

FTG BrvQ30-1 . PKKR. SRAS. RRAPTTVLMIETSNFRAMIREFY Gl PSPPLENN. . . .. SVWNTTRLNTFLGLSS 57
BrvQ30-2 . TKKR. SRAS. RRAPTTVLKTDTSNFRAMISEFPGI PSPPLFNNN. . . . SVWNTTRLKTFLGLSS 58
BrvQ34-1 NLKKR. SRVS. RRAPTTVLTTDTSNFRAMIEEFY GNPSNPFSG. . LSSSFFPRSRFDLFGF’SSS 60
BrvQ34-2 NPKKR. SRVS. RRAPTTVLTTDTSNFRAMISEFYGNPSTPFTG. . . SSSSPFSRSRFDLFGPSSS 60
BrvQ34-3 | PKKR. SRVS. RRAPTTI LTTDTSNgRAMYGEFY GSPSNPFAGL. SSSSSPFPRSRSDLFGF‘SSP 62
BrvQ15 ATKRRRSRPS. KKPQTTFI TADPSNgRQ! G . AKCINN. ............... . DTS 43

VTG | BrvQ24-1 PAKRR. SRVSTKKSQTTF| TADAANZROMIe G .. AKYN................. ... GSP M
BrvQ24-2 PAKRR. SRVSTKKSQTTFI TADAANZROMY G . AKFI..... ... .. ...... ... GSS M

LTS 1 BrvQs NANS| PHQPRQPQLKTQVYI | DKEDgKSI QCL"SNOSCEFLPC]NLPNRQKSRPEPTSPVPLNAT 65

LTV 1 BrvQ32-1 QNP. . . QALFFNI NKTDgRSI .QL"VLG. SASSVNPPQSTN. . PPKPP. . . NSRLV 48

YTG ' BrvQ2z-1 . ARKR. SRAS. RRTPTTLLNTDTSNgRAMY®QYIGGPSANAFGSG. NTTSGFSLTA. .. ... SSD 55

Figure 4. Multiple sequence alignment of the VQ proteins in Chinese cabbage. The sequences were
aligned using the DNAMAN software. The highly conserved motif is FxxxVQXLTG.
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Figure 5. The distribution of the VQ genes of Chinese cabbage on 10 chromosomes. The chromosome

number is indicated at the top of each chromosome. BrVQ gene numbers are shown on the right of

each chromosome.

Table 2. Syntenic VQ genes between Arabidopsis and Chinese cabbage.

Chinese Cabbage Gene

tPCK Chr 2 Block Arabidopsis Gene LFb MFL° ME2 <
tPCK1 A AtVQI1(AT1G17147) BrVQi-1 BrvVQ1-2 -

- - - BrVQ3-1 - -

- - - . - BrVQ3-2
tPCK1 B AtVQ4(AT1G28280) - - BrV(Q4
tPCK1 B AtVQ5(AT1G32585) - BrVQ5 -
tPCK6 E AtVQ8(AT1G68450) - BrvQ8 -
tPCK6 E AtVQI(AT1G78310) BrVQ9-1 Brv(Q9-2 -
tPCK6 E AtVQI10(AT1G78410) BrVQ10-3 BrVQ10-1 BrVQ10-2
tPCK6 E AtVQ11(AT1G80450) BrVQ11-1 BrVQ11-3 BrVQ11-2
tPCK3 I AtVQ12(AT2G22880) BrvVQ12 - -
tPCK3 ] AtVQ14(AT2G35230)  BrVQ14-3 BrVQ14-2 BrVQ14-1
tPCK3 ] AtVQ15(AT2G41010) - BrVQ15 -
tPCK3 ] AtVQ16(AT2G41180)  BrVQ16-2 - BrVQ16-1
tPCK3 J AtVQ18(AT2G44340) BrVQ18-1 BrVQ18-2 -
tPCK2 F AtVQI19(AT3G15300) BrVQ19-1 BrvVQ19-2 -
tPCK2 F AtVQ20(AT3G18360) - BrVQ20 -
tPCK2 F AtVQ21(AT3G18690)  BrVQ21-2 BrVQ21-1 BrVQ21-3
tPCK2 F AtVQ22(AT3G22160) - BrVQ22-1 -
tPCK6 N AtVQ23(AT3G56710) BrVQ23-1 BrVQ23-2/BrV(Q23-3 -
tPCK6 N AtVQ24(AT3G56880)  BrV(Q24-1 BrvQ24-2 -
tPCK6 N AtVQ25(AT3G58000) BrVQ25-1 BrV(Q25-2 -
tPCK6 N AtVQ26(AT3G60090) BrVQ26-1 BrvVQ26-2 BrV(Q26-3
tPCK4 T AtV(Q27(AT4G15120) BrvVQ27 - -
tPCK4 U AtVQ28(AT4G20000) BrvVQ28 - -
tPCK4 U AtVQ29(AT4G37710) - BrvVQ29-2 BrVQ29-1
tPCK4 U AtVQ30(AT4G39720) BrVQ30-2 - BrVQ30-1
tPCK5 R AtVQ31(AT5G08480) - BrvVQ31 -
tPCK7 A\ AtVQ32(AT5G46780) BrVQ32-2 BrVQ32-1 -
tPCK5 Wb AtVQ33(AT5G53830)  BrVQ33-1 - BrVQ33-2
tPCK7 X AtVQ34(AT5G65170) BrVQ34-1 BrVQ34-3 BrVQ34-2

- - - - BrvVQ35 -

The data were downloaded from the Brassica Database [17,21]. 2 tPCK Chr: Chromosome of translocation
Proto-Calepineae Karyotype, ancestral genome of Brassica species; b LF: Less fractioned subgenome; ¢ MFs
(MF1 and MF2): More fractioned subgenomes.

2.5. Phylogenetic Tree of the VQ Domains in Arabidopsis, Rice and Chinese Cabbage

Using the neighbor-joining method, we constructed an un-rooted tree with 34, 57, and 39 VQ
amino acid sequences in Arabidopsis, Chinese cabbage, and rice, respectively. The sequences were
classified into eight groups (I-VIII) (Figure 6). The low bootstrap values in the tree are due to the
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divergent VQ sequence among the three species. This is not surprising, given that both A.thaliana and
B. rapa belong to cruciferous plants, and the VQ genes in these two species were clustered together,
while O. sativa VQ genes clustered by themselves. Moreover, the amino acid sequence of most VQ

genes in A. thaliana and B. rapa revealed high similarity of more than 70% with each other (Figure 6,
Table S3).
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Figure 6. Phylogenetic tree of the VQ motif-containing proteins from Arabidopsis, rice, and Chinese
cabbage. The tree was determined using the neighbor-joining method with 1000 bootstrap replicates.
Based on the clustering of the VQ motif-containing proteins, we classified proteins into eight different
groups from Group I to Group VIII. Proteins from Arabidopsis, Chinese cabbage, and rice are denoted
by green circles, blue squares, and yellow triangles, respectively.

2.6. Expression Pattern of the BrVQ Genes in Different Tissues

To explore the possible roles of the BrVQ genes in Chinese cabbage growth and development, we
performed qRT-PCR expression analysis in six tissues, including root (R), dwarf stem (DS), old leaf
(OL), young leaf (YL), flower (FL), and flower bud (FLB). Expression of 54 BrV () genes were detected
while the other three BrVQ genes (5, 26-3, 33-1) were either absent or poorly expressed. Expression
patterns varied among the 54 BrVQ genes (Figure 7). For example, 26 BrV(Q genes, including BrV(Q3-1,
3-2,8,11-1, 12, 15, 16-1, 18-1, 18-2, 19-2, 21-1, 21-2, 21-3, 22-1, 24-2, 26-1, 26-2, 27, 28, 29-1, 29-2, 32-1,
32-2, 33-2, 34-2, and 34-3, showed higher expression levels in the R than in other tissues; 13 BrVQ
genes (1-1, 9-1, 9-2, 10-1, 14-1, 14-2, 14-3, 16-2, 22-2, 23-1, 23-2, 23-3, and 34-1) were expressed more in

28692



Int. J. Mol. Sci. 2015, 16, 2868328704

the OL than in other tissues; seven BrVQ genes (11-2, 20, 25-1, 25-2, 30-1, 31, and 35) were expressed
mainly in the FLB; four BrVQ genes (1-2, 10-2, 10-3, and 19-1) were expressed mainly in the YL; three
BrVQ genes (11-3, 24-1, and 30-2) were expressed mainly in the DS and only the BrV(Q4 gene was

expressed in the FL.
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Figure 7. Expression analysis of the BrV(Q genes in different tissues of Chinese cabbage. The surveyed
tissues include root(R), dwarf stem (DS), old leaf (OL), young leaf (YL), flower (FL), and flower bud
(FLB). Expression levels of the BrV(Q genes were normalized to those of BrActin and shown relative to
their expression in R, except for BrVQ1-2 and BrVQ12, whose expression level was relative to that in
DS. The 2~22¢* method was used to calculate the expression levels of target genes in different tissues.
The expression levels of BrVQ1-2, BrVQ12, and BrVQ20 are shown by log2.
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Additionally, some paralogs showed similar expression patterns in different tissues. For
example, BrVQ10-2/10-3 had higher expression levels in both OL and YL. BrV(Q21-2/21-3 showed
similar expression tendency in all tissues. On the contrary, some exhibited different expression
patterns in different tissues, including BrV(Q22-1/22-2, BrV(Q24-1/24-2, and BrV(Q30-1/30-2.

2.7. Expression Analysis of the BrVQ Genes under Abiotic Stresses

To further understand the possible roles of the BrV(Q genes in response to abiotic stresses, we
investigated their expression levels under the most common osmotic (polyethylene glycol, PEGgq),
salt (NaCl), heat (35 °C), and cold (4 °C) stress. Altogether, 43 BrV(Q genes displayed differential
expression compared to the untreated control after at least one stressor treatment (Figure 8), while the
expression patterns of the other 14 genes were not detectable. For example, after PEGggg treatment,
four (14-2, 19-2, 20, and 27) and six genes (1-2, 10-1, 19-1, 22-2, 23-2, and 23-3) were up-regulated
whereas seven (1-2, 3-1, 4, 10-2, 10-3, 11-1, and 12) and two genes (20 and 23-1) were down-regulated
more than two-fold compared to the untreated control at 3 h and 24 h of treatment, respectively.
BrV(Q35 was up-regulated more than two-fold at both 3 h and 24 h. During salt stress, four genes
(14-2, 19-1, 19-2, and 35) and five genes (1-2, 22-2, 23-2, 23-3, and 26-1) were significantly induced at
3 and 24 h. On the contrary, five genes (1-1, 3-1, 9-2, 10-3, and 23-1) were down-regulated at 3 h and
their expression levels were further decreased two-fold at 24 h with the exception of BrVQ1-1. For
35°C treatment, 27 genes were rapidly up-regulated at 3 h. Among these genes, 19 genes (1-2, 12,
16-1, 16-2, 21-2, 21-3, 22-2, 23-2, 23-3, 24-1, 24-2, 26-1, 30-2, 31, 32-1, 32-2, 34-1, 34-3, and 35) showed
the highest expression levels at 3 h and 24 h. In contrast, three genes (9-2, 10-2, and 10-3) showed
a trend of down-regulation from 3 h to 24 h. Interestingly, BrVQ3-1 and BrV(Q11-1 were initially
down-regulated about two-fold at 3 h but up-regulated more than four-fold at 24 h. In the case of
low temperature treatment, five genes (10-1, 14-2, 21-2, 21-3, and 34-1) at 3 h and two genes (19-1 and
26-1) at 24 h exhibited at least a two-fold increase in expression compared to the untreated control,
while two genes (9-1 and 22-1) at 3 h and four genes (3-1, 14-3, 19-2, and 34-3) at 24 h showed the
opposite expression trend. Interestingly, four genes (1-1, 12, 14-1, and 23-1) were up-regulated at
3 h and down-regulated at 24 h more than two-fold. Two genes (22-2 and 24-1) and two genes (10-2
and 10-3) were induced and inhibited more than two-fold at both 3 h and 24 h, respectively. Four
genes (22-2, 23-2, 23-3, and 35) were induced to a different extent after osmotic, salt, heat, and cold
treatments, while two genes (10-2 and 10-3) were inhibited under those conditions.

2.8. Expression Analysis of the BrVQ Genes under Phytohormone Treatment

More and more studies have demonstrated that plant hormones play important roles in plant
growth and defense signaling [23-25]. To understand the expression response of the BrV(Q genes
to various plant hormones, we carried out Gibberellin A3 (GAj3), abscisic Acid (ABA) or salicylic
acid (SA) treatments in Chinese cabbage plants. We detected the expression of a total of 44 BrVQ
genes (Figure 9). Upon GA3 treatment, nine genes (1-2, 10-1, 10-3, 11-3, 12, 21-1, 22-1, 22-2, and 23-3)
were up-regulated at 3 h and 24 h, and two genes (9-2 and 11-1) were down-regulated. Additionally,
some genes showed significant differential expression at one time-point compared to the untreated
controls. For example, at 3 h, BrVQ30-2 was down-regulated more than four-fold while BrVQ21-2
was up-regulated at least two-fold. At24 h, BrV(Q33-2 and 34-3 were down-regulated while BrVV(Q23-2
was up-regulated at least 10-fold. In the case of ABA treatment, about 25 BrV(Q genes were induced
at 3 h, and some genes (16-1, 19-1, 22-2, 23-2, 23-3, and 26-1) maintained the up-regulated trend at
24 h, while several other genes (9-2, 14-2, 23-1, and 33-2) showed a down-regulated trend at 24 h.
Apart from these, six genes (1-2, 10-2, 10-3, 11-1, 12, and 32-1) showed down-expression of more
than two-fold at 3h, and then, three genes (10-2, 10-3, and 11-1) kept this tendency up to 24 h, while
the other two genes (1-2 and 12) changed to an up-regulation tendency at 24 h. For SA treatment,
the expression levels of 17 genes were higher than the untreated control at 3 h and 24 h, including
1-2, 4, 10-1, 10-2, 10-3, 11-3, 12, 21-1, 21-3, 22-1, 22-2, 23-2, 26-1, 27, 34-1, 34-3, and 35. BrV(Q23-2
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and BrV(Q23-3, in particular, were up-regulated more than one thousand-fold at 3h. BrVQ9-2 and
BrVQ11-1 were down-regulated two-fold at 3 h and 24 h. The expression of BrV(Q23-1 showed a
trend of initial increase at 3 h, followed by a decrease at 24 h, compared to the untreated control;
however, BrVQ1-1 showed the opposite expression trend.
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Figure 8. Expression analysis of the BrVQ genes under abiotic stresses. Three-week-old plants were
treated with 20% (w/v) PEGgggg, 20 mmol /L. NaCl, 35 °C, and 4 °C for 0, 3, and 24 h before the mature
leaves were harvested. Expression of the BrV(Q genes were normalized to those of BrActin and shown
relative to the expression of CK at 0 h, except for four BrVQ genes (11-2, 15, 20, 30-1), whose expression
levels were related to the expression of CK treated with PEG, NaCl, CK, 35 °C at 3 h, respectively. The
278ACt method was used to calculate the expression of target genes in different tissues. * indicated

that the expression level is significantly different from the value of the control (* p < 0.05, ** p < 0.01).
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Figure 9. Expression analysis of the BrVQ genes under phytohormones. Three-week-old plants were
treated with 200 uM GA3, 100 uM ABA, and 200 uM SA for 0, 3, and 24 h before the mature leaves
were harvested. Expression of the BrV(Q genes were normalized to those of BrActin and shown relative
to the expression of CK at 0 h, except for five BrVQ genes (11-2, 15, 20, 26-2, 30-1), whose expression
levels were related to the expression of CK treated with GA3, GA3, CK, ABA at3 h, and GAjz at 24 h,
respectively. The 2722C* method was used to calculate the expression of target genes in different
tissues. The expression levels of three BrVQ genes (16-1, 23-2, 23-3) are shown by log2. * indicated
that the expression level is significantly different from the value of the control (* p < 0.05, ** p < 0.01).

2.9. Comparison of the Expression Patterns of BrVQ Genes and Their Orthologs in Arabidopsis

To further compare the expression patterns of BrVQ genes and their orthologs in A.thaliana, the
expression patterns of AtVQ genes were extracted from Genevestigator [26,27]. We found that the
expression patterns in different tissues between AtVQ and BrV(Q genes were similar except for some
individual genes (Table S4, Figure 7); for instance, the transcriptional expressions of BrVQ8, BrVQ12,
BrvVQ28, and BrV(Q29 were mainly detected in the roots, while AtVQ8, AtVQ12, AtVQ28, and AtV(Q29
genes could be detected in the roots, stem, leaf, and flower. Additionally, most of the orthologs of the
VQ genes between B. rapa and A. thaliana also have similar expression patterns under abiotic and
hormone treatment. For example, AtV(Q4/BrVQ4 and -10 were induced by cold and SA treatment,
AtVQ11/BrVQ11 were induced by cold and ABA treatment, AtVQ12/BrVQ12, -14, and -21 were
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induced by heat, cold, and SA, AtVQ16/BrVQ16 were induced by salt and SA treatment (Table S5,
Figures 8 and 9). In summary, after comparing the expression patterns of BrV(Q genes and their
orthologs in A. thaliana, we found most, but not all of them, displayed similar expression trends in
some tissues and in their responses to various stresses and hormone stimulus. These results further
explained the speculation that VQ genes may have similar functions in some aspect in two different
species; however, the different expression patterns of VQ ortholog genes between these two species
should also be noticed.

3. Discussion

Previous studies showed that VQ genes play an essential role in plant growth, development, and
response to adverse environment [3,7-14]. However, there is little information on the characterization
of VQ motif-containing proteins in B. rapa. Therefore, the comprehensive analysis of BrVQ genes and
their expression patterns under various abiotic and hormone treatments could be beneficial to further
understanding the mechanisms of influencing plant growth and development as well as applying
them to Chinese cabbage molecular breeding.

3.1. VQ Gene Duplication in Chinese Cabbage

Genome duplication plays an important role in expanding genome content and diversifying
gene function because a duplication event can evolve into genes with new functions [28].
After genome duplication, processes such as nonfunctionalization (duplicated genes are silenced),
subfunctionalization (function is partitioned between the new paralogs), and neofunctionalization
(duplicated genes gain new functions) generally take place so that genes are either lost or
fixed [22,29,30]. Brassica rapa is a mesopolyploid crop that has undergone the whole genome
triplication (WGT) event since its divergence from Arabidopsis thaliana [31]. Since there are 34 VQ
genes in the A. thaliana genome, the predicted VQ genes could number more than 100 in the B. rapa
genome. However, in this study, we found that only 57 VQ genes were retained in the B. rapa
genome, suggesting that there was extensive gene loss during genome duplication [32,33]. Similar
cases were also reported in other B. rapa gene families, such as MADS-box [31], mitogen-activated
protein kinase (MAPK) [34], WRKY [35], etc. Even so, the WGT event has indeed expanded
the quantity of the B. rapa gene family members. We found 53 BrV(Q genes showed a syntenic
relationship with 28 AtVQ genes, implying that the numbers of duplicated BrV(Q genes contain
only approximately twice as many as that of the AtV(Q genes. This result is consistent with a
previous study which showed the triplicated B. rapa genome contains only approximately twice
the numbers in that of A. thaliana because of genome shrinkage and differential loss of duplicated
genes [36]. The expansion of the BrV(Q gene family seems to mainly depend on the segmental
duplication (41/57 genes; 71.9%), while one tandem duplicated pair (2/57 genes, 3.5%) may play
a minor role. A similar phenomenon was reported in the B. rapa expansin superfamily which
contains high segmental duplication (68%) and low tandem duplication (6.3%) [22]. Similarly, in
the A. thaliana genome, a large proportion of gene families also fall into the low tandem and high
segmental duplication class [37]. Besides these, gene duplication can generate gene functional
redundancy, and these duplicate genes could develop divergent patterns of gene expression for stably
maintaining through subfunctionalization [30,38]. For example, the two duplicated MADS-box genes,
BAMADS?2 and BAMADS4 from Brachypodium distachyon, displayed different expression patterns in
all floral organs, and ectopic expression these two genes in Arabidopsis caused different phenotypic
effects between them [39]. In our study, some paralogs showed different expression patterns, such
as BrV(Q22-1/22-2, BrVQ24-1/24-2, and BrV(Q30-1/30-2 in different tissues, and BrV(Q10-1/10-2,
BrVQ11-1/11-3, BrVQ14-1/14-3, and BrV(Q32-1/32-2 in various abiotic and hormone treatments,
suggesting these BrV(Q paralogs might be maintained through subfunctionalization. Additionally,
a similar report was found in the duplicate NAC TF pairs from [40] and AGAMOUS (AG) genes from
Thalictrum thalictroides [41].
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3.2. Function of the VQ Proteins in Plant Growth and Development

Accumulating evidence has demonstrated that the transcription of the VQ genes is regulated
by various endogenous and environmental signals, consistent with their diverse roles in plant
growth and development [42]. The IKU1/AtVQ14 gene is expressed preferentially in the early
endosperm. AtVQ14 mutation reduces endosperm growth and produces small seeds, suggesting
the AtVQ14 gene may be involved in seed development [7]. The loss-of-function mutation of
AtVQ14 results in a decrease of expression of IKU2 (encoding a leucine-rich repeat kinase) and MINI3
(encoding a WRKY family protein), both of which play an important role in seed development [43].
AtVQ29 is expressed at a higher level in the stem than the root, rosette leaf, flower, and silique.
Over-expression of AtVQ29 causes hyposensitivity of hypocotyl growth to far-red and low-light
conditions while its loss-of-function mutants display decreased hypocotyl elongation under the low
intensity of far-red and white light, implying the VQ protein maybe involved in regulating plant
seedling photomorphogenesis [8]. Moreover, over-expression of AtV(Q29 also substantially delays
the blossom of the transgenic plant compared to the wild type [3]. AtVQ8 was located in plastid.
The recessive loss-of-function AtVQ8 mutants exhibit pale-green and stunted-growth phenotypes
throughout the entire life cycle, suggesting a predominant role in chloroplast development or
photosystem assembly [3]. Besides these, over-expression of AtVQ17, AtVQ18, and AtVQ22 also
causes highly stunted growth [3]. In this study, we assessed the expression levels of the BrV(Q genes
in six Chinese cabbage tissues (Figure 7). The result showed that the majority of the genes were
differentially expressed in the tissues that we analyzed. The BrV(Q genes were expressed mainly
in specific organs and tissues, suggesting that they may play important roles in the growth and
development of these organs or tissues. Previous studies have shown that Gibberellin acid (GA3) has
various regulation functions in high plants, such as simulating early seed development and organ
growth and controlling fertilization time [44]. Thus, we also examined the expression profiles of the
BrVQ genes in response to exogenous GAj (Figure 9). The result showed expression of half the BrVQ
genes was induced and some genes were up-regulated by more than two-fold. Besides these, similar
expression patterns of BrVQ genes and their orthologs in A. thaliana were detected in different tissues.
Taken together, these results indicate that the VQ gene family is extensively involved in plant growth
and development.

3.3. Function of the VQ Proteins in Abiotic and Biotic Resistance

Drought, salt, heat, cold, and pathogen stresses are the main factors of reducing crop production.
Many studies have been carried out to understand how tolerance to these stresses is regulated in
plants. In the present study, we found that the majority of the BrVQ genes were induced by PEGggg
and NaCl treatments (Figure 8). Similar results were also found for the VQ genes in Oryza sativa and
Vitis vinifera L. For instance, 22 OsVQ genes [4] and 18 VoVQ genes [6] were up-regulated by drought
stress. However, studies also showed that the up-regulation of some VQ genes may have a negative
effect on abiotic stress resistance. For example, AtV(Q9 expression is strongly induced by salt stress;
however, the over-expression of AtVQ9 rendered plants hypersensitive to salt stress [9]. AtVQ15 was
induced by dehydration and high salinity, whereas its over-expression lines exhibited an increased
sensitivity to both salt and mannitol stresses during seed germination and seedling growth. On the
contrary, the antisense lines were significantly more tolerant to these stresses [10]. We also found that
the BrV(Q) genes were more responsive to heat and cold stresses, where the numbers of induced genes
were more than those under PEG and NaCl stresses.

There are various stress perception and signaling pathways, some of which are special, but others
may cross-talk [45]. Abscisic acid (ABA) is an important phytohormone and plays a critical role in the
response to various abiotic stress signals [46]. Stress-responsive genes could be regulated by either
the ABA-dependent or ABA-independent signaling pathway [45,47,48] and the ABA-dependent
signaling pathway plays an important role in stress-responsive genes under osmotic stress [49]. The
majority of the BrVQ genes either up- or down-regulated more than two-fold upon ABA stress
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compared to the untreated control (Figure 9). Similar results were also observed in the OsVQ
genes upon ABA treatment [4]. In combined analysis of the expression patterns of BrVQ genes
(Figures 8 and 9), we found that some BrV(Q genes displayed similar expression tendency under
abiotic stress and ABA treatment. For example, BrVQ1-2 was down-regulated at 3 h and followed
by an increase at 24 h under PEG and ABA treatments. BrV(Q3-1 showed a down-regulation trend at
3 and 24 h under PEG, NaCl, and ABA treatments. The expression of BrV(Q22-2 exhibited similar
accumulation trends during abiotic stresses and ABA treatment but BrVQ10-2/10-3 showed the
opposite tendency. These results suggested these BrV(Q genes might be involved in stress response
and ABA signaling. Salicylic acid (SA) is an important signal molecule that accumulates under
abiotic and biotic stress [50]. We found that, after SA treatments (Figure 9), the expression of many
BrV(Q genes were up- or down-regulated compared to the untreated control. Similar results were
observed in previous studies for other VQ genes. For example, 34 AtV(Q) genes are induced and
differentially expressed in different tissues in response to SA treatment and pathogen infection [3];
27 OsVQ genes are induced by at least one pathogen infection [4]. Sixteen VoVQ genes were
induced by SA treatment [6]. AtVQ21/MKSI1, as substrate of MPK4, is required for SA-dependent
resistance in the mpk4 mutants, and over-expression of AtV(Q21 in the wild-type plants is sufficient
to activate SA-dependent resistance [11]. The AtVQ23/SIB1 loss-of-function mutants compromised
the induction of some defense-related genes by pathogen infection and SA treatments. However,
over-expression lines increased the expression of defense-related genes upon pathogen infection and
SA treatment [13]. Interestingly, BrVQ21-1/21-2/21-3 and BrV(Q23-1/23-2/23-3 were up-regulated to
a different extent after SA treatment, suggesting they might have similar regulation to that of AtV(Q21
and AtV(Q23, respectively. Furthermore, we found that the responses of VQ genes in Chinese cabbage
and Arabidopsis in the expression levels toward some abiotic stresses and hormone treatments were
similar. Taken together, these results revealed that some VQ members could be actively involved in
regulating plant responses to various abiotic and biotic stresses.

4. Experimental Section

4.1. Plant Materials, Growth Conditions, and Stress Treatments

Chinese cabbage cultivar “Guangdongzao” was used for all experiments. Plant seeds were sown
in a glass Petri dish containing two wet filter papers. After germination, seedlings were transferred
into pots (five seedlings in one pot) containing a growth medium with vermiculite and peat (3:1) and
grown in a greenhouse at 20 + 2 °C with a photoperiod of 16 h light and 8 h dark. Three-week-old
seedlings were used for the abiotic and hormone treatments. For salinity and osmotic treatments,
plant samples were irrigated with 200 mM NaCl and 20% (w/v) polyethylene glycol (PEGgogo),
respectively, until the solution flowed out from the bottom of the pot. For high and low temperature
treatments, plant samples which were grown in the green house were transferred to an incubator
at 35 °C or a refrigerating chamber at 4 °C, respectively. For planthormone treatments, we sprayed
plant leaves with 200 uM Gibberellin A3 (GA3), 100 uM abscisic acid (ABA), and 200 uM salicylic
acid (SA) solutions, respectively, until drops began to fall from the leaves. Then, the fully opened
leaves of seedlings were harvested after 0, 3, and 24 h of the above abiotic and hormone treatments.
For analysis of VQ gene expression in different tissues, plant organs were harvested after the plants
bloomed; plant organs were harvested, including root (R), dwarf stem (DS), old leaf (OL), young
leaf (YL), flower (FL), and flower bud (FLB), in three biological replicates for RNA preparation. All
harvested samples were immediately frozen in liquid nitrogen and stored at —80 °C until use.

4.2. Sequence Retrieval

The VQ motif sequences are listed in the Pfam Database under the motif ID “PF05678” [51].
Chinese cabbage VQ motif-containing proteins were identified by using the local BLASTP in the
Brassica database [17,32]. To confirm the presence of the VQ domain, the web tools from the
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Interpro program [52] and the SMART program [53] were used on the VQ proteins in B. rapa.
The coding sequences (CDS) and amino acid sequences of the B. rapa VQ genes were downloaded
from the Brassica database [17,32]. Thirty-four AtVQ gene and protein sequences from A. thaliana
were retrieved from The Arabidopsis Information Resource (TAIR) [3,54]. Thirty-nine OsVQ gene
and protein sequences from O. sativa were retrieved from the Rice Genome Annotation Project
(RGAP) [4,55]. The homology searches between A. thaliana and B. rapa were performed by using
the Gramene database [19] and the Basic Local Alignment Search Tool (BLAST) [56].

4.3. Identification and Analysis of the VQ Genes and Proteins in Chinese Cabbage

The physical locations of the BrVQ genes on the Chinese cabbage chromosomes were mapped
by using Mapchart 2.2 (Plant Research International, Wageningen, The Netherlands). The BrvVQ
amino acid sequences were aligned by the software DNAMAN 6.0.40 (Lynnon Biosoft, Quebec, QC,
Canada). Intron/exon structure analysis was performed by using the Gene Structure Display Server
(GSDS) [57]. The protein size, molecular weight (Mw), and theoretical isoelectric point (pI) were
computed by using the ProtParam tool [58]. Phylogenetic tree was constructed with MEGAS [59]
on the basis of alignment with the full-length VQ protein sequences using the neighbor-joining
method [60] with 1000 bootstrap replicates [61]. The distribution of the conserved motifs and domains
were detected using the MEME suite [62] and the PlantsP database [20,63]. A MEME search was
carried out with the following parameters: optimum motif width >6 and <300 and the maximum
number of motifs set at 10.

4.4. RNA Isolation and gRT-PCR

Total RNA was isolated from each sample using a Trizol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol. cDNA synthesis was carried out using a PrimeScript™
RT reagent kit with a gDNA Eraser (Takara, Dalian, China). Quantitative real-time PCR (qRT-PCR)
was performed using a SYBR Green Master mix (Takara, Dalian, China) on an IQ5 Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). The qRT-PCR primers for the BrVQ genes and actin
gene are listed in Table S6. The actin gene was used as a constitutive expression control in the qRT-PCR
experiments. Reactions were set up in a total volume of 20 uL containing 10uL of SYBR Green Master
mix, 0.4 uL of each primer (10 uM), 7.2 puL of double-distilled water, and 2 puL of cDNA template. The
PCR cycling conditions comprised an initial polymerase activation step of 95 °C for 1 min, followed
by 45 cycles of 95 °C for 15 s, and 60 °C for 70 s. After each PCR run, a dissociation curve was
plotted to confirm the specificity of the product and to avoid the production of primer dimers. Three
replicates of each sample were conducted to calculate the average Ct values. The relative expression
level was calculated by the comparative 2~22Cf method [64]. Three biological replicates were carried
out and the significance was determined with SPSS software (SPSS 17.0, IBM, Chicago, IL, USA)
(p < 0.05).

5. Conclusions

We identified 57 BrVQ proteins by genome-wide identification, characterization, and expression
analysis. Phylogenetic relationship analysis indicated that the VQ family in Chinese cabbage closely
resembled that of Arabidopsis. Due to genome shrinkage and differential loss of duplicated genes
during the WGT events, the number of the BrV(Q genes is approximately twice of that of the AtVQ
genes. The BrV(Q genes were differentially expressed in six tissues as well as when the plants
were exposed to various abiotic stresses and hormone stimulus. We found some similar expression
patterns existing in BrVQ genes and their orthologs in Arabidopsis. Although some AtV(Q) genes have
been functionally analyzed, other members of VQ remain to be further studied due to VQ gene
structure diversification with the exception of the VQ motif. This information will provide a solid
foundation for further functional studies of Chinese cabbage VQ proteins, and will be useful to better
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understanding the roles that VQ genes play in plant growth and development as well as mediating
the cross-talk between abiotic stresses and hormone signaling.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/
12/26127/s1.
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