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Abstract: Basal-like breast cancer (BLBC) is an aggressive molecular subtype that represents up to
15% of breast cancers. It occurs in younger patients, and typically shows rapid development of
locoregional and distant metastasis, resulting in a relatively high mortality rate. Its defining features
are that it is positive for basal cytokeratins and, epidermal growth factor receptor and/or c-Kit.
Problematically, it is typically negative for the estrogen receptor and human epidermal growth factor
receptor 2 (HER2), which means that it is unsuitable for either hormone therapy or targeted HER2
therapy. As a result, there are few therapeutic options for BLBC, and a major priority is to define
molecular subgroups of BLBC that could be targeted therapeutically. In this review, we focus on
the highly proliferative and anti-apoptotic phenotype of BLBC with the goal of defining potential
therapeutic avenues, which could take advantage of these aspects of tumor development.

Keywords: basal-like breast cancer; BLBC; triple-negative breast cancer; TNBC; targeted therapies;
cell cycle; apoptosis

1. Basal-Like Breast Cancers Are a Clinical Challenge

Breast carcinomas are a leading cause of cancer mortality and morbidity worldwide with
approximately 2.1 million diagnoses estimated in 2018 [1]. Molecular phenotyping based on gene
expression profiling has revealed great heterogeneity among breast cancers. Several distinct molecular
subtypes, each associated with different clinical outcomes, have been identified by array and RNA-seq
studies, and include: Luminal A and B, ERBB2 overexpression (the gene for the HER2/Neu protein),
and normal breast-like and basal-like breast cancers (BLBCs) [2,3]. BLBCs do not generally express
ESR1 (the gene encoding the estrogen receptor (ER)) or PGR (the gene encoding progesterone receptor
(PR)) and frequently lack ERBB2 expression, but do express basal cytokeratins (CK), KRT5 and
KRT6 [4]. Unfortunately, the general lack of hormone and HER2 receptors makes this breast cancer
subtype unsuitable and unresponsive to endocrine and HER2-targeted therapies, such as tamoxifen,
aromatase inhibitors, and trastuzamab.

BLBC accounts for up to 15% of breast tumors and is commonly diagnosed in pre-menopausal
women under the age of 40, women of African descent, and carriers with defects in the familial
breast cancer gene, BRCA1 [5]. The BLBC subtype is characterized by a shorter survival following
progression to metastatic disease compared to luminal subsets. Standard care for patients with
BLBC includes surgery followed by post-operative (adjuvant) radiotherapy and chemotherapies
(e.g., anthracycline and taxane regimens), often with severe side effects that impact quality of life
(reviewed elsewhere [6,7]). Unfortunately, these tumors have a high risk of recurrence via the
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development of chemoresistance, among other mechanisms [8]. BLBCs also have a higher propensity
for cerebral and lung metastases compared to the luminal subtypes [4]. This pattern of dissemination
complicates and limits further surgical intervention as well as bringing issues with the diffusion of
drugs through the blood brain barrier.

2. BLBC: A Heterogeneous Group of Breast Cancers

BLBC is as distinct to other breast cancer subtypes as it is to cancers that originate in different
organs [9]. One of the most closely related cancer subtypes to BLBC is high grade serous ovarian cancer
(HGSOC) [9], and the significant co-occurrence of both tumor types in patients suggests that they
could have a common etiology [10]. Among other similarities, both BLBCs and HGSOCs have high
rates of mutation in BRCA1 and TP53, and elevated levels of c-MYC (the transcription factor protein
myelocytomatosis oncogene cellular homolog) and AKT (the protein kinase AKT8 virus oncogene
cellular homolog) [9]. Mutations in BRCA1, the product of which recruits DNA repair complexes to
sites of DNA damage, is associated with an increased likelihood of developing breast and ovarian
cancer [11]. Strikingly, more than 70% of BRCA1 mutation carriers are likely to develop early-onset
BLBC based on gene expression profiling studies [12]. Dysfunction in the BRCA1 gene results in
ineffective homologous recombination, and in addition, defects in the homologous recombination
repair mechanisms can also be present in BLBCs that do not present with BRCA1 mutation, a concept
termed ‘BRCAness’ [13]. Nearly all BLBCs that harbor BRCA1 mutation also have TP53 mutation [14].
In mouse models, concurrent Tp53 and Brca1 mutations lead to increased tumorigenesis, and these
two aberrations may help to precipitate BLBC [15].

While gene expression profiling has helped define the BLBC subtype of breast cancers,
this description is not used routinely in the clinic [2]. Clinicopathological classification of breast cancers
using immunohistochemistry distinguishes the ER+ and HER2+ subtypes and places those tumors
that cannot be defined further into a group that has become known as triple-negative breast cancer
(TNBC), based on a low level of immunohistochemical signal for ER, PR, and HER2. Of breast cancers,
10–15% have a triple-negative phenotype, and represent 50% of all breast cancer deaths [16]. TNBC is
not a specific subtype based on a positive distinctive marker, and as a result, confusion arises when
it is assumed to be so. The immunohistochemical definition of TNBC is often used interchangeably
with the gene expression based definition of BLBC, but comparative studies show not all TNBCs
have basal-like patterns of gene expression, with a 75% overlap in these definitions [17] (Figure 1).
For the purposes of this review, when defining in vitro models of BLBC and TNBC, we have used the
molecular classification described by Prat et al. [18].

A more accurate pathological definition of BLBC, with specific reference to groups of cancers
within this subtype with distinct clinical behaviors, could permit the development of targeted therapies
for this subtype [5]. Several studies have investigated different immunohistochemistry markers to
define BLBC [19]. Independent tissue microarray studies have confirmed that breast cancers with high
levels of basal CK5/6, found in the myoepithelial layer of breast ductal epithelium, are associated
with BLBC [20,21], and CK14 is also present in up to 41% of basal-like tumors [22]. The levels of
epidermal growth factor receptor (EGFR) are highly correlated to BLBC, and high expression varies
from 39–54% in several studies [19,23]. c-Kit (CD117) is a transmembrane protein that regulates cell
survival, proliferation, and differentiation, and c-Kit levels in BLBC are associated with a significantly
worse prognosis [24]. Finally, the anti-apoptotic protein, αB-crystallin, is detected in 45–80% of
BLBC, and is only rarely detected in other subtypes [25]. Of these markers, combining CK5/6, EGFR,
ER, and HER2 has been shown to identify BLBC with 100% specificity and 76% sensitivity [19,26],
demonstrating a superior prognostic value than merely classifying BLBC under the TNBC umbrella.
The addition of PR, CK14, c-Kit, and αB-crystallin as markers for the basal-like phenotype could lead
to advances in the clinical identification of BLBC [5,19].
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Figure 1. Defining BLBC. Schematic diagram of the defining features of triple-negative breast
cancer (TNBC), basal-like breast cancer (BLBC) and high grade serous ovarian cancer (HGSOC).
Orange upward arrows indicate an increase in expression; orange downward arrows indicate a decrease
in expression.

3. Identifying Key Hallmarks of BLBC that May Yield New Targets for Therapy

The poor survival profile and inability of BLBC to respond to anti-estrogen or anti-HER2
therapies has led researchers to search for BLBC driver mechanisms that could be targeted with
new therapeutic regimes. Hampering this search is the fact that the genomic characterization of BLBC
has revealed at least five subsets with basal-like characteristics [27] and significant heterogeneity
with multiple potential driver genes and therapeutic vulnerabilities [28]. Through use of the current
immunohistochemistry-based classification system for BLBC it will be difficult to implement many
of these findings. Molecular markers that are validated in other cancer types will be the exception
to this, for example, programmed death-ligand 1 (PD-L1) expression to indicate the application
of immunotherapy. Approximately 19% of BLBCs express PD-L1 on associated immune cells [29],
and in the recent IMpassion130 trial of advanced TNBC, patients treated with atezolizumab (a PD-L1
antibody) in combination with nab-paclitaxel had a progression free survival of 7.5 months compared
to 5 months with nab-paclitaxel alone [30]. While this small subset of BLBC patients may benefit
from immunotherapy in the near future, the majority of patients will still receive standard of
care chemotherapy.

The complexity of the genomic landscape of BLBC suggests that an important step forward could
be to target common phenotypes within BLBC rather than specific molecular aberrations. BLBC has
the highest proliferative index of all the breast cancers [3,31], presenting with the highest percentage
of Ki67 staining [32,33] and a high mitotic count [34]. This heightened proliferative phenotype
is associated with the rapid presentation and growth of BLBC [35]. Excess proliferation can be
counteracted by increased apoptosis. Apoptotic cells and heightened caspase-3 activity are commonly
detected in BLBC [36,37], but BLBCs have acquired the ability to subvert cell death by engaging
numerous anti-apoptotic protective mechanisms. Two of the markers that can be used to identify
and define BLBC, αB-crystallin and EGFR, have, ultimately, pro-survival outcomes. αB-crystallin
suppresses the pro-apoptotic protease caspase-3, resulting in resistance to mitochondrial-dependent cell
death [23]. Similarly, EGFR plays a role in resistance to cell death as its downstream target, the enzyme,
phosphatidylinositol-3-kinase (PI3K), is frequently activated in BLBC [38]. The PI3K/AKT/mammalian
target of rapamycin (mTOR) pathway directly promotes survival via modulation of the key members of
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the B-cell leukemia 2 (BCL-2) family of pro-apoptotic and pro-survival proteins [39]. The deregulated
activation of αB-crystallin, EGFR, PI3K, and other essential signaling pathways involved in cancer cell
survival are a signature hallmark leading to the invasive and apoptotic-resistant phenotype associated
with BLBC [23].

In this review, we analyze the growing body of literature that describes the disrupted proliferative
and apoptotic pathways in BLBC, highlighting some of the most recent biomarker and molecular
studies. We further discuss the potential to apply newly approved therapies that target the cell cycle
(e.g., CDK4/6 inhibitors) and apoptosis (e.g., BH3 mimetics).

4. Proliferative Landscape

Cell proliferation is a tightly regulated process that is essential for the growth, development,
and regeneration of eukaryotic organisms [40]. Unrestrained cellular proliferation is a fundamental
feature of carcinogenesis, which manifests as changes to the regulation of the core machinery that
drives proliferation, the cell cycle [41]. The cell cycle consists of two distinct phases: interphase,
which comprises G1, S, and G2 phases, and mitosis (M phase), where cell division occurs. Cell cycle
progression is regulated by serine/threonine cyclin-dependent kinases (CDKs) [42] that are activated by
cyclins specific to various phases of the cell cycle (Figure 2). Cell cycle entry and proliferation is initiated
in the G1 phase when CDK4 and CDK6 form heterodimers with D-type cyclins, phosphorylating and
inactivating the retinoblastoma (RB) tumor suppressor protein [43–45]. The cyclin D-CDK4/6 complex
activates E2F transcription factors, promoting the expression of E-type cyclins, which then dimerize
with CDK2. Cyclin E-CDK2 complexes further phosphorylate RB as well as other factors essential for
DNA synthesis (S phase) [46,47]. During the later stages of DNA replication, CDK2 is activated by
cyclin A to facilitate transition into the G2 phase. CDK1 subsequently forms a complex with A-type
cyclins at the end of interphase to facilitate the onset of mitosis. Cyclin A is degraded following nuclear
envelope breakdown in prophase, promoting the formation of cyclin B-CDK1 complexes that are
responsible for driving cells through mitosis [48].
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Figure 2. Dysregulation of the cell cycle machinery in BLBC. Schematic view of the cell cycle.
Each phase of the cell cycle is regulated by cyclin-dependent kinases (CDKs), their regulatory protein
partners (cyclins) and CDK inhibitors. Many proteins in the G1/S phase transition of the cell cycle
are specifically dysregulated in BLBC. Orange upward arrows indicate an increase in expression;
orange downward arrows indicate a decrease in expression.
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5. Deregulated Cell Cycle Control in BLBC

BLBC has an increased mitotic index and high rate of proliferation [49], and a major cause of this
is the disruption of RB to allow cells to progress without impediment from G1 to S phase. RB loss is
prevalent across all ER- tumors [50,51] and is particularly high in BLBC, where up to 76% of tumors
show loss of heterozygosity (LOH) of the RB1 gene encoding RB [52]. RB1 LOH probably acts in concert
with the methylation of RB, which is a frequent event across all TNBC [53], and RB1 LOH in BLBC is
associated with worse prognosis [52]. The p16 inhibitor, which selectively inhibits CDK4 and CDK6,
is also expressed at high levels in BLBC with RB loss [54]. This is because cells with a compromised
RB function initiate a negative feedback loop to inhibit CDK4 with increased expression of the p16
inhibitor. The loss of RB is implicated as an early step in BLBC as lesions of ductal carcinoma in situ
often progress to basal-like breast cancer coincident with high p16 and Ki67 [54].

CCND1 (encoding cyclin D1) is often not amplified and is at lower levels in BLBC [54],
consistent with cyclin D1 not being required for phosphorylation of RB [55]; however, CCND3 (cyclin
D3) is frequently amplified [56], and residual disease following chemotherapy of a basal-enriched
cohort of TNBC shows amplification of CCND1, CCND2, and CCND3, suggesting that the cyclin D
family provides a survival advantage in drug-resistant cancers [57]. Both CDK4 [58] and CDK6 [56,59]
are amplified and overexpressed in BLBC, and each is associated with poor overall survival [59].
The high expression of the components of the cyclin D-CDK4/6 complex and their association with
poor prognosis is surprising given the canonical role of CDK4 and CDK6 in RB phosphorylation.
This may be explained by the discovery of other critical targets for CDK4/6 in breast cancer growth
and metastasis. CDK4/6 inhibition in BLBC reduces the CD44+/CD24+ self-renewing population and
blocks tumorsphere formation [58], it reduces glucose metabolism [60], and CDK4/6 phosphorylates
deubiquitinating enzyme 3 (DUB3) to promote SNAIL-mediated epithelial to mesenchymal transition
and metastasis [61].

As well as the loss of RB or increase in CDK4/6 activity, cells find other mechanisms to
amplify G1/S transition. For example, the E2F5 transcription factor, which is normally released
after RB phosphorylation, is significantly up-regulated by amplification in a subset of BLBC, and is
associated with an increase in Ki67 staining and shorter disease-free survival [62]. The cyclin E-CDK2
complex contributes to RB phosphorylation as well as promotes the initiation of DNA replication,
and multiple mechanisms converge to up-regulate this activity in BLBC. High cyclin E1 expression
is characteristic of BLBC, with 26% of BLBCs presenting with elevated levels [63], and other breast
cancer subtypes showing relatively low expression [64]. Increased expression may be driven by
gene amplification [65] and loss of the cyclin E1 degrader and tumor suppressor protein, F-box and
WD repeat domain-containing 7 (FBW7) [66]. High CDK2 activity is also driven by the loss of the
CDK2/4/6 inhibitor protein, p27, or gain of S phase kinase associated protein 2 (SKP2), which targets
p27 for degradation. Both p27 loss and SKP2 gain are common features of BLBC [63], and linked to
poor prognosis [63,67]. Overall, these changes implicate CDK2 activity as an independent driving
feature of BLBC, and this is strengthened by the observation that mouse mammary tumors that develop
from mouse mammary tumor virus with constitutive Cdk2 expression, have basal-like features [68].

Other enzymes involved in the transition from G1/S to G2 phase are also elevated in BLBC.
The CDC25 dual specificity phosphatases, which function to activate the CDKs, are expressed at high
levels in BLBC, and they are predictive of poor prognosis in breast cancer as a whole [69]. Loss of RB
correlates with increased CDC25 expression, suggesting that CDC25 up-regulation occurs downstream
of RB loss [69]. Topoisomerase IIα, which is critical to DNA replication by cutting coiled DNA,
is elevated in BLBC, although it is not predictive of outcome [70,71]. Finally, the c-MYC oncogene,
which integrates signaling responses to up-regulate cell cycle progression, is expressed at high levels
in BLBC [57], and a signature of genes regulated by c-MYC are also strongly associated with the BLBC
phenotype [72].

The high proliferative and mitotic indices of BLBC increase replication stress and mitotic
defects, leading to an increase in DNA damage [73]. BLBCs also have a high frequency of BRCA1
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mutation and promoter methylation [74], which exacerbates DNA damage by disabling homologous
recombination. A consequence of this is that DNA damage checkpoints are dysregulated in BLBC
to protect the cells from excessive cell death. Ataxia telangiectasia and RAD3-related protein (ATR),
ataxia telangiectasia-mutated protein kinase (ATM), checkpoint kinase 1 (CHEK1), checkpoint kinase 2
(CHEK2), and G2 checkpoint kinase (WEE1) inhibit cell cycle progression into S phase and mitosis
following DNA damage, and BLBC often has high CHEK1 [75,76] and CHEK2 [77], presumably giving
rise to increased sensitivity to both single-stranded and double-stranded breaks. Lastly, the potent
tumor suppressor, p53, which causes G1 arrest in response to DNA damage or aberrant oncogene
signaling [78], is mutated in 44–82% of BLBC, resulting in abnormal cell proliferation and decreased
cell death.

The G2/M axis of BLBC also shows significant deregulation, but there is not a consistent
association between up-regulated G2/M activity and prognosis. This perhaps reflects the generally
elevated proliferative capacity of these cancers downstream of core dysregulation by either RB loss
or CDK2 activity gain at the G1/S transition. The master CDK of G2/M, CDK1, is amplified in
BLBC [79], but has no relationship with prognosis (C.E.C., personal communication). Mitotic genes
that are increased in BLBC and are associated with good prognosis are BUB1, PDZ associated
kinase, and NIMA [80], which are involved in centrosome separation and mitotic checkpoints.
Conversely, MASTL, a master kinase regulator of mitosis that ensures timely inactivation of CDK1,
is high in BLBC and is associated with poor prognosis [81]. Consistent with these observations,
knockdown of MASTL will enhance the action of some chemotherapies [82], but not anti-mitotic
chemotherapies. b-MYB, which regulates cyclin B1 among other G2/M genes, is also elevated in BLBC
and is associated with poor prognosis [83].

Overall, BLBC presents with a heterogeneous array of cell cycle defects, but with common themes.
The G1/S restriction point is side-stepped in these cancers either through depletion of RB or elevation
of E2F/CDK2 activity. This leads to a greatly heightened S phase entry, which manifests as increased S
phase activity and G2/M progression, which is enabled by an array of changes along those axes.

6. Targeting BLBC via the Cell Cycle

Chemotherapies have been generally effective in BLBCs as they primarily target highly
proliferative cells. Anthracyclines (e.g., doxorubicin; Table 1) target G1/S phase of the cell cycle
either by preventing DNA and RNA synthesis through intercalation with the DNA or RNA [84];
inhibiting Topoisomerase II to induce DNA damage [85]; generating free oxygen radicals that damage
DNA, proteins, and cell membranes [84]; or provoking histone eviction from chromatin, leading to
activation of the DNA damage repair pathways or apoptosis [86]. The G2/M axis is targeted by taxanes
(docetaxel and paclitaxel; Table 1), which disrupt microtubule de-polymerization by reversibly binding
to tubulin, resulting in stable microtubules, defects in spindle assembly, chromosomal segregation,
and cell division [87,88]. This interferes with mitosis and delays the spindle assembly checkpoint which
activates apoptosis [89]. While these treatments are highly effective in BLBC, the use of chemotherapies
are associated with extensive cytotoxicity to non-malignant, proliferating cells, presenting as alopecia,
nausea, cardiotoxicity [84,90], and neurotoxicity [91].

CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib; Table 1) target the G1/S transition to
produce a cytostatic, anti-proliferative effect in cancer cells. This has led to the successful transition
of CDK4/6 inhibitors into the clinic for ER+ breast cancers where it is used in combination with
endocrine therapy [92]. This is generally believed to be reliant on an intact RB axis [50], which has been
a deterrent to the development of CDK4/6 inhibitor therapy for TNBC or BLBC. Despite this, about 50%
of BLBC tumors do present with intact RB [56]. In addition, the CDK4/6 inhibitor, abemaciclib,
has demonstrated anti-tumor activity in in vitro models of RB+ TNBC, including BLBC models [93].
In pre-clinical models, CDK4/6 inhibitor therapy has been found to synergize with PI3K/AKT/mTOR
inhibitors in HCC-38 TNBC cells [60], which have a strong basal signature [18]. In addition, more recent
findings have shown that the non-canonical targets of CDK4/6 activity are important in tumorigenesis,
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including cancer cell self-renewal, glucose metabolism, and metastasis [58,60,61]. Two studies have
suggested that CDK4/6 inhibitor therapy is best targeted at the “luminal androgen receptor” subgroup
of TNBC based on its RB status [56,94], but the inhibition of DUB3-mediated metastasis by CDK4/6
inhibition appears to be specifically associated with BLBC [61], as DUB3 can drive a basal-like
phenotype [61].

Several clinical trials are assessing CDK4/6 inhibition across breast cancers, allowing for future
assessment of applicability in BLBC. NCT03130439 (ClinicalTrials.gov) is assessing abemaciclib as
a standalone agent in metastatic RB+ TNBC. Two trials are assessing paclitaxel in combination with
palbociclib [NCT01320592] or ribociclib [NCT02599363] in RB+ metastatic breast cancer irrespective of
hormone receptor status, and NCT03756090 is assessing the combination of palbociclib with paclitaxel,
cyclophosphomide (an alkylating agent), and epirubicin (an anthracycline). The combination of
CDK4/6 inhibitors with anti-mitotic therapies, such as taxanes and platinums, has shown promise
in pre-clinical models [95], including BLBC models [93], but CDK4/6 inhibitors may potentially
antagonize G1/S-based therapies, such as anthracyclines [95]. Likewise, co-targeting of G1/S
and G2/M via the combination of alkylating agents with anthracyclines and taxanes showed no
benefit in patients [96]. Collectively, these studies highlight the need to apply a degree of caution
when considering combination CDK4/6 inhibitor and cytotoxic regimens that rely heavily on cell
proliferation for their cytostatic and cytotoxic effects [97].

Inhibition of other cell cycle CDKs has also shown some pre-clinical promise for BLBC.
The pan-CDK inhibitor, dinaciclib, inhibits the cell cycle, promoting activity of CDK9 to reduce
cyclin B1 expression and cause G2/M arrest [98], and it is synthetically lethal in MYC-amplified BLBC,
causing both proliferative arrest and apoptosis [99]. The high expression of cyclin E1 in ~26% of BLBC
also raises the possibility of CDK2 inhibition to target these cancers [67]. Currently, specific CDK2
inhibitors are not available, although some pan-CDK inhibitors, such as SNS032 and CYC065, do target
CDK2 with a higher affinity and have progressed to Phase I clinical trials [100].

Cell cycle inhibition can also be accomplished through cell cycle checkpoint inhibitors
(Table 1), providing another potential avenue for BLBC treatment. BLBC has high rates of p53
deficiency, which makes cells highly sensitive to the G2 checkpoint that is mediated by WEE1 [101].
WEE1 inhibition forces S phase arrested cells directly into mitosis without completing DNA synthesis,
resulting in highly abnormal mitoses and apoptosis. This effect can be exacerbated in TNBC models
through the use of CDK2 or ATR inhibition to further increase S phase arrest and increase replication
stress [101,102]. Essential mitotic kinases may also provide future targets. For example, polo-like
kinase is highly expressed in BLBC, and can be targeted by volasertib [103], which shows some effect
in solid tumors, including breast cancer [104].

ClinicalTrials.gov
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Table 1. Cell cycle directed therapies for BLBC.
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IV

Alopecia, nausea,
cardiotoxicity

Epirubicin–Ellence (Pfizer) Breast cancer

A
lk

yl
at

in
g

A
ge

nt
:

N
it

ro
ge

n
m

us
ta

rd
s

[1
08

,1
09

]

Cyclophosphamide–Cytoxan
(Baxter Healthcare Corporation)

Covalent linkage of alkyl groups to DNA (N-7 position of
guanine), preventing DNA synthesis
Arrests in all cell cycle phases, particularly G1/S.
Effect: cytotoxic

FDA approved
Hematological malignancies,
neuroblastoma, retinoblastoma, ovarian,
breast cancers

IV Myelosuppression, nausea,
alopecia, hemorrhagic cystitis

A
lk

yl
at

in
g

A
ge

nt
:

Pl
at

in
um

[1
10

–1
12

] Carboplatin–Paraplatin
(Bristol-Myers Squibb Company)

Platinates DNA
Covalent binding of platinum to DNA (N-7 position on
purine residues), causing DNA damage.
Induces an S and G2/M arrest.
Effect: anti-mitotic and cytotoxic

FDA approved Head and neck, ovarian, lung cancers

IV

Myelosuppression

Cisplatin–Platinol
(Bristol-Myers Squibb Company) FDA approved Lung, SCCHN, ovarian, uterine, breast,

bladder, testicular cancers
Nephrotoxicity, nausea,
vomiting

Ta
xa

ne
[6

,8
7] Docetaxel–Taxotere

(Sanofi-Aventis)
Disrupts microtubule de-polymerization
Induces a G2/M arrest.
Effect: anti-mitotic

FDA approved
Breast, prostate, gastric cancers, NSCLC,
SCCHN

IV
Neurotoxicity,
myelosuppression

Paclitaxel–Taxol [88] (Bristol-Myers
Squibb Company)

Ovarian, breast cancers, AIDS-related
Kaposi sarcoma, NSCLC

Cell Cycle Inhibition

C
D

K
4/

6
in

hi
bi

to
r Palbociclib-Ibrance [113] (Pfizer) Targets CDK4/6

Induces G1 phase arrest.
Effect: cytostatic and anti-proliferative

FDA approved
(in combination with
endocrine therapy, or
as monotherapy
(abemaciclib))

ER+ HER2− breast cancer
Oral

Nausea, diarrhoea, fatigue,
neutropenia [114]

Ribociclib–Kisqali [115] (Novartis)

Abemaciclib-Verzenio [116]
(Eli Lilly) Gastrointestinal toxicity [117]
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Table 1. Cont.

Pa
n-

C
D

K
in

hi
bi

to
r

Dinaciclib [99,118,119]
(MK7965, SCH727965; Merck & Co.)

Targets CDK1, CDK2, CDK5, CDK9
Induces G1 and G2/M phase arrest, inhibits
phosphorylation of RNA polymerase II and
down-regulates MCL-1, and is synthetically lethal in
MYC-amplified tumors.
Effect: cytostatic and cytotoxic

Orphan drug
designation CLL

IV

Hematological and
gastrointestinal toxicity [120]

Investigational
compound in clinical
trials:
Phase III (n = 1)
Phase II (n = 3)
Phase I (n = 11)

Various advanced solid tumors and
hematological malignancies Toxicity due to lack of efficacy

Flavopiridol–Alvocidib [118,121]
(Sanofi-Aventis)

Targets CDK1, CDK2, CDK4, CDK6, CDK7, CDK9
Induces G1 and G2 phase arrest, inhibits phosphorylation
of RNA polymerase II and down-regulates MCL-1.
Effect: cytostatic, pro-apoptotic and inhibits transcription

Orphan drug
designation AML

IV

Tumor lysis syndrome, oral
mucositis, gastrointestinal
toxicity [122]

Investigational
compound in clinical
trials:
Phase II (n = 24)
Phase I (n = 33)

Various advanced solid tumors and
hematological malignancies

Considerable toxicity due to
limited efficacy

SNS032 [123]
(Sunesis)

Targets CDK2, CDK7, CDK9
Inhibits phosphorylation of RNA polymerase II and
down-regulates MCL-1 and XIAP.
Effect: S phase arrest, pro-apoptotic and inhibits
transcription

Investigational
compound in clinical
trials:
Phase I (n = 2)

B-lymphoid malignancies
[NCT00446342][124] IV

Myelosuppression

Various solid tumors
[NCT00292864][125] Fatigue, abdominal pain

CYC065 [100,126]
(Cyclacel Pharmaceuticals, Inc.)

Targets CDK2, CDK9
Inhibits phosphorylation of RNA polymerase II.
Effect: S phase arrest, pro-apoptotic and inhibits
transcription

Investigational
compound in clinical
trials:
Phase I (n = 2)

CLL in combination with venetoclax
[NCT03739554]
Advanced solid tumors/lymphoma
[NCT02552953]

IV
Not yet reported

Cell Cycle Checkpoint Inhibition

W
EE

1
in

hi
bi

to
r

Pl
at

in
um

[1
01

,1
27

] Adavosertib (AZD1775, MK-1775;
AstraZeneca)

Targets WEE1
Inhibiting WEE1 promotes G2 checkpoint escape,
premature mitotic entry and DNA damage during S phase.
Damaged DNA is not repaired prior to mitosis,
encouraging mitotic catastrophe.
Effect: pro-apoptotic

Orphan drug
designation Ovarian cancer

Oral

Not yet reported

Investigational
compound in clinical
trials:
Phase II (n = 5)
Phase I (n = 5)

Various advanced solid tumors and
hematological malignancies

A
T

R
in

hi
bi

to
r

Pl
at

in
um

[1
28

,1
29

]

AZD6738 [101](AstraZeneca) Targets ATR activity
ATR is a DNA damage response kinase, activated by DNA
damage. ATR inhibition prevents activation of CHEK1 and
the detection of DNA damage and replication stress at the
G2/M checkpoint.Effect: pro-apoptotic

Investigational
compound in clinical
trials:
Phase II (n = 10)
Phase I (n = 8)

Various advanced solid tumors and
hematological malignancies

Oral

Not yet reported

M6620/VX-970
(Vertex Pharmaceuticals Inc.)

Investigational
compound in clinical
trials:
Phase II (n = 6)
Phase I (n = 7)

Various advanced solid tumors

PL
K

1
in

hi
bi

to
r

Volasertib [130–132]
(BI 6727; Boehringer Ingekheim)

Cell cycle kinase inhibitor targeting PLK1, PLK2 and PLK3
Induces pro-metaphase arrest by interfering with mitosis
(e.g., entry, spindle formation, chromosome separation and
cytokinesis).
Effect: anti-mitotic, pro-apoptotic and anti-proliferative

Orphan drug
designation AML

IV

Not yet reported

Investigational
compound in clinical
trials:
Phase III (n = 1)
Phase II (n = 4)
Phase I (n = 11)

Various advanced solid tumors and
hematological malignancies Hematological toxicity

Abbreviations: AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia; ATR: ataxia telangiectasia and RAD3-related protein; CDK: cyclin-dependent kinase; CLL: chronic
lymphoid leukemia; DNA: deoxyribonucleic acid; ER+: estrogen receptor positive; FDA: food and drug administration; HER2−: human epidermal growth factor receptor 2 negative; IV:
intravenous (injection); MCL-1: myeloid cell leukemia 1; NSCLC: non-small cell lung cancer; PLK: polo-like kinase; RNA: ribonucleic acid; SCCHN: squamous cell carcinoma of the head
and neck; SCLC: small cell lung cancer; XIAP: X-linked inhibitor of apoptosis protein.
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7. Apoptosis: An Essential Process in Healthy Tissues

Apoptosis is a form of programmed cell death that is necessary for tissue homeostasis, regulation
of the immune response, embryogenesis, and the destruction of ageing and dying cells [133–135]. It is
characterized by a set of distinct morphological characteristics that include membrane blebbing, nuclear
and DNA fragmentation, chromatin condensation, and cellular shrinkage [136]. The two main forms
of apoptosis leading to caspase activation are the intrinsic (mitochondrial-dependent) pathway and the
extrinsic (mitochondrial-independent) pathway [137,138] (Figure 3). The extrinsic pathway is activated
by ligand-receptor interactions in the tumor necrosis factor (TNF) superfamily of death receptors
containing a death domain that activates caspase-8 at the cell’s surface. The intrinsic pathway is
activated by various external stimuli, including growth factor deprivation, stress, ultraviolet radiation,
or oncogene activation [139], and is modulated by the BCL-2 family of proteins. The intrinsic pathway
is characterized by a cascade of events that lead to increased mitochondria permeability and release
of cytochrome C, which binds to apoptotic protease activating factor 1 (APAF-1), leading to the
formation of the mature and activated apoptosome that binds and activates the initiator, caspase-9 [136].
Activated caspase-9 then signals the cleavage and activation of caspases-3, 6, and 7, cellular proteases
that lead to the destruction of cellular contents. A classic feature of this form of cell death is that
it is a non-inflammatory process that produces smaller membrane bound apoptotic bodies that are
engulfed by resident phagocytic cells [136].
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Figure 3. Dysregulation of the apoptotic machinery in BLBC. Schematic view of the extrinsic and
intrinsic pathways in apoptosis. Core apoptotic pathways such as EGFR signaling, the pro-survival
proteins BCL-2 and MCL-1, and αB-crystallin are dysregulated in BLBC. Orange upward arrows
indicate an increase in expression, orange downward arrows indicate a decrease in expression.
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8. The BCL-2 Family and the Intrinsic Apoptotic Pathway

The anti-apoptotic BCL-2 and its related family members (e.g., B-cell leukemia-extra large
(BCL-XL), B-cell-like protein 2 (BCL-W), myeloid cell leukemia 1 (MCL-1), and B-cell leukemia 2-related
protein A1 (BFL-1/A1)) all contain four BCL-2 homology (BH) domains (BH1-4) with BH domains
1-3 forming a hydrophobic pocket that mediates binding to other BH3-only containing family member
proteins (e.g., BID, BAD, BIM, PUMA, NOXA, and tBID). The BH4 domain is highly conserved among
the pro-survival members and is essential for providing cell survival signals [140]. The BH3-only
proteins are pro-apoptotic, activated in response to cellular stresses (e.g., cytokine deprivation,
cytotoxic insult, oncogenic activation), and suppress the actions of the anti-apoptotic proteins resulting
in cell death [140–142]. BH3-only proteins also directly bind to and activate the pro-apoptotic effectors,
BCL-2 homologous antagonist killer (BAK) and BCL-2 associated protein X (BAX), via the binding
pocket formed with BH domains 1–3. Once activated, BAX/BAK localize to the mitochondrial
surface where they change confirmation, oligomerize, and form pores in the mitochondrial membrane,
resulting in loss of permeability and cytochrome release [143].

Crosstalk between the intrinsic and extrinsic apoptotic pathways occurs via the activation of
caspase-8 and the cleavage of tBID. The cellular decision to live or die is tightly controlled and
one of the most potent inhibitors of cell death is the X-linked inhibitor of apoptosis protein (XIAP),
belonging to the family of inhibitor of apoptosis proteins (IAPs) that include Survivin, and cellular
(c)-IAP1 and c-IAP2. XIAP directly interacts with caspases-3 and 7 and prevents their activity,
resulting in cellular survival (reviewed in [144]). c-IAP1 and 2 inhibit the output of the extrinsic
apoptotic pathway via regulation of TNF alpha signaling [145]. Conversely, regulation of IAP
activity occurs via DIABLO/second mitochondria-derived activator of caspase (Smac), which are
released from the mitochondria subsequent to cytochrome C release in response to cytotoxic stress
potentiating cell death [146]. Defects in the ability to execute apoptosis can result from deregulated
cell signaling pathways [136], leading to cell survival, a fundamental feature underlying every aspect
of carcinogenesis.

9. Dysregulation of Apoptosis in BLBC

The pro-survival proteins are induced by multiple growth factor and cytokine signaling pathways
that promote cell survival [147], and deregulation of these pathways is a common event in BLBC.
The BCL-2 family of proteins can themselves be deregulated, with multiple genetic and proteomic
aberrations reported in cancer cells. Some studies have shown that resistance occurs via up-regulation
of pro-survival members of the BCL-2 family, including BCL-2 and MCL-1, although BCL-2 is
commonly associated with ER positivity and better prognosis in breast cancer, being a favorable
prognostic marker [148,149]. The exception is that high BCL-2 levels may be important in drug
resistance in BLBC, as it is a significant independent predictor of poor outcome in BLBC patients
treated with anthracycline-based adjuvant chemotherapy [150].

The anti-apoptotic protein, MCL-1, is more widely expressed and is present in most BLBCs
at varying levels [151,152]. MCL-1 has been shown to have an important role in BLBC cell
survival and carcinogenesis [149,153], and also plays a strong role in mediating the survival and
chemotherapeutic sensitivity of BLBC and TNBC models [154,155]. MCL-1 protein is normally
proteosomally degraded via the ubiquitin ligases, FBW7 and MULE/ARF-BP, leading to its short
half-life [156]. Interestingly, dysregulation of FBW7 has been shown to be a prognostic biomarker in
breast cancer particularly for ER- and BLBCs with the lowest levels of FBW7 found in these tumor
subtypes [157]. Additionally, MCL-1 complexes with MULE are only transiently found in breast cancer
cells and this has been shown to play a significant role in increased MCL-1 protein stability [158].
High levels of MCL-1 protein are found in breast cancers independent of the subtype [152], but BLBC
has the highest MCL-1 expression, and up to 20% of BLBCs are characterized by genomic amplifications
of MCL-1 [159]. Importantly, a genome wide sensitivity screen reported that BLBCs are largely
dependent on proteasome function via proteasomal mediated regulation of the BH3-only protein,
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NOXA [153], and NOXA preferentially binds to MCL-1 [160]. There is now good evidence suggesting
that MCL-1 mediates basal breast cancer cell survival and therapeutic resistance, with several studies
showing the importance of this protein in therapeutic resistance where its suppression or antagonism
is important for re-sensitization to cytotoxic therapies [146,161–163].

High levels of BCL-2 and MCL-1 in drug-resistant BLBC may indicate those cells that are
‘primed for death’ whereby surviving cancer cells with high levels of pro-survival proteins are
intrinsically resistant to a wide range of chemotherapeutics, but are, in fact, poised for death
when exposed to an agent that competitively antagonizes the elevated pro-survival protein [164].
This likely relies upon the interactions of the pro-survival proteins with the BH3 proteins and apoptotic
effectors, which are often coincidentally elevated in cancer cells. This has led some researchers to
develop a ‘BH3 profiling’ assay that may be useful to predict dependence on the BCL-2 family of
proteins for survival and chemotherapeutic resistance [165]. It remains to be seen whether BH3
profiling could be used to determine dependence on the BCL-2 family for BLBC; nevertheless,
the presence of BCL-2/BIM complexes were shown to be important for sensitivity to the BCL-2
antagonist, ABT-737, in patient-derived breast cancer xenografts with basal-like characteristics [152].
Interestingly, an analysis of the METABRIC dataset also showed that high levels of MCL-1 mRNA
expression predicted better overall survival in treated HER2+ and BLBCs. Conversely, in untreated
cases, high expression of MCL-1 mRNA predicted poor outcome [149]. These data suggest that high
levels of MCL-1, like BCL-2, could predict those BLBCs addicted to MCL-1 for survival, yet are poised
and ready to respond to therapy, either by cytotoxic therapies or targeted treatments.

As discussed above, αB-crystallin is a defining feature of a large proportion of BLBCs [166].
Overexpression of αB-crystallin promotes epidermal growth factor and anchorage independent growth
of immortalized mammary epithelial cells and is associated with poor breast cancer specific survival
and resistance to neo-adjuvant chemotherapy [167,168]. Small molecule antagonism of αB-crystallin
can reduce tumor growth and invasiveness of breast cancer cells in part via its functions to repair
misfolded vascular endothelial growth factor signaling [169] (Table 2). However, αB-crystallin also
directly modulates the output of the intrinsic apoptotic pathway, where serine-59 phosphorylated
αB-crystallin was shown to directly interact with BCL-2 and prevent its translocation to the
mitochondria [170]. αB-crystallin overexpression also suppresses the release of cytochrome C from
the mitochondria in part via its effects on BCL-2 [171]. Thus, either targeting the pro-survival effects
of αB-crystallin directly or subverting its effects on BCL-2 mediated cell survival may be an effective
strategy in BLBC.

The tumor suppressor and transcription factor, TP53, is mutated in approximately 50% of human
cancers, leading to increased levels of inactive p53 in cancer cells [172] that has consequences for
sustained cellular survival [173]. Importantly, cancers harboring a TP53 mutation often have intact
apoptotic pathway components, providing a therapeutic opportunity independent of a TP53 driver
mutation, particularly as many cytotoxic drugs primarily act via p53 to induce apoptosis, which can be
a point of resistance [174]. p53 controls the transcription of BH3-only proteins, such as PUMA, NOXA,
and BAX, in response to cytotoxic stress [175]. There has been substantial work in developing small
molecule compounds targeting the mutant p53, such as the MDM2 inhibitors (MI-773301 and Nutlins;
Table 2), which restrict MDM2 suppression of p53 function [176]. There are, however, still unresolved
issues surrounding the development of p53 as a therapeutic target [177], with diseases, such as breast
cancer, not benefiting from p53 inhibition, possibly in part due to the vast heterogeneity of the disease
as well as the limited efficacy of targeting transcription factor function. In a p53 mutant context,
targeting members of the BCL-2 family may provide a better option for those patients with defective
or deregulated p53 function by bypassing this network.

10. Targeting Survival in BLBC

The essential role of programmed cell death in the carcinogenesis and acquisition of therapeutic
resistance has generated great interest in developing drugs that inhibit survival, either via suppressing
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the output of signaling pathways leading to survival, or indirectly via antagonizing the actions
of pro-apoptotic proteins. Indirect inhibition of cell survival can be achieved via suppression of
the pathways commonly altered in BLBC. For example, the PI3K/AKT/mTOR pathway is the
most commonly deregulated pathway among breast cancers [9], and an extensive effort has been
made to manipulate the output of this pathway in BLBC (reviewed recently in [178]). PI3K is also
important for MCL-1 and BCL2L11 mRNA transcription, whereas mTOR is important for MCL-1
protein translation [179]. Thus, it is no surprise that manipulating the PI3K/AKT signaling axis in
BLBC in vitro models has been shown to be effective particularly in combination with the EGFR
inhibitor, gefitinib [180] (Table 2).

The potent IAP inhibitory and apoptosis-promoting functions of Smac have led to the discovery
and development of Smac mimetics for the therapeutic targeting of cancer (reviewed elsewhere [181]).
Although not widely studied in BLBC yet, Smac mimetics can induce death in basal inflammatory
breast cancer cell lines and increase the apoptotic potential of the death receptor ligand, TRAIL [182].
Interestingly, Smac and Protein Kinase C delta (PKCδ) interact in basal-like and luminal breast cancer
cells, but are dissociated after taxane cytotoxic treatment [183]. Further, activation of PKC synergizes
with the Smac mimetic LBW242 in BLBC cell lines [184]. TRAIL agonists have been also shown to
induce apoptosis of BLBC cells. For example, the TRAIL agonist, drozitumab, a DR5-specific TRAIL
receptor agonist, has been shown to preferentially kill basal and mesenchymal TNBC cell lines [185].
These early pre-clinical studies provide evidence for the potential of targeting the extrinsic apoptotic
pathway in BLBC.

As many cancers are also characterized by aberrant activation of intracellular kinase signaling
and p53 [186], it is now thought that targeting direct mediators of the cell survival machinery may
serve to improve cytostatic effects of oncogenic kinase inhibitors [187]. Several different classes of
antagonists have been developed and studied and include peptides, peptide mimetics, and small
molecule antagonists (natural and synthetic) with varying affinity and binding profiles for individual
BCL-2 pro-survival proteins [188]. Much of the research has focused on small molecules that mimic
the actions of the BH3-only pro-survival proteins (BH3 mimetics), which bind to the hydrophobic
binding cleft of pro-survival proteins [189] with highly specific binding preferences for individual
family members [160], minimizing systemic toxicities in tissues that depend on the BCL-2 family
for survival. Greater improvements in crystallography and drug design have now led to a suite of
small molecular inhibitors and BH3 mimetics with greater specificity for their targets. These include
WEHI-539 targeting BCL-XL [190] and ABT-199/venetoclax targeting BCL-2 (Table 2).

The development of specific antagonists of the BCL-2 family has been challenging, mainly due
to the high homology of the BH domains and the incomplete understanding of how these proteins
interact in specific cancer contexts [186], but antagonists of the BCL-2 pro-survival pathway have
been developed. Venetoclax/ABT-199 (Venclexta) is the first BCL-2 antagonist approved for use in the
United States, European Union, and Australia for chronic lymphoid leukemia and small lymphocytic
lymphoma. High BCL-2 is normally associated with ER+ breast cancer [151] and the investigation of
the efficacy of ABT-199 in clinical trials focused on ER+ disease and showed a preliminary clinical
benefit rate of 69% [191]. However, ABT-199 has now been shown to sensitize TNBC xenografts
in vivo to doxorubicin [192]. It remains to be determined whether BCL-2 inhibition is effective in the
approximately 10% of patients with BCL-2+ BLBC, building on the promise shown in pre-clinical
models of BLBC.

In contrast to BCL-2, most triple-negative and basal-like tumors express MCL-1 at varying
levels [193], and the presence of MCL-1 is a barrier to sensitivity to BCL-2/BCL-XL inhibition [193].
Recently, there has been extensive research into the development of BH3 mimetics that antagonize
MCL-1 [194]. The indole-2-carboxylic acid, A-1210477, developed by AbbVie was first reported
in 2015 and demonstrated a high affinity for MCL-1 as a competitive antagonist of MCL-1/BIM.
This compound induced cell death as a single agent and synergized with ABT-263 to produce
apoptosis in multiple myeloma and small lung cancer cell lines that were dependent on MCL-1
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for cell survival [195]. Like earlier work antagonizing BCL-2 and BCL-XL, MCL-1 antagonism can
result in cardiac failure, mitochondrial dysfunction, and other systemic toxicities that may be due
to on-target hematopoietic toxicities and off-target effects on BCL-XL [194,196,197]. The Servier
compound, S63845, showed even greater specificity and more potent activity than existing BH3
mimetics against MCL-1 and could induce cell death in MCL-1 amplified cell lines dependent on
MCL-1 for survival. Importantly, S63845 is well tolerated in vivo, with efficacy against several BLBC
cell lines [198]. Inhibiting MCL-1 in BLBC models can suppress metastatic progression [149] and
increase TNBC sensitivity to cytotoxic therapy [148,149,199]. It is yet to be determined whether MCL-1
antagonism is effective in clinical trials of BLBCs, but there are currently two Phase I clinical trials
of MCL-1 BH3 mimetics in patients with multiple myeloma, a disease with a MCL-1 dependent
etiology [200].
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Table 2. Targeting apoptosis and survival in BLBC.

T
he

ra
py

Drug Examples Mechanism of Action Drug Status Clinical Use

M
od

e
of

A
dm

in
is

tr
at

io
n

Adverse Events

Heat Shock Protein Inhibition

α
B

-c
ry

st
al

li
n

an
ta

go
ni

st
[1

69
]

NCI-41356

Targets the interaction between
αB-crystallin and VEGF165
αB-crystallin repairs misfolded proteins
(e.g., VEGF), and αB-crystallin
antagonism can inhibit VEGF
production in tumor cells.
Effect: reduces tumor growth and
invasiveness in vitro and in vivo,
decreases angiogenesis

Investigational
compound in
pre-clinical studies

Triple negative breast
cancer models - Not yet reported

p53 Inhibition

M
D

M
2

in
hi

bi
to

r

MI series [201]
e.g., MI-77301
(SAR405838;
Sanofi-Aventis)

Targets MDM2
Inhibits the MDM2-p53 interaction and
activates p53 transcriptional activity.
Effect: anti-proliferative and induction
of p53-mediated apoptosis

Investigational
compound in clinical
trials:
Phase I (n = 2)

Solid tumors

Oral Not yet reported
Nutlins [202]
e.g., Idasanutlin
(RG7388; Roche)

Investigational
compound in clinical
trials:
Phase III (n = 1)
Phase II (n = 1)
Phase I (n = 9)

Various advanced
solid tumors and
hematological
malignancies

Signal Transductor Inhibition

Ty
ro

si
ne

ki
na

se
in

hi
bi

to
r

[2
03

,2
04

]

Gefitinib–Iressa
(AstraZeneca)

Targets EGFR at the intracellular domain
Inhibits the kinase activity of EGFR to
promote proliferation and survival.
Effect: anti-proliferative and
pro-apoptotic

FDA approved NSCLC Oral Gastrointestinal
toxicity

Second mitochondria-derived activator of caspase (Smac) mimetic

Sm
ac

m
im

et
ic

s/
I

A
P

an
ta

go
ni

st
[2

05
]

LBW242 [184,206]
(Novartis Oncology)

Targets IAPs
Binds to and supresses IAPs (e.g., XIAP,
c-IAP1 and c-IAP2), inducing cell death
via caspase activation.
Effect: pro-apoptotic

Investigational
compound in
pre-clinical studies

Breast, ovarian
cancers, MM, AML,
melanoma cell lines

Oral

Not yet reported

LCL161 [207]
(Novartis Oncology)

Investigational
compound in clinical
trials:
Phase II (n = 3)
Phase I (n = 6)

Various solid tumors
and hematological
malignancies

Gastrointestinal
toxicity
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Table 2. Cont.

T
he

ra
py

Drug Examples Mechanism of Action Drug Status Clinical Use

M
od
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Adverse Events

Pro-apoptotic Receptor Agonists

A
po

2/
T

R
A

I
L

ag
on

is
t

[2
08

–2
10

]

Drozitumab
(PRO95780;
Genentech Inc.)

Targets DR5
Binding of TRAIL to DR5 initiates an
apoptotic signaling cascade (extrinsic
pathway) via assembly of the death
induced signaling complex involving
caspases-8 and 10.
Effect: pro-apoptotic

Investigational
compound in clinical
trials:
Phase II (n = 2)
Phase I (n = 2)

NSCLC,
non-Hodgkin’s
lymphoma, colorectal
cancer

IV
Hematological
toxicity, diarrhoea,
nausea

BH3-only Pro-survival Proteins (BH3 mimetics)

B
C

L-
2

in
hi

bi
to

r
[1

90
]

ABT-737 [211]
(Abbott Laboratories)

Targets BCL-2, BCL-XL and BCL-W,
blocking the interaction with
pro-apoptotic BCL-2 family members
Effect: BAX/BAK-dependent apoptosis

Investigational
compound in
pre-clinical studies

SCLC, follicular
lymphoma, CLL cell
lines

- Not yet reported

Navitoclax [212,213]
(ABT-263; Abbott
Laboratories)

Investigational
compound in clinical
trials:
Phase II (n = 4)
Phase 1 (n = 21)

Various advanced
solid tumors and
hematological
malignancies

Oral
Thrombocytopenia,
neutropenia

Venetoclax - Venclexta
[214,215]
(ABT-199; AbbVie
Inc.)

Targets BCL-2, blocking the interaction
with pro-apoptotic BCL-2 family
members
Effect: BAX/BAK-dependent apoptosis

FDA approved CLL and SLL Neutropenia, tumor
lysis syndrome

B
C

L-
X

L
in

hi
bi

to
r

WEHI-539 [216]

Targets BCL-XL, blocking the interaction
with pro-apoptotic BCL-2 family
members
Effect: BAK-dependent apoptosis

Investigational
compound in
pre-clinical studies

Murine associated
fibroblast cells - Not yet reported

M
C

L-
1

in
hi

bi
to

r S63845 [198] (Servier)
Targets MCL-1 and disrupts the binding
of BAX/BAK to MCL-1
Effect: BAX/BAK-dependent apoptosis

Investigational
compound in
pre-clinical studies

MM, AML,
lymphoma cell lines -

Not yet reported

A-1210477 [195]
(AbbVie Inc.)

Targets MCL-1 and disrupts the
MCL-1/BIM protein complex
Effect: BAX/BAK-dependent apoptosis

NSCLC, MM cell lines

Abbreviations: AML: acute myeloid leukemia; BAK: BCL-2 homologous antagonist killer; BAX: BCL-2 associated protein X; BCL-2: B-cell lymphoma 2; BCL-XL: B-cell leukemia-extra
large; BCL-W: B-cell-like protein 2; c-IAP: cellular inhibitor of apoptosis protein; CLL: chronic lymphoid leukemia; DR5: death receptor 5; EGFR: epidermal growth factor receptor; FDA:
food and drug administration; IAP: inhibitor of apoptosis protein; IV: intravenous (injection); MCL-1: myeloid cell leukemia 1; MM: multiple myeloma; NSCLC: non-small cell lung cancer;
SCLC: small cell lung cancer; SLL: small lymphocytic lymphoma; TRAIL: tumor necrosis factor related apoptosis inducing ligand; VEGF: vascular epidermal growth factor; XIAP: X-linked
inhibitor of apoptosis protein.
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11. Combination Targeting of Proliferation and Survival

Chemotherapies that target critical aspects of cell proliferation, including damaging DNA,
rely heavily on cell cycle checkpoints to detect these errors and trigger apoptosis [91,217].
Thus, in BLBC, a subtype of cancer with enhanced proliferation and anti-apoptotic mechanisms,
the co-targeting of proliferation and apoptosis could prove particularly successful (Figure 4).
Additionally, it has been recognized that cancers with p53 mutation, such as BLBC, often have intact
apoptotic cascades, providing another point of weakness [174].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  19 of 31 
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Taxane chemotherapy (docetaxel and paclitaxel) targeted at the G2/M cell cycle axis are the
standard of care for BLBC, and these have been tested in combination with BH3 mimetics to determine
if this will improve efficacy. Docetaxel in combination with the BH3 mimetic, ABT-737, results in
a significant improvement in animal survival and tumor growth in BLBC models, but single agent
ABT-737 was ineffective at producing apoptosis [152]. Combinations of Smac mimetics and BH3
mimetics were able to increase paclitaxel efficacy in BLBC cell lines, and BH3 mimetics could also
re-sensitize paclitaxel-resistant cells to paclitaxel [218]. In TNBC, which broadly overlaps with BLBC,
there have also been successes in combining BH3 mimetics with taxanes. The MCL-1 inhibitor, S63845,
synergized with docetaxel in a TNBC patient-derived xenograft model to decrease tumor growth [199],
and ABT-263 (navitoclax), which targets BCL-2, BCL-XL, and BCL-W, showed synergy with docetaxel
in a TNBC cell line [219]. The Smac mimetic, LCL161, also showed promise in a clinical trial testing its
combination with paclitaxel in TNBC, where the 30% of patients with an IAP survival signature were
responsive to the drug [207]. Consequently, taxane-based therapies appear to combine effectively with
a range of anti-apoptotic drugs. This activity could potentially be optimized by tailoring therapy in
subsets of BLBC with specific apoptotic defects, for example, MCL-1 amplified cases.

The other chemotherapies routinely used in BLBC, such as anthracyclines and cyclophosphamide,
have for the most part not been tested in combination with pro-apoptotic targeted therapies. A recent
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study showed that anthracyclines, such as doxorubicin, could synergize with BH3 mimetics in cancers
that are “addicted” to BCL-2 family members [220]. Preliminary studies combining cyclophosphamide
with a low specificity BH3 mimetic also showed promise in in vitro and in vivo models of B-cell
lymphoma [221]. More specific cell cycle inhibitors are yet to be trialed in combination with
pro-apoptotic drugs in BLBC. The highly specific CDK4/6 inhibitors have, however, demonstrated
pro-apoptotic effects in other cancer types. RB+ non-small cell lung cancer cell lines treated with
CDK4/6 inhibitors demonstrated suppression of survival signaling that occurred simultaneously
with high Smac and caspase-3 activity [222]. CDK2 inhibition can also be highly effective in inducing
apoptosis as it down-regulates the MCL-1 protein, leading to synergy with BH3 mimetics in various
cancer cell line models [223].

Pan-CDK inhibitors that target CDK1 and CDK9 show particular promise in BLBC as they can
directly induce both proliferative arrest and apoptosis. In MYC amplified TNBC and BLBC models,
dinaciclib (CDK1/CDK2/CDK5/CDK9 inhibitor) treatment led to growth arrest, but also enhanced
apoptosis through the up-regulation of BH3 protein BIM downstream of MYC [99]. This suggests that
a pan-CDK inhibitor may prove effective even in the absence of MYC amplification if it is combined
with a BH3 mimetic. This strategy has already proven effective in pre-clinical studies of myeloma cells
where the pan-CDK flavopiridol in combination with obatoclax led to decreased proliferation while
preventing MCL-1 pro-survival signals and promoting the release of pro-apoptotic BIM [224]. A Phase
I trial is now commencing for the CDK2/CDK9 inhibitor, CYC065, in combination with venatoclax,
the BCL-2 inhibitor, in relapsed or refractory chronic myeloid leukemia [NCT03739554].

12. Conclusions

The current strategies to treat BLBC are non-specific and need to be refined, and a detailed
understanding of the molecular mechanisms underpinning this subtype of breast cancer is essential
for the introduction of treatment regimens to improve survival. The existing standard of care for
BLBC is highly reliant on chemotherapy, and honing in on the underlying mechanisms of these drugs
may provide better specificity in the treatment of BLBC. Proliferation is a core pathway targeted by
chemotherapy, but without the balanced targeting of cell survival, it is probably not sufficient to merely
target cell cycle pathways. This is exemplified by the rapid tumor recurrence that is experienced in
BLBC. Of BLBC patients, 38% recur with metastatic disease at an average of 2.3 years, in comparison
to ER+ breast cancer, which has a 24% recurrence rate occurring at an average of 4.4 years [225].

Combining anti-proliferative and pro-apoptotic therapies in BLBC is relatively underdeveloped,
but the studies to date on combination therapies are highly promising, as many different combinations
across these two cancer hallmarks show potential synergy. However, the complex interplay between
drugs is a serious consideration in designing new therapies for BLBC. Some targeted therapies benefit
from sequential administration in order to access cells in their most vulnerable state, and this is
exemplified in a study showing the effectiveness of staggered administration of EGFR inhibitors prior
to anthracyclines in BLBC models, as well as other models with high EGFR activity [226].

Finally, an understanding of the heterogeneity within BLBC may also be critical in designing
personalized strategies for patients which take advantage of the different proliferative and apoptotic
alterations within their cancers. For example, the high rate of BRCA1 deficiency among BLBC [9]
opens the possibility of combination therapy with poly (ADP-ribose) polymerase (PARP) inhibitors.
PARP inhibitors already have proven efficacy as monotherapies for BRCA1-/- advanced breast cancer,
and multiple trials are now assessing possible combinations with cell cycle-based chemotherapies for
TNBC (reviewed in [227]). Another recent example is the addition of immunotherapy to nab-paclitaxel
in the IMpassion130 trial of TNBC, leading to a significant benefit to those patients with PD-L1
expressing immune cells [30]. Multiple other vulnerabilities, such as proteosomal dependency,
NF-κB pathway activation, and BET domain inhibitor sensitivity, have been identified within some
BLBC models [28]. As biomarker and clinical tools for these pathways are further developed, these may
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too prove effective in BLBC, especially when applied in combination with drugs that target the core
proliferative and apoptotic pathways.
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