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We study the spread ofCOVID-19 across neighbourhoods of cities in the devel-
oping world and find that small numbers of neighbourhoods account for a
majority of cases (k-index approx. 0.7). We also find that the countrywide dis-
tribution of cases across states/provinces in these nations also displays similar
inequality, indicating self-similarity across scales. Neighbourhoodswith slums
are found to contain the highest density of cases across all cities under con-
sideration, revealing that slums constitute the most at-risk urban locations in
this epidemic. We present a stochastic network model to study the spread of
a respiratory epidemic through physically proximate and accidental daily
human contacts in a city, and simulate outcomes for a city with two kinds of
neighbourhoods—slum and non-slum. The model reproduces observed
empirical outcomes for a broad set of parameter values—reflecting the poten-
tial validity of these findings for epidemic spread in general, especially across
cities of the developing world. We also find that distribution of cases becomes
less unequal as the epidemic runs its course, and that both peak and cumulat-
ive caseloads areworse for slum neighbourhoods than non-slums at the end of
an epidemic. Large slums in the developing world, therefore, contain themost
vulnerable populations in an outbreak, and the continuing growth ofmetropo-
lises in Asia and Africa presents significant challenges for future respiratory
outbreaks from perspectives of public health and socioeconomic equity.
1. Introduction
In thewake of the novel coronavirus COVID-19 pandemic that is currently sweep-
ing the planet, there is increasing concern over the impact on large urban slums in
the developing world. This concern primarily stems from the nature of dwelling
arrangements in developing cities, where large proportions of the population live
in densely populated slums and shantytowns [1]. Broadly, slums are defined as
‘communities characterized by insecure residential status, poor structural quality
of housing, overcrowding and inadequate access to safe water, sanitation and
other infrastructure’ [2]. This definition emphasizes the fact that slums house
the poorest and most vulnerable populations in cities. UN-Habitat estimated
that approximately 30% of the urban population lived in slums in 2014, with sig-
nificant geographical heterogeneity—the proportion was 55% for sub-Saharan
Africa and 31% for southern Asia and 21% for Latin America [3]. The sheer
scale of slums is further exacerbated by the density of the population in such
settlements. Table 1 presents some statistics on the density of people living in
some of the largest metropolises of the developing world and shows that these
cities have high average population densities (and high slum populations), but
individual slum neighbourhoods even within these cities often show population
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Table 1. Densities in developing world metropolises and their slum neighbourhoods.

city slum population (%)
average population
density (per km2) large slum

slum population
density (per km2)

Mumbai, India 41 25 771 Dharavi 335 900

Cape Town, South Africa 35 1520 Khayelishta 10 120

Rio de Janeiro, Brazil 22 5231 Mare 30 400

Dhaka, Bangladesh 38 19 501 Korail 205 410

Lagos, Nigeria 70 18 788 Mushin 128 882

Manila, Philippines 31 44 866 Tondo 73 548

Table 2. City and neighbourhood details.

city
nature of sub-city
unit

number of
sub-city units

average population
of sub-city unit

caseload as
of (date)

total
caseload

Mumbai Corporation ward 24 518 432 20 July 2020 99 566

City of Cape Town suburb, township 58 64 483 22 June 2020 38 540

Rio de Janeiro bairro 163 40 261 21 July 2020 61 818

Dhaka City thana 41 161 711 28 June 2020 15 754

Lagos Metropolitan Area local govt area (LGA) 16 1 375 405 7 May 2020 1352

City of Manila district 16 110 429 10 July 2020 3248
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densities an order of magnitude higher, suggesting significant
intra-city heterogeneity in densities of living.

It is important to remember that the high population den-
sities in developing cities are being attained without just
building vertically (unlike cities like New York City, Seoul or
Tokyo), with typical living conditions in slums described as
small single room shacks (approx. 10 m2) with around five
people living in them, situated adjacent to one another and
with up to 10 families sharing a water tap and a pit latrine
[4]. High population density achieved under such conditions,
therefore, creates an environment rife for epidemic spread
through air or water. Our specific concern relates to the
spread of disease through such urban slums, which represent
a critical feature of urbanization in developing nations [1],
especially in the context of infectious disease outbreaks like
COVID-19where viral transmission is aided by increased popu-
lation density, manifested as more frequent person-to-person
contact, crowded housing and unsanitary environments [5,6].

The purpose of this work is twofold. First, we use COVID-
19 caseload data at a sub-city level (ward or neighbourhood or
local government level) to empirically characterize the spread
of the epidemic across urban neighbourhoods in six develop-
ing world metropolises, specifically to understand the nature
of infectious spread at fine-grained levels in contexts where
slums are a salient feature of the urban landscape. Based on
this characterization, we study the systematic differences in
the spread of COVID-19 across slum and non-slum neighbour-
hoods in these cities. Second, we seek to create a network
model of infectious spread through an urban system (city) to
provide a candidate explanation of the empirically observed
variation in caseloads across slums and non-slums. While
there has been an emerging body of field-based studies and
earth observations on COVID-19 in cities [7–10], our network
modelling approach offers a new and different lens through
which to explore the fine-grained spread of infection in
urban neighbourhoods. We discuss the results obtained
in the context of cities in the developing world.
2. Evidence on impact of COVID-19 on cities
and slums

We focus our attention on six specific cities (table 1) because
they are among the largest cities of the global south; are
severely impacted by COVID-19; and have made available
data at the required level of local granularity to enable this
fine-grained analysis. However, even for many of these
cities, data at the sub-city level is not released regularly and
is only available occasionally. We discuss all sources of data
and constraints in electronic supplementary material, appen-
dix S1. Table 2 provides greater detail on the sub-city units
we consider for the analysis.

We first study the distribution of cumulative caseloads
across sub-city units (we will refer to these sub-city units gen-
erally as neighbourhoods) for each of the six cities and find
that cases show an unequal distribution across neighbour-
hoods, with a high proportion of cases contained in a small
proportion of neighbourhoods—the top 20% of neighbour-
hoods (ordered by COVID-19 caseload) account for 31% of
cases in Mumbai, 69% in Cape Town, 58% in Rio de Janeiro,
50% in Dhaka, 65% in Lagos and 55% in Manila, respectively
(figure 1, black). The emergence of such a relationship across
neighbourhoods in all cities under consideration—given the
underlying heterogeneity in terms of numbers of sub-city
units, population scale of units and total caseload—suggests
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Figure 1. Distribution of COVID-19 cases across neighbourhoods. Fraction of cases versus fraction of neighbourhoods. (a) Mumbai. (b) Cape Town. (c) Rio de Janeiro.
(d ) Dhaka. (e) Lagos. ( f ) Manila. Black dots: most recent caseload distribution, dates as per table 2. Red dots: older caseload distributions—Mumbai (30 May), Cape
Town (20 May), Rio de Janeiro (16 June), Dhaka (3 June), Lagos (7 April) and Manila (8 June). The k-index appears to decline over time.
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that the outcome is robust and representative of real
underlying dynamics of infectious spread.

We characterize the unequal nature of this spread across
neighbourhoods using the k-index, which is a measure of the
inequality in the distribution of an attribute across a popu-
lation [11]. In our context, we use the k-index as a measure
of the inequality in distribution of COVID-19 cases across
neighbourhoods in cities. The k-index is best understood as a
metric that generalizes Pareto’s 80–20 rule—an observation
by Italian economist Vilfredo Pareto that approximately 80%
of a nation’s wealth belonged to only approximately 20% of
the population [12]. Given the cumulative distribution of
COVID-19 caseload across neighbourhoods, the k-index (kf )
has the property that kf proportion of neighbourhoods contain
(1− kf ) proportion of the cases and consequently the remain-
ing (1− kf ) proportion of neighbourhoods account for kf
proportion of the cases [11]. We find that, apart from
Mumbai (kf = 0.57), all other cities have much higher kf—
Cape Town, Rio de Janeiro, Dhaka, Lagos and Manila have
kf = 0.75, 0.70, 0.68, 0.74, 0.70, respectively. This results in an
average kf = 0.69 across all cities under consideration, meaning
that while approximately 69% of the neighbourhoods in these
cities account for only approximately 31% of reported cases,
the remaining approximately 31% of neighbourhoods account
for approximately 69% of cases. We also study the time evol-
ution of the distribution of cases in these cities, considering
two points in time that are around a month apart (subject to
data availability as highlighted in electronic supplementary
material, appendix S1), and find that the k-index of the distri-
bution appears to decrease over time for most cities (Mumbai,
Cape Town and Lagos), while it remains consistent for Rio de
Janeiro and Dhaka, and marginally increases for Manila
(figure 1, red).

When we explore the distribution of COVID-19 caseload
across states or provinces within the countries containing
these six cities, we find that average kf = 0.73, which is very
similar to the k-index observed for caseload distribution
within these cities. The distribution of cases across the
states of India, states of Brazil, states of Nigeria, provinces
of South Africa and districts of Bangladesh yield kf of 0.77,
0.65, 0.75, 0.70 and 0.76, respectively (we were unable to
find province-level data for Philippines). Therefore, the distri-
bution of caseload across states/provinces in nations mirrors
the distribution across neighbourhoods in cities, indicating
self-similar behaviour across scales.

Given this unequal distribution, we now explore the
characteristics of neighbourhoods that have the highest case-
loads. Our current understanding of COVID-19 suggests that
physical proximity is an important determinant of local
spread. Therefore, we study caseloads across neighbourhoods
in all six cities, with a focus on differential impacts of COVID-
19 on high-density neighbourhoods with slums, and other
neighbourhoods.

In order to do this, we first map large slum settlements in
these cities to the appropriate sub-city unit and label as ‘neigh-
bourhoodswith slums’ only those sub-city units which showa
high concentration of slums as revealed by slum mapping
exercises (detailed in electronic supplementary material,
appendix S2). It is important to point out that entire neigh-
bourhoods are rarely classifiable as completely being slums
or non-slums (and many neighbourhoods have both slum
and non-slum components), but given the absence of slum
population data at the fine-grained level of urban neighbour-
hoods, this separation into a slum/non-slum dichotomy
allows for an approximate density-based characterization of
urban neighbourhoods, and enables us to study the nature
of the spread of the epidemic within cities.

The resulting list of neighbourhoods with slums across the
six cities is: 11 out of 23 wards in Mumbai (G-North—contain-
ing the Dharavi slum, G-South, F-South, L, N, H-East, M-East,
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Figure 2. Distribution of COVID-19 cases across neighbourhoods with slums and other neighbourhoods. Red columns: neighbourhoods with slums. Blue columns:
non-slum neighbourhoods. (a) Population density of slum and non-slum neighbourhoods shows that slum neighbourhoods have higher densities, on average, across
all cities. (b) COVID-19 cases per million population across slum and non-slum neighbourhoods. Slum neighbourhoods are more affected in all cities, except Rio de
Janeiro. (c) COVID-19 cases per square kilometre across slum and non-slum neighbourhoods. In all cities, slum neighbourhoods show much higher spatial density of
cases than non-slum neighbourhoods.
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M-West, K-East, K-West, P-North); eight out of 58 suburbs/
townships in Cape Town (Khayelitsha, Mitchells Plain, Gugu-
lethu, Delft, Philippi, Nyanga, Langa, Mfuleni); 41 out of 163
bairros in Rio de Janeiro (Rocinha, Jacarezihno, Mare, Cidade
de Deus, Complexo do Alemao, Mangueira, Penha, Acari,
Tijuca, Costa Barros, Ramos, Benfica, Pavuna, Encantado,
Lins de Vasconcelos, Manguinhos, Madureira, Inhaumos, Rio
Comprido, Iraja, Anchieta, Vigario Geral, Guadalupe, Cordo-
vil, Piedade, Jacare, Parada de Lucas, Copacabana, Tomas
Coelho, Magalhaes Bastos, Realengo, Bangu, Jacarepagua,
Andarai, Bras de Pina, Honorio Gurgel, Engenho Novo, Tur-
iacu, Padre Miguel, Coelho Neto, Engenho de Dentro); 12 out
of 41 thanas in Dhaka (Mirpur, Gulshan—containing the
Korail slum, Mohammadpur, Jatrabari, Lalbagh, Sutrapur,
Chak Bazar, Gendaria, Hazaribagh, Kotwali, Kamrangir
Char, Shyampur); five out of 16 LGAs in Lagos (Agege, Ajer-
omi-Ifelodun, Mushin, Somolu, Lagos Island and Lagos
Mainland—containing the floating Makoko slum); and two
out of 17 districts in Manila (Tondo and San Andres).

We find, in line with expectations, that average population
densities of neighbourhoods with slums are much higher
than other neighbourhoods (figure 2a, neighbourhoods with
slums—red, other neighbourhoods—blue). When we assess
the distribution of cases across neighbourhood types taking
into account population density, we find that caseload
per capita represented by caseload per million population
(figure 2b) and caseload per unit area (km2) (figure 2c) are
systematically higher in neighbourhoods with slums than in
non-slum neighbourhoods across cities.
The only exception here is Rio de Janeiro, where we find
that neighbourhoods with slums have a lower caseload per
capita than non-slum neighbourhoods; this should, however,
be seen in light of the many concerns have been raised about
testing andmeasurement of COVID-19 cases in Brazil’s favelas
[13–15]. A survey of Rio de Janeiro’s favelas estimated that the
number of people infected by COVID-19 in these slums could
be 30 times official estimates, and that approximately 25% of
those tested in the city’s largest favela, Rocinha, were infected
[16,17]. Even in the other cities in our analysis where cases
per capita are higher in slums with neighbourhoods (as
expected), there could be significant undercounting of case-
loads in slums—for instance, a sero-survey across three
wards in Mumbai found that approximately 57% of slum resi-
dents had developed antibodies to COVID-19 as compared to
only approximately 16% non-slum residents [18]. Overall, this
finding suggests that neighbourhood population density is
a critical mediator of the dynamics of infectious spread in a
city, and that the urban poor in slums are starkly worse off
in terms of epidemy outcomes.

Given this empirical context, we present a computational
modelof the spreadofatypical respiratoryepidemic inanetwork
representing a city-system composed of slum and non-slum
neighbourhoods. Our objective is twofold: first, we seek to test
whether the model provides a general explanation for the
empirically observed systematic variance in infection caseloads
across neighbourhoods (as in case of COVID-19); and second,
to explore the evolution of cumulative and peak caseloads
across neighbourhoods through the duration of the epidemic.



Table 3. Parameter values and initial conditions.

values

parameters

population—number of network nodes, N 10 000

number of edges from new node to extant nodes, m (for

Barabási–Albert graph)

50

number of neighbourhoods, H 20

probability of node to node transmission, p 0.004

number of iterations (days) in one simulation of model Tf 120

number of simulations 100

initial conditions

number of susceptible nodes, S(0) 9999

number of infectious nodes, I(0) 1

number of recovered nodes, R(0) 0
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3. Model definition and specifications
Wemodel a network of a city consisting ofN nodes, with each
node representing an agent in the city, andH neighbourhoods
among which agents are distributed. While we lack empirical
data on the structure of real networks of physical proximity in
cities of the developingworld, there is a growing bodyofwork
indicating that highly connected nodes or ‘super-spreaders’
are disproportionately important in the transmission of even
influenza-like illnesses [19–22]. Population-level estimates of
the basic reproduction number for an epidemic assume homo-
geneous populations, but it has been demonstrated that many
epidemics are better described by heterogeneous transmission
where certain individuals infect an unusually large numbers
of secondary contacts (super-spreading events), while other
individuals infect very few or none [21,22]. Emerging evidence
from the COVID-19 pandemic suggests that super-spreading
is a salient mechanism in the spread of this virus as well
[23–25]. Therefore, we propose to explore the dynamics of
transmission on a scale-free Barabási–Albert (BA) network
[26]. The BA network with N nodes is generated by attaching
new nodes with m neighbours, such that the links of a new
node show preferential attachment for existing nodes with
high degree. This results in a degree distribution where a
few nodes have very high degrees, while many nodes have
much lower degrees. We also test the robustness of model
outcomes for sensitivity to network type in electronic
supplementary material, appendix S3.

Our interest is in studying differential impacts across slum
and non-slum neighbourhoods described by a wide variation
in population density, and we simulate such density differ-
ences as differences in the average degree of nodes in each
neighbourhood of the network. That is, we model connected-
ness of a neighbourhood as the average degree of nodes in a
neighbourhood.We construct neighbourhoods in the network
by ordering all N agents based on node degree and then allot-
ting each of them in order to the H neighbourhoods in the city
system, such that the first neighbourhood is filled with the first
set of orderedN/H agents, followed by the second neighbour-
hood and so on, until the final neighbourhood is filledwith the
last set of N/H agents. Given the heterogeneity in neighbour-
hood evolution across cities, we do not assume a systematic
positive relationship between neighbourhood populations
and population densities—indeed, we find no evidence of a
systematic relationship between population and density
across the six cities under consideration.

In the absence of any reliable data on proximate daily con-
tacts in the urban neighbourhoods of developing cities, creating
neighbourhoods in this way ensures that average degree of
nodes across neighbourhoods shows significant heterogeneity.
It also means that nodes in neighbourhoods with higher aver-
age degree are connected to many nodes both within and
outside of their neighbourhoods—this is meaningfully repre-
sentative of the urban poor in cities of the developing world,
who live in densely populated slums and have high intercon-
nectedness (unavoidable physical proximity) within the slum,
but work largely in other non-slum neighbourhoods, including
as essential services workers such as sanitation and health
workers. This algorithm also means that neighbourhoods
with high average degree correspond only to high-density
slum neighbourhoods, and not high-density neighbourhoods
in general—for instance, neighbourhoods that are well-off and
where high densities are obtained by building vertically are
represented in our model as neighbourhoods with lower
average node degree (lower connectedness), which is a more
likely representation of their daily contact networks.

We use the three compartment susceptible–infected–
recovered (SIR) model as the basis for an agent’s progression
through the duration of the epidemic [27]. Agents start out
in the susceptible (S) compartment until the time they are
infected, at which point they fall into the infected (I ) compart-
ment. After spending a specified duration of time being
infected, when they spread the infection in the network, they
move to the recovered (R) compartment, at which time they
are immune—neither infective nor susceptible to the infection
again. At t = 0 days, we have one random node that is infected
(I ), while the remaining N− 1 nodes are susceptible (S).

At each time step t, the dynamics of infectious spread in
the network are modelled as follows: first, each infected (I )
agent spreads the disease to each of its susceptible (S) neigh-
bours in the network with transmission probability p. Given
a node i with q neighbours (or a contact rate of q), the
average daily infections caused by this node, or its daily
transmission rate (βi), is the product of the transmission prob-
ability and the contact rate of the node, βi = pq. Second, each
infected agent moves into the recovered (R) compartment if it
has spent 1/γ days in the infected (I ) compartment. γ is
defined to be the recovery rate and remains constant through
the dynamics. Like many other studies of COVID-19 [28–31],
we use the canonical SIR model to explore dynamics of
spread, but other variations such as the SEIR model (which
includes an ‘exposed’ compartment containing individuals
who have been infected but are not yet themselves infectious)
have also been used to model the infection [32–34]. The quali-
tative nature of outcomes presented here would remain
unchanged irrespective of the model chosen, though specific
details such as timescales of the epidemy would change.

We propagate these dynamics over a period of t = Tf days
and study the distribution of cases across the H neighbour-
hoods over time, as well as the current and cumulative
caseloads across neighbourhoods over time. Table 3 provides
the complete set of parameter values and initial conditions
for the simulations.

As indicated earlier, the SIR dynamics are dependent on
the transmission probability, which we simulate as p = 0.004
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in the base case, and the contact density of nodes, which give
the BA network structure, can show significant variation. For
instance, a node with q = 50 connections, and with γ = 0.1, will
produce an average of pq/γ = 2 infections.We also simulate the
dynamics for p = 0.002 and p = 0.006 to study system outcomes
for varying p. Similarly, whilewe chooseN = 10 000 andH = 20
to define population and neighbourhoods in the base case, we
also explore epidemy behaviour by varying systempopulation
across three orders of magnitude (N = 1000 andN = 100 000) as
well as neighbourhood counts (H = 10 andH = 40), to ascertain
whether observed outcomes are robust across system size
specifications. Additionally, while the BA graph offers us a
reasonable network structure with super-spreader nodes to
mimic epidemic spread, we study the robustness of outcomes
to network type by simulating dynamics on an Erdős–Rényi
random graph [35]. Finally, we also vary the algorithm to
populate neighbourhoods and create varying neighbourhood
density profiles to ensure that model outcomes are not simply
artefacts of the neighbourhood population mechanism used
here. These varying densities could be seen as being reflective
of decreasing contacts on account of non-pharmaceutical inter-
ventions such as physical distancing and lockdown. Detailed
results for the various scenarios are presented in electronic
supplementary material, appendix S3.
4. Results
The evolution of cumulative fraction of caseload across neigh-
bourhoods clearly shows that the rate of case growth
increases with population density (figure 3a). This is in keep-
ing with the empirical finding that once epidemy dynamics
are underway and the infection has reached higher density
neighbourhoods, caseload per capita is higher in high-
density neighbourhoods. For instance, at day 10 of the
dynamics, the densest neighbourhood in our network (with
average node degree, q = 421) has a cumulative caseload of
4.7% (as a fraction of its population), while the lowest density
neighbourhood (with average node degree, q = 50) is at 0.5%,
and all other neighbourhoods with densities in between these
extremes show caseloads between 0.5% and 4.7% (figure 3a).
The corresponding caseloads on days 20 and 30 are 66% and
96% for the densest neighbourhood, and 24% and 71% for the
lowest density neighbourhoods.

To explore these dynamics analytically, consider a neigh-
bourhood with Nh nodes, each with degree q. Given p and q,
at t = 0, the average daily transmission rate is β = pq. At the
end of a time interval t, let fS(t) be the fraction of population
still susceptible and fI(t) the fraction that has ever been
infected until t, such that fS(t) = 1− fI(t). fI(t) is given by
(equation (4.1)):
fIðtÞ ¼

1
Nh

, at t ¼ 0

fI(t� 1)þ ðbfI(t� 1)(1� fI(t� 1)), for 1 � t , 1=g

fI(t� 1)þ ðb fI(t� 1)� fI t� 1
g

� �� �
(1� fI(t� 1)), for t � 1=g

8>>>><
>>>>:

: ð4:1Þ
The effective transmission rate of the epidemic in the
neighbourhood, Re(t), is the average number of people
infected by an individual in the neighbourhood at time t:

Re(t) ¼ pfS(t� 1)q
g

¼ bfS(t� 1)=g : ð4:2Þ

Using this simple construct, we consider two neighbour-
hoods—a slum with average degree q1 and a non-slum with
average degree q2 (q2 < q1)—with probability of transmission p
and a single node infected at t = 0. The evolution of Re(t)
shows that the slum has a much higher effective transmission
rate in the early part of the dynamics due to higher q (figure 3b).
This results in sharp increase in caseloads in this period, causing
a simultaneous sharp decline in Re(t) due to the coevolution of
susceptible and infected populations. The non-slum neigh-
bourhood has a lower effective transmission rate to begin
with and shows a more gradual increase in cases. The overall
effect is that higher density results in higher caseloads per
capita in the slum as against the non-slum (figure 3b), which
offers a possible explanation for the empirical observations
from developing world cities where case density increases
with neighbourhood population density (figure 2b,c).

We also study the distribution of cases across neighbour-
hoods and find that, just as observed empirically, there is an
unequal distribution of caseload across neighbourhoods
during the dynamics (figure 4a). However, as the epidemic
runs its course, the inequality in distribution progressively
reduces—figure 4a plots the distribution of caseloads at
different points in time and we see that inequality in distri-
bution of cases is greatest at t = 10 when kf = 0.62, following
which there is continuous reduction in inequality until t = 50
when kf = 0.51, at which point the epidemic has ended. For
the epidemic to end, it infects as much of the population as is
required for the effective transmission rate to summarily
decline below 1; therefore, even as dense slum neighbourhoods
see their caseloads rise steeper and peak earlier (figure 4b), thus
yielding higher inequality in case distribution, lower density
non-slums are not immune to the epidemyandwill see delayed
but increasing caseloads resulting in declining inequality in the
distribution towards the end of the epidemic (figures 3a,b and
4a). Our empirical findings from Mumbai, Cape Town and
Lagos conform with this modelled outcome, though Rio de
Janeiro, Dhaka and Manila do not (figure 1). More surveys
and effective ongoing infection surveillance in urban slums
of the global South will be required to better understand the
true nature and extent of spread in these neighbourhoods,
beforewe drawmeaningful conclusions about these discrepan-
cies. It is also possible that the difference in responses to policy
measures (such as physical distancing) in slums and non-slums
could be yielding varying impacts on the networks of physical
contacts in these vastly different settings, and these variations
could be pertinent in understanding discrepancies between
the model and observation. We discuss the nature of these
differences in the Discussion section.

Our model suggests that both in terms of cumulative case-
load outcomes at the end of the epidemic (figure 3a), as well as
(higher and earlier) peak caseloads during the epidemic
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(figure 4b), slum neighbourhoods are much worse off than
non-slums in an epidemic. We find that the nature of outcomes
described here is robust to a wide range of model parameter
choice, such as population of the city system (N ), probability
of transmission ( p) and number of neighbourhoods (H ), as
well as changes in network structure and mechanism of popu-
lating neighbourhoods (detailed results in electronic
supplementary material, appendix S3).

In summary, our modelled outcomes are in broad agree-
ment with the empirical observations, suggesting that the
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nature of these outcomes is more generally reflective of
epidemic spread in cities with slums.
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5. Discussion
Urban slums reflect increased demographic growth,
migration, population densities and poverty, which are the
main processes found to be linked with prevalence of infec-
tious diseases [36]. There is evidence to suggest that slum
populations scale super-linearly with city size [37], meaning
that larger cities have more than proportionally larger slums.
It is anticipated that there will be over 40 megacities in the
world by 2030 and most will be located in the developing
world [38]. The evolution of larger slums and higher popu-
lation densities will mean that slums will continue to be at
the forefront of epidemics, both in terms of public health
and socioeconomic outcomes.

Our findings suggest that slum populations are among the
most vulnerable urbanpopulations in an outbreak.However, as
pointed out earlier, there appear to be significant lacunae in our
understanding of the true nature of spread within slum neigh-
bourhoods due to a lack of adequate testing in these
environments. It is only through limited surveys are we able
to estimate the extent of difference in the infection rates between
slums and non-slums. Given this high-risk profile of slums, it is
imperative that cities develop better disease surveillance and
testing strategies for slums, and also a deeper understanding
of the effects of factors such as health policy and community
on epidemy outcomes in such neighbourhoods [39].

We find that both in terms of peak and cumulative cases,
slum neighbourhoods are more vulnerable than non-slum
neighbourhoods in cities, given the nature of their physical
contact networks. Even as strategies such as physical distan-
cing and lockdown are being adopted to combat the spread
of COVID-19, it important to consider the fact that slum popu-
lations access and use common public toilets and water
sources on a daily basis, meaning that these measures to
combat spread become ineffective in the face of basic human
needs. Essentially, slum dweller networks cannot exclude
these forced, physically proximate daily connections associ-
ated with access to such basic needs, and that their networks
of physical proximity cannot be reduced to levels feasible for
non-slum households. For instance, using Census of India
2011 data, we find that the population densities per communal
toilet in the slums of Mumbai, Hyderabad and Pune are 411,
418 and 889, respectively; and the population densities per
public water tap or hydrant in the slums of Kolkata, Bengaluru
and Jaipur are 94, 112 and 121, respectively. Recent studies on
the spread of COVID-19 in Indian cities have reiterated that
slum residents have been unable to effectively follow physical
distancingmeasures [7,8,40]. Therefore, long-term solutions to
containing epidemic spread in slum environments lies in
ensuring that slum settlements are provided with functioning
environmental infrastructure for piped running water and
private sanitation, waste management and electricity, in
addition to basic health infrastructure such as primary
healthcare facilities [41–43].

The immediacy of the crisis and its current impacts on
slum settlements requires health departments in developing
countries to prepare specific guidelines for physical distancing
in high-density settlements that are clearly communicated and
can be implemented by slum dwellers, so that their exposure
risks are minimized [44]. Other immediate measures mooted
to protect residents of slum settlements include institution of
slum emergency planning committees, guarantee of payments
to the poor, implementing strategies for healthcare, mobility,
and solid waste collection, and training and deployment of
community health workers [45,46].

Despite these constraints in slum neighbourhoods, it is
important to point out that community action in conjunction
with targeted state intervention has meant that some slum
neighbourhoods have been able to effectively counter the
spread of infection in the current COVID-19 pandemic.
Especially relevant in this case is the case of the Dharavi
slum inMumbai where a sustained programme of community
engagement, proactive door-to-door screening in high-risk
zones, mobilizing private practitioners and providing basic
medical equipment (PPE kits, pulse oximeters, thermal scan-
ners) enabled the local administration to rein in the spread
of the virus [9]. While examples such as this offer a potential
blueprint for containment in urban slum neighbourhoods,
sustained action will be required to ensure that urban slums
are better prepared and less vulnerable to future epidemics.
6. Conclusion
We study the evolution of the COVID-19 epidemic across
neighbourhoods within a city, for a set of metropolises in the
developing world. We find an unequal distribution of cases,
with a small numberof themost densely populatedneighbour-
hoods containing a significant proportion of total caseload
across all cities, as illustrated by a kf ¼ 0:69 across these
cities. This finding appears to hold across scales, with national
case distribution across these states/provinces also displaying
similar inequality in case distribution. We also find that neigh-
bourhoods with the highest case densities—both in terms of
population and area—contain the largest slums in these
cities, and that consequently the urban poor in slums are at
the highest risk in this epidemic. Using a simple network
model, we simulate the emergence of differential outcomes
for slums and non-slums in a city. Model outcomes replicate
both unequal distribution of cases as well as higher case
densities in high-density neighbourhoods, suggesting that
these outcomes are reflective of outbreaks in general for cities
with slums. In addition, simulations also predict that as the
epidemic progresses, distribution of cases across neighbour-
hoods becomes less unequal, and that both peak caseloads
and cumulative caseloads are worse for slum neighbourhoods
vis-à-vis non-slum neighbourhoods in cities.

Given these outcomes, we discuss the need for long-term
investments in creating sanitary environments in slums, as
well as shorter term measures including community mobiliz-
ation to control the spread of COVID-19 in dense urban
settlements. We also discuss the need for better ongoing
data on the spread of infections in urban slums.
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