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MOTIVATION Subcellular spatial localization of RNAs and proteins, in addition to their expression levels, is
widely acknowledged to be important for characterization of cell types and states. Alongside developments
in single-cell RNA sequencing (scRNA-seq) techniques, there is a growing need to develop technologies
that are able to provide quantitative information on the spatial location of molecules on a single-cell level.
Thus, we developed DypFISH, an experimental and computational approach providing quantitative spatial
measurements of molecules on a subcellular level, including clustering statistics, their location in relation to
specific organelles, and colocalization between transcripts and their corresponding proteins. DypFISH pro-
vides a versatile toolbox and aims to enable the investigation of subcellular localization of molecules at fine-
grained spatial resolution in single cells for a variety of cell types and topologies.
SUMMARY
Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis
of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial dis-
tribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate
the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate
single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immuno-
labeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein
subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-pro-
tein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing
cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribu-
tion variation, allowing for the characterization of their localization patterns. Furthermore, we show that our
method can be applied to physiological systems such as skeletal muscle fibers.
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INTRODUCTION

The need to incorporate subcellular spatial information of central

dogma molecules into traditional omics approaches has led to

the call for spatially resolved omics of various kinds (Crosetto

et al., 2015). This has become more urgent as projects such as

the Human Cell Atlas use technologies such as single-cell RNA

sequencing (scRNA-seq) to characterize subtypes of cells on

the basis of their molecular signatures by counting the number

of RNA transcripts. Although much progress has been made in

spatially resolved transcriptomics (reviewed in Medioni and

Besse, 2018; Strell et al., 2019), incorporating spatial information

into omics approaches carries with it several difficulties, such as

coping with biological heterogeneity and noise. Standard ap-

proaches such as RNA-seq to measure gene expression typi-

cally neglect spatial information. By revealing three-dimensional

(3D) subcellular positions of RNA transcripts, cell states as

defined by scRNA-seq might be altered or redefined, thus gain-

ing higher resolution and information content.

The importance of subcellular localization ofmRNA transcripts

as a means to spatially and temporally restrict translation has

been demonstrated in a wide variety of cell types (Bashirullah

et al., 1998; Besse and Ephrussi, 2008; Jansen, 2001; Kloc

et al., 2002; Martin and Ephrussi, 2009; Zappulo et al., 2017;

Chouaib et al., 2020). Localizing specific mRNA transcripts to

distinct subcellular localizations and subsequent local transla-

tion serves as an important determinant of protein localization

and is often influential to cell function (Mardakheh et al., 2015;

Moor et al., 2017; Zappulo et al., 2017). Although the number

of fully characterized localized mRNAs is currently small,

emerging studies have demonstrated that the RNA localization

phenomenon is more widespread than previously assumed

and might in fact be relevant for the majority of mRNA tran-

scripts, including long non-coding RNAs (Bouvrette et al.,

2018; Cabili et al., 2015; La Manno et al., 2018; Lécuyer et al.,

2007;Moor et al., 2017; Sharp et al., 2011;Weis et al., 2013; Zap-

pulo et al., 2017). Although a few studies have attempted to

quantify spatial distribution of RNA (Briley et al., 2015; Park et

al., 2012; Samacoits et al., 2018; Stueland et al., 2019; Yama-

gishi et al., 2009), the majority of studies investigating subcellular

localization of numerous RNAs and proteins have been generally

qualitative, lacking detailed quantitative approaches to system-

atically describe the positions of RNAs and proteins. They have

typically been limited to systems in which spatial heterogeneity is

controlled and subcellular partitions are easily defined, such as

developmental models (Macdonald and Struhl, 1988; Tautz

and Pfeifle, 1989), neuronal systems (Batish et al., 2012; Bux-

baum et al., 2014), and polarized cells (Martin and Ephrussi

2009; Mili et al., 2008; Clatterbuck-Soper et al., 2017). Thus, a

method that is able to capture and quantify dynamic RNA sub-

cellular positioning, complementary to scRNA-seq, would help

in the further identification and characterization of different cell

states and subpopulations. In sum, to unravel the mechanisms

of RNA spatial and temporal distribution, quantitative analytical

tools that probe these relationships systematically need to be

developed.

Here, we describe DypFISH, a spatially resolved high-

throughput computational approach overcoming the aforemen-
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tioned limitations by quantitatively measuring and analyzing the

spatial colocalization of mRNA and protein distributions at fine-

grained spatial resolution in single cells. On the experimental

side, we make use of micropatterning of cells, which have

been shown to lead to reproducible cell size and shape (re-

viewed in Théry, 2010), as well as spatial organization of organ-

elles (Schauer et al., 2010), allowing the averaging of high

numbers of cells. By using micropatterns, we are able to show-

case the analysis of distinct patterns of subcellular localization of

molecules of interest.

On the computational side, DypFISH introduces analytical

techniques that allow joint analysis of discrete point-based

small-molecule fluorescence in situ hybridization (smFISH)

mRNA data and continuous intensity immunofluorescence (IF)

protein data. The computational techniques include a general-

ized approach to identifying clustering patterns across different

time points, an approach to identifying dependencies of mRNA

and protein spatial distributions on organelle positioning, and

an approach to identifying correlated spatial distributions be-

tween mRNA transcripts and their corresponding protein prod-

ucts globally and at specific subcellular locations. The DypFISH

computational framework allows the uncovering of fine-grained

aspects of localization patterns for different time points of

RNA and proteins. DypFISH probes the dependencies uncov-

ered through perturbation studies, thus allowing one to test

for possible mechanisms underlying subcellular localization

dynamics.
RESULTS

Analytical method
DypFISH is designed as a library for writing analysis scripts to

study subcellular spatial distributions of molecules. The prelimi-

nary step for using the DypFISH framework is processing cellular

images and storing the extracted information in an hdf5 file

format, structured in a hierarchical way (Figure 1A, top box). In

our case the relevant categories were the molecule name and

type, acquisition time points, and the images themselves. Each

image in the hdf file is required to have primary image descriptors

(Figure 1A). These include cell and nucleus masks as well as

position of a landmark of interest, in our case the microtubule

organizing center (MTOC), which is indicative of the cell polarity;

descriptors encoding the signal (spots’ positions for smFISH im-

ages and signal intensities for IF images); and for 3D images, the

3D volume segmentation, as well as the zero level that indicates

the last Z slice within the focus of the confocal microscope.

The DypFISH analytical framework consists of three major

components and is presented schematically in Figure 1A.

(1) The first functionality of the DypFISH pipeline is computa-

tion of secondary descriptors (Figure 1Ai), stored in a

separate hdf5 file. First, we compute the peripheral dis-

tance map composed of equally spaced isolines between

the cell periphery and the nucleus. Second, each cell is

subdivided into quadrants that are given a standard order,

starting from the MTOC-containing quadrant. Finally, iso-

lines and quadrants taken together allow the quantization

of the cell in two and three dimensions and computation



Figure 1. Analytical steps of the DypFISH method

(A) Steps in processing of smFISH and IFmicroscopy images, followed by various statistics computed by the DypFISH analytical framework either for (i) individual

processed images or (ii) and (iii) sets of processed images.

(B) Cellular models in which the DypFISH analytical framework has been applied.
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of relative signal densities for each of the segments (Fig-

ure 1Ai). Labeling of the MTOC enables cell-to-cell align-

ment, allowing for comparison of the resulting relative

density vectors and segment-per-segment combination

in the downstream statistical analyses.

(2) mRNA spread and clustering are statistics computed for

sets of images based on secondary descriptors (Fig-

ure 1Aii). Among possible implemented analyses is the

enrichment of molecule density at the cell periphery

and, conversely, the measure of molecule spread toward

the nucleus envelope (centrality). Basic entropy Koza-

chenko-Leonenko statistics, which measure how evenly
the mRNA/protein signal is spread, are complemented

by our generalized Ripley K function, which allows us to

estimate the degree of clustering for mRNA and protein

signal in a uniform way, despite differences in the nature

of the signal (point-based and continuous).

(3) Specific analyses are implemented to study how mRNA/

protein clusters are organized in the cells (Figure 1Aiii).

First, labeling of the MTOC combined with cell quantiza-

tion allows us to measure the enrichment of mRNAs and

proteins in the MTOC-containing quadrants in relation to

the rest of the cell. Second, colocalization score mea-

sures whether two different sets of images, for example
Cell Reports Methods 1, 100068, September 27, 2021 3



Figure 2. Reproducibility of mRNA and protein distributions in micropatterned cells

(A) Mouse fibroblasts were plated on fibronectin-coatedmicropatterns and induced to polarize by addition of serum. Cells were fixed and smFISHwas performed

to target mRNAs of interest.

(B) ArhgdiamRNAwas visualized by using smFISH (gray) in standard and crossbow-shapedmicropatternedmouse fibroblasts, micropatterns were visualized by

coating with labeled fibrinogen (cyan), and DNA was stained with Hoechst (blue). Scale bar, 10 mm.

(legend continued on next page)
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mRNA at a given time point and its encoded protein at a

later time point, exhibit similar patterns of their respective

cellular density distributions.

The DypFISH analytical framework was applied to several

cellular models, including those with constrained geometry—mi-

cropatterned mouse fibroblasts and skeletal muscle fibers—as

well as standard unconstrainedmouse fibroblasts for several an-

alyses (Figure 1B).
Micropatterning of cells enhances reproducibility of
mRNA subcellular distributions
Wewere interested in the ability to characterize subcellular posi-

tioning of RNA and protein in various cellular contexts and states.

We selected a fibroblast system that allows the investigation of

RNA positioning in relation to its polarity state (Mili et al., 2008)

and combined it with micropatterning of cells to reduce cell-to-

cell variability. We chose mRNA transcripts that had previously

been identified as enriched in lamellipodia of fibroblasts upon

polarization and cell migration (Hengst et al., 2009; Mili et al.,

2008; Schmoranzer et al., 2009).

Micropatterning has been shown to lead to stereotypical local-

ization of organelles, such as the centrosome, early endosomes,

lysosomes, and the Golgi apparatus (Théry et al., 2005, Théry et

al., 2006; Schauer et al., 2010). We were interested in establish-

ing whether micropatterning can similarly reduce variation in

mRNA spatial distributions and enable us to construct a quanti-

tative framework for measuring reproducible subcellular spatial

localization of RNA and protein. To this end, mouse fibroblasts

were induced to polarize on crossbow-shaped micropatterns

shown to be suitable for the study of polarizing cells (Théry et

al., 2006; Schauer et al., 2010) and fixed at different time points

after induction (Figure 2A). Each slide contained multiple 123 12

grids of crossbow-shaped micropatterns to which the cells

adhered (Figure S1A). We developed an autonomous image

acquisition and semi-automated image analysis pipeline (Fig-

ure 1A) that was able to scan each microfabricated slide and

autonomously acquire images of individual cells. We used stan-

dard wide-field fluorescence microscopy, spinning-disk

confocal microscopy, or a StellarVision microscope using syn-

thetic aperture optics technology to acquire a 3D stack of images

for each cell. SmFISH and IF were performed to label mRNAs

and corresponding proteins of interest, respectively. We also

labeled the microtubule (MT) cytoskeleton, the nucleus, and

the micropattern. Representative images of the micropattern

and smFISH are shown in Figure 2B. A complete list of the ac-

quired images and descriptions of image acquisition character-

istics is presented in Table S1.

To investigate the subcellular localization and colocalization

patterns over time, we followed mRNAs and corresponding

proteins in polarized fibroblasts at different time points (2, 3,

4, and 5 h for mRNA and 2, 3, 5, and 7 h for protein) after induc-

tion of polarization by serum. These time points were chosen as
(C) Relationship between cell size and Arhgdia transcript copy number in standard

squares fit. Pearson square coefficient values R2 are 0:48 and 0:32 for micropatt

size in the two conditions.

(D) Absolute deviation of Arhgdia mRNA distribution of a randomly selected cell f
fibroblasts polarize over this timescale on crossbow-shaped

micropatterns. To determine whether micropatterning leads to

reduced heterogeneity in mRNA distributions, we compared fi-

broblasts grown in standard culture with those grown on micro-

patterns. Representative images of standard cultured and

micropatterned cells are shown for the Arhgdia mRNA in

Figure 2B.

First, we compared the reproducibility of ArhgdiamRNA distri-

butions in standard cultured and micropatterned cells by using

circular quantization in isolines from the periphery to the nucleus

envelope. The absolute deviation of the quantized distribution of

a randomly selected cell from a pooled average is reduced in mi-

cropatterned cells for all pool sizes up to �40 cells (Figure 2D).

The error profiles are concordant with a previous study, which

estimated that �20 micropatterned cells were necessary to

establish reproducible organelle positions by using the AMISE

metric (Schauer et al., 2010). We further investigated the effect

of micropatterning on the volume-corrected noise measure Nm

introduced in (Padovan-Merhar et al., 2015), which corresponds

to the coefficient of variation of mRNA density corrected for the

cell’s volume. Following this study and others (Fomina-Yadlin

et al., 2014; Gupta et al., 2012; Jain et al., 2013; Kempe et al.,

2015), we modeled the relationship between transcript number

and cell size by using polynomial regression, as demonstrated

for Arhgdia mRNA (Figure 2C). Our data show reduction in tran-

script number variation between micropatterned cells in com-

parison with standard cultured cells, in line with Battich et al.

(2015), in which constraining the cell phenotypic state resulted

in reduction in cell-to-cell variability in cytoplasmic RNA concen-

tration. The dispersion around the linear model fit line in the mi-

cropatterned cells as attested by the Pearson square coefficient

r2 (Figure 2C) is lower, leading to a lower Nm value (Figure S1C).

This comparison revealed a tighter distribution of cell and

nuclear sizes in the micropatterned cells, consistent with a

mechanism to compensate for cell size fluctuations andmaintain

the concentration of mRNA in the cell, as proposed previously

(Figure 2C; Padovan-Merhar et al., 2015).

Next, we investigated the profiles over time of the Nm for a se-

ries of mRNA transcripts including Pkp4 and Rab13, which are

enriched at the leading edge in polarized fibroblasts (Mili et al.,

2008; Moissoglu et al., 2019), Pard3, which translates into the

Par3 protein that regulates polarity in various cell types and is en-

riched in developing axons (Hengst et al., 2009; Schmoranzer et

al., 2009), b-Actin, a well-studied localized mRNA in various cell

types (Bassell et al., 1998; Buxbaum et al., 2014; Katz et al.,

2012; Kislauskis et al., 1997; Park et al., 2012; Park et al.,

2014; Yoon et al., 2016; and others), and Gapdh, which to the

best of our knowledge is not known to localize to specific subcel-

lular domains. We found for a number of transcripts a reduction

inNm over time, up to the 4 h time point (Figure S1B). These data

indicated that micropatterns conveyed an advantage for quanti-

tative analysis of RNA subcellular position over standard cell

culture.
cultured and micropatterned cells. Solid lines in upper graphs show the least-

erned and cultured cells, respectively. Lower graphs compare cell and nucleus

rom a pooled average of up to �40 cells for cultured and micropatterned cells.

Cell Reports Methods 1, 100068, September 27, 2021 5
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A subset of mRNAs and corresponding proteins shows
peripheral enrichment and correlated clustering
between time points
We investigated the joint localization patterns for mRNA and cor-

responding protein of four mRNA transcripts (Arhgdia, Pard3,

b-Actin, and Gapdh) and the mRNA localization dynamics for

the remaining two transcripts (Pkp4 and Rab13). We developed

a cell quantization method for computing local density statistics

and used the MTOC cellular landmark to obtain consistent and

alignable cellular segments. We initially characterized whether

the mRNA and corresponding proteins, respectively, are en-

riched in the periphery of polarized cells. To do so, we calculated

the fraction of cytoplasmic transcripts found at the boundary of

the cell, within an area whose width is a fixed proportion of the

radial distance to the nucleus edge (STAR Methods, ‘‘peripheral

distance map’’). Certain transcripts, including Rab13 and Pkp4,

as well as Pard3, are peripherally enriched for up to 20% of the

radial distance (Figure 3A) in polarized cells on microfabricated

patterns. Gapdh mRNA and protein distributions were used as

controls, as neither the mRNA nor protein were expected to

show patterns of enrichment (Mili et al., 2008; Figure S2A).

Note that values in the extreme periphery are not stable, due

to imprecision in segmentation of the cell mask. Representative

smFISH images of b-Actin and Gapdh are shown in Figure S2B.

We next analyzed clustering of mRNAs and proteins by using a

generalization of Ripley’s K analysis (Lee et al., 2013; Ripley,

1977) that we first theoretically investigated in Warrell et al.,

2016). Ripley’s K is a commonly used algorithm to describe the

extent of clustering of points, such as mRNAs (Figure 3B). For

each mRNA spot and each distance d the number of transcripts

lyingwithin a sphere of radius d is counted. Spatial clustering can

then be calculated by estimating the probability distribution of

this function under a null hypothesis of complete spatial random-

ness (CSR) and comparing it with the function calculated from

observed transcripts. We adjusted the algorithm (STAR

Methods, ‘‘degree of clustering (Ripley-K)’’) on the basis of the

generalized Ripley K function for evaluating the extent of clus-

tering of both mRNA and protein spatial distributions. This was

done by computing the degree of clustering, a unitless measure

that can be used to compare clustering between different mole-

cules and conditions. We summed the area where the normal-
Figure 3. Peripheral enrichment and clustering dynamics of mRNA-pro

(A) Comparison of the enrichment of five mRNAs with respect to Gapdh mRNA in

distance from the plasma membrane to the nucleus.

(B) Clustering is characterized by comparing observed transcript and protein distri

estimated for an observed distribution and samples from a homogeneous Poisson

event.

(C) To compute the degree of clustering, we defined an estimator of the Ripley K fu

the 95th and 5th percentiles under the Poisson process. Significant clustering of

95% confidence interval under the CSR assumption. Values below the 95% confid

is the area under the estimator’s curve that is above the 95th percentile of the ra

(D) Comparison of log degree of clustering for mRNAs and proteins (all time poin

error of the median. Representative single-molecule images for b-Actin and Arhg

(E) Clustering dynamics for four mRNA-protein pairs by using normalized degree

given time point. Error bars show the standard error of the mean.

(F) Log degree of clustering (bottom graph), as well as enrichment of Arhgdia and

peripheral regions (top graph). Differences in degree of clustering were assessed

Pard3 versus Pard3 + CHX = 0.04.
ized Ripley K function deviates from the 95% confidence interval

of the random distribution (Figure 3C).

We evaluated the degree of clustering of all transcripts and

proteins across all time points, revealing high overall values for

all proteins and various values for the different mRNA transcripts

(Figure 3D). Representative smFISH images for b-Actin and

Arhgdia are shown in Figure 3D. We further calculated the de-

gree of clustering at each individual time point post induction

of polarization for Arhgdia, Gapdh, b-Actin, and Pard3 mRNAs

and proteins, and normalized it by mean for value’s scale

compatibility between mRNA and protein (Figure 3E). A clear

peak in the mRNA profile followed by a peak in the correspond-

ing proteins can be seen for Pard3, b-Actin, and Gapdh,

suggesting temporal correlation (Figure 3E). A plausible interpre-

tation of this temporal correlation might be local translation—

clustering and translation of the transcript, yielding a high local

concentration of protein that is observed as a cluster. To test

this hypothesis, we used the translation inhibitor cycloheximide

(CHX) and compared the peripheral enrichment and the degree

of clustering of Arhgdia and Pard3 in inhibited and control cells

(see description of image acquisition characteristics for CHX

[Table S1] and STAR Methods). As expected, no significant

reduction in peripheral enrichment for both Arhgdia and Pard3

mRNAs was observed (Figure S2C), and there was a slightly

increased degree of clustering for both mRNAs (Figure S2E).

Taken together, these data indicate that Arhgdia and Pard3 are

localized to the periphery similarly in inhibited and control cells

and cluster slightly more throughout the cytoplasm in inhibited

cells. In contrast, a slight decrease was observed in peripheral

enrichment and degree of clustering for both RhoGDIɑ (the pro-

tein translated from Arhgdia, to which we will refer to as Arhgdia

for simplicity) and Pard3 proteins (Figures 3F and S2D). Alto-

gether, these data indicate that in fibroblasts in which protein

translation is inhibited, Arhgdia and Pard3 mRNAs localize simi-

larly to control cells; however, the reduced peripheral fraction

and degree of clustering of the Arhgdia and Pard3 proteins hint

toward potential local translation of these genes at the periphery.

As transport of molecules is not expected to be affected in these

cells, we do not anticipate the reduction in enrichment and clus-

tering of Arhgdia and Pard3 to be attributable to impaired trans-

port of the proteins.
tein pairs

a peripheral cellular region whose width varies from 0% to 100% of the radial

butions with complete spatial randomness. FormRNAs, the Ripley K function is

process by counting the number of pairs of points lying within a radius r of each

nction, called clustering index, by normalizing the observed Ripley K function to

mRNAs or proteins is found at radius r where the estimator function is over the

ence interval indicate the dispersion of the molecules. The degree of clustering

ndom distribution.

ts, log values shown after scaling by natural log). Error bars show the standard

dia are shown. Scale bar, 10 mm.

of clustering. Zero values indicate the absence of protein or mRNA data for the

Pard3 proteins in cells treated with CHX compared with control cells at 30%

by using a Mann-Whitney test. p values: Arhgdia versus Arhgdia + CHX = 0.2;

Cell Reports Methods 1, 100068, September 27, 2021 7
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Localization of a subset of mRNAs and corresponding
proteins shows correlation with the MTOC position
In the majority of polarized cell systems, the MTOC is positioned

between the nucleus and the leading edge of the cell prior to

migration or local cell growth (Gomes et al., 2005; Hale et al.,

2011). Whether mRNAs and their corresponding proteins are

subject to reorientation in relation to theMTOC is unknown. Hav-

ing demonstrated that several mRNA transcripts and proteins

exhibit peripheral enrichment and spatial clustering in polarized

cells, we sought to determine whether these observations

were related to MTOC positioning. We divided the cell into quad-

rants (Figure 4A), computed per-quadrant mRNA and protein

relative density, and determined the MTOC localization within

these quadrants (Figure 4A). We observed higher enrichment

of all cytoplasmic mRNA transcripts in the MTOC-containing

quadrant compared with the non-MTOC-containing quadrant,

considering differences in their respective density (Figure 4B).

Similarly, all peripheral transcripts at 30% of the radial distance,

other than Pkp4, showed higher enrichment in the MTOC-con-

taining quadrant compared with the non-MTOC-containing

quadrant (Figure S3A). All cytoplasmic proteins were also found

to be more enriched in the MTOC-containing quadrant

compared with the non-MTOC-containing quadrant, with the

exception of Pard3 (Figure 4B). All proteins showed enrichment

in the MTOC-containing quadrant at 30% of the radial distance

(Figure S3A).

On the basis of the above observations, we introduced an

MTOC polarity index (MPI) to analyze MTOC-dependent enrich-

ment in mRNA and protein distributions. This indicator lying be-

tween �1 and +1 is derived by normalizing the differences of

signal concentration between the MTOC-associated quadrant

and the other quadrants. Positive MPI values imply MTOC-

dependent enrichment of RNA transcripts, negative values imply

enrichment away from the MTOC, and a value of zero implies no

detectable relationship with the MTOC. Representative smFISH

images for b-Actin and Pard3 are shown in Figure 4C.

We calculated the MPI for all transcripts and proteins,

computing values for both the whole cytoplasmic population

(Figure 4C), and the peripheral population at 10% radial distance

(Figure S3B), by using all time points. All mRNAs as well as

Gapdh, Arhgdia, and b-Actin proteins show high MPI scores in

the cytoplasmic population. The lowMPI score for Pard3 protein

is in line with low MTOC enrichment for cytoplasmic Pard3 (Fig-

ure 4B). Similarly to the cytoplasmic transcripts, all mRNAs show

high MPI scores in the peripheral population (Figure S3B). Addi-

tionally, we calculated MPI scores across time (Figures 4D, S3C,

and S3D) and observed similar wave-like profiles for mRNA and

corresponding protein (with a lag in time for the protein) for cyto-

plasmic Arhgdia, cytoplasmic and peripheral Pard3, and periph-

eral b-Actin, Arhgdia, and Gapdh, and cytoplasmic b-Actin and

Gapdh to lesser extent (Figures S3C and S3D). This suggested

a temporal association between mRNA, protein, and MTOC

orientation.

We next applied the method presented above to examine the

biological relevance of the spatial distribution of a given mRNA.

We chose to focus onArhgdiamRNA and characterized changes

in its subcellular location, followed by measuring the effects of

these changes on the localization and function of Arhgdia’s en-
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coded protein. The Arhgdia transcript is translated into

RhoGDIɑ, which regulates the Rho family of guanosine triphos-

phatases (GTPases) (reviewed in Garcia-Mata et al., 2011; Xie

et al., 2017). We hypothesized that changes in the subcellular

localization of Arhgdia would have an effect on the location

and/or translation of the transcript to RhoGDIɑ and subsequent

effects on Rho GTPases and related cellular processes,

including cellular polarization and migration.

We first used a biochemical pull-down assay to pull down

Arhgdia and identify its protein binding partners by mass spec-

trometry (Savulescu et al., 2020). By this process we identified

a number of candidate protein-interacting partners. Of these

we chose to focus on the PRRC2C protein, given that the

PRRC2C subcellular localization at the ER (data not shown) is

linked to cell polarity and in addition contains a polyQ motif

(Figure S5A), suggesting interactions with RNA (Kunde et al.,

2011; Lee et al., 2013; Langdon et al., 2018). We depleted

PRRC2C (Figure S5B) to see whether it had convergent pheno-

types with Arhgdia. We hypothesized that if PRRC2C was

important to Arhgdia mRNA biology, this would result in quan-

titative changes detectable by DypFISH. PRRC2C-depleted

cells displayed a lower Arhgdia mRNA count (Figure S4A), a

slightly reduced peripheral fraction (Figure S5C), similar central-

ity and cytoplasmic spread (Figure S5D), and a slightly lower

degree of Arhgdia mRNA clustering (Figure S4B). Depletion of

PRRC2C also led to reduced peripheral MTOC enrichment, pe-

ripheral MPI score (Figure S5E), and a substantially reduced

cytoplasmic MPI score (Figures S4C and S5E) for Arhgdia. A

higher concentration of RhoGDIɑ was observed in PRRC2C-

depleted cells (Figure S4A), suggesting a higher rate of transla-

tion in these cells as well as a decreased peripheral fraction

and slightly increased centrality and cytoplasmic spread (Fig-

ures S5C and S5D). RhoGDIɑ retains Rho GTPases in an inac-

tive, stable form in the cytosol, preventing their degradation (re-

viewed in Garcia-Mata et al., 2011). We hypothesized that an

elevated concentration of RhoGDIɑ would induce an increased

pool of inactive cytosolic Rho GTPases, leading to inhibition of

cell migration. Consistent with our hypothesis, depletion of

PRRC2C led to inhibition of migration of 3T3 mouse fibroblasts

and human umbilical vein endothelial cells (HUVECs) in a

wound assay (Figure S4D; Videos S1 and S2). We then tested

whether the inhibition in migration was due to impaired velocity

in PRRC2C-depleted cells. Velocity measurements of individual

cells in the monolayer did not show differences between con-

trol and PRRC2C-depleted cells (Figure S5F); however, we

observed a slight decrease in the ability of cells to maintain

their directionality, termed directness, in PRRC2C-depleted

cells (Figure S5F). Direction of migration is defined by the sub-

cellular positions of the Golgi apparatus and MTOC in the cell,

known as axial polarity (Ridley et al., 2003). To test whether it

was abolished in the absence of PRRC2C, we performed an

axial polarity assay (Carvalho et al., 2019). Loss of Golgi orien-

tation in PRRC2C-depleted cells was observed (Figure S4E),

suggesting the loss of axial polarity and, thus, migration de-

fects. In conclusion, our data suggest that PRRC2C-depleted

cells are unable to migrate properly.

Altogether, our data suggest that the absence of PRRC2C re-

sults in loss of Arhgdia’s enrichment in the MTOC vicinity and



Figure 4. Relationship between cytoplasmicmRNA

and protein distributions and MTOC position

(A) (i) Schematic of theMTOC correlative influence analysis

and of the analysis to determine the MPI value. (ii) The

MTOC position is annotated in projected 3D tubulin IF

images. The MTOC polarity index (MPI) measures how

frequently the relative concentration within the MTOC

quadrants is higher than in the non-MTOC quadrants. MPI

takes values between �1 and +1, with positive values

indicating enriched mRNA or protein concentration in the

MTOCquadrant and negative values indicating enrichment

away from the MTOC quadrant.

(B) Cytoplasmic mRNA and protein relative density in

non-MTOC-containing quadrants (dark blue) and MTOC-

containing quadrants (light blue). Enrichment in theMTOC-

containing quadrant is defined by differences in means of

these distributions.

(C) MPI values for mRNAs and proteins in cytoplasmic

populations (all time points). Representative smFISH im-

ages are shown for b-Actin and Pard3 (right image), as well

as the corresponding tubulin stain (left image). Scale bar,

10 mm.

(D) MPI dynamics for Arhgdia and Pard3 mRNA-protein

pairs.

Bar graphs in (C) show median and standard deviation

from the median error bars for 100 bootstrapped MPI es-

timates. Graphs in (D) show median surrounded by enve-

lope indicating standard deviation from the median error

bars of 100 bootstrapped estimates fitted to cubic splines.
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Figure 5. Interdependency of localization

dynamics for corresponding mRNAs and

proteins

(A) Colocalization score (CS) is a correlation be-

tween mRNA and protein spatial distributions for

image acquisitions at several time points.

(B) Forward-leading time-point pairs, defined as

t1<t2 (connected by solid lines), were used for

calculating CS values. Cytoplasmic density maps

representing relative density vectors based on fine-

grained quantization for Arhgdia mRNA and protein

for each time point are shown. Cellular regions are

dark blue if the local relative density is greater than

the mean density of all segments in the cytoplasm

plus standard deviation, and light blue if the local

relative density is smaller than the mean of all seg-

ments in the cytoplasm minus standard deviation;

intermediate values correspond to the relative den-

sity within the ½ �s; s� interval. The MTOC-contain-

ing quadrant is highlighted by a thin turquoise stripe.

(C) CS values were computed by using global cor-

relations of all voxels/segments across the cyto-

plasmic area and local correlations across subsets

of voxels/segments within peripheral regions.

(D) Correlations of relative density distributions for all

cytoplasmic mRNA-protein pairs were observed for

certain time points by using the fine-grained quan-

tization scheme.
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changes in its subcellular localization and degree of clustering

pattern, as well as leading to seemingly elevated levels of trans-

lation, resulting in a higher concentration of RhoGDIɑ protein.We

suggest that an elevated RhoGDIɑ concentration, as well as

higher MPI score of the RhoGDIɑ protein in PRRC2C-depleted

cells, leads to an imbalanced RhoGTPase cycle and subsequent

inhibition in cell migration (Figure S4F). In summary, and most

significantly, by using DypFISH, we unearthed variations in po-

larity and cell migration due to quantifiable changes in the

MTOC-related subcellular localization of Arhgdia mRNA.
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Colocalization of mRNA-protein
distributions is consistent with
MTOC-related patterns of localized
translation
As previously described, several mRNA-

protein pairs showed similarities in distribu-

tionsofbasicdescriptors, clustering indices,

and MTOC polarity indices. Correlations

in spatial distributions at different time

points could reflect spatially and temporally

restricted translation (local translation)

(Besse and Ephrussi, 2008) and/or separate

localization pathways for mRNAs and pro-

teins to common subcellular locations.

To investigate such scenarios, we per-

formed fine-grained quantization of cells

and were able to compute subcellular

spatial distribution profiles of mRNAs and

proteins (see STAR Methods, ‘‘colocaliza-

tion score’’ and Figure 5Ai), visualized us-

ing density maps for each time point for
four corresponding mRNA-protein pairs (Arhgdia, Gapdh,

b-Actin, and Pard3) (Figures 5B and S6B).

For a pair of mRNA and protein spatial distributions, their

colocalization is measured by the Pearson correlation of

subcellular density vectors. We consider ‘‘high’’ or ‘‘low’’ co-

localization for an mRNA/protein pair depending on the

value of the Pearson correlation. High values (interdependent

spatial distributions) might suggest local translation

within specific subcellular localizations, although they do not

rule out alternative mechanisms such as separate mRNA
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and protein localization pathways with delayed protein

transport.

To explore the consistency of potential correlations in spatial

distributions between mRNA and the corresponding protein

over different time points, we derived a colocalization score

(CS), which is a value between 0 and 1, computed as the sto-

chastic effect size based on the correlations between the subcel-

lular distributions of mRNA and corresponding protein in a

ranking across ‘‘forward-leading’’ time points (for details see

STAR Methods, ‘‘colocalization score’’ and Figure 5B). These

time points were chosen because we considered the additional

time for translation to occur once the mRNA is localized.

The CS provides a global measure of whether the two mole-

cules are distributed in a similar way in cells across all ‘‘for-

ward-leading’’ time points as compared with the other time

points. We measured the similarities of relative density vectors

(1) globally across the cytoplasmic area by computing global

CS values (Figure 5C) and (2) at the periphery using relative den-

sity vectors restricted to peripheral regions (Figure 5C). We

observed correlated spatial distributions for cytoplasmic

mRNA-protein pairs, with various temporal patterns among the

different genes (Figures 5D and S6A). Generally, medium to

high CS values were observed for all genes at the different

time points (Figure 5D); however, we observed variability be-

tween the genes in CS values at various time points. For

example, b-ActinmRNA at all time points showed high CS values

with its corresponding protein at most time points, whereas the

CS values for Arhgdia mRNA at late time points were generally

lower than the values at early time points (Figure 5D).

Perturbation of various cytoskeletal components
disrupts characteristic mRNA-protein localization and
interdependency patterns, and hints at local translation
Our analysis revealed mRNA-protein colocalized distributions

for certain time points, which suggested local translation. As

we could not rule out independent localization of mRNA and cor-

responding proteins, we introduced two perturbations to inhibit

potential transport pathways of the different molecules. We dis-

rupted microtubule polymerization by using nocodazole (Fig-

ure 6A), which we reasoned would lead to disruption of the cor-

relation with the MTOC of spatial distributions of selected mRNA

and proteins, as well as potential loss of local translation. We

selected Arhgdia and Pard3 mRNA-protein pairs to test this hy-

pothesis, collected data at 3 h and 5 h after exposure to nocoda-

zole, and compared it with untreated data from the equivalent

time points.

We calculated the effects of nocodazole treatment on the total

mRNA count (Figure S7A), the centrality of the transcript and

protein (Figures 6B and S7B), and the 10% peripheral fraction

(Figure 6C). Arhgdia centrality was increased upon treatment

with nocodazole and its peripheral fraction was not significantly

modified (Figures 6B and 6C), suggesting that Arhgdia mRNA

and protein do not make exclusive use of the microtubule

network for intracellular transport. Arhgdia protein centrality

was slightly decreased and the peripheral fraction of the protein

was reduced (Figures 6B and 6C), indicating a partial depen-

dency on the microtubule network for subcellular transport.

The centrality of Pard3 mRNA was increased, whereas its pe-
ripheral fraction was slightly decreased upon treatment with no-

codazole (Figures 6B and 6C), suggesting that Pard3 mRNA

does not make exclusive use of the microtubule network for

intracellular transport. A reduction was detected in the centrality

of Pard3 protein in the presence of nocodazole (Figure 6B), and

there was a slight increase in the peripheral fraction of the protein

(Figure 6C). Interestingly, an increase in the Pard3 mRNA and

corresponding protein concentration was observed in the pres-

ence of nocodazole (Figure S7A).

Next, we probed the effects of nocodazole treatment on the

relationship between the polarization of the cell and the subcel-

lular localization of the mRNA transcripts and their correspond-

ing proteins (Figures 6D and 6E). The MTOC enrichment of

Arhgdia in nocodazole-treated cells compared with control cells

was not substantially modified (Figure 6D) and the MPI of

Arhgdia in these cells was slightly reduced (Figure 6E), indicating

that the orientation of the mRNA subcellular localization was

partially lost. An interesting effect was observed for Pard3,

whereby no significant change was detected in the MTOC

enrichment, with a slight increase in the MPI value for the

mRNA in the nocodazole-treated cells (Figures 6D and 6E), indi-

cating that the perturbation to the MTOC had the effect of tight-

ening the relationship between the MTOC position and the RNA

distribution. Representative smFISH images for Arhgdia in con-

trol and nocodazole-depleted cells are shown in Figure 6E.

We then probed the effects of nocodazole on mRNA-protein

pairs by calculating local CS and maps for control and nocoda-

zole-treated cells, restricted to the 3–5 h time points (Figure 6F).

The interdependency of the Arhgdia mRNA-protein pair was

disturbed, as observed in altered CS values for all time points

in nocodazole-treated compared with control cells (Figure 6F).

Nocodazole also affected the interdependency for the Pard3

mRNA-protein pair, mainly observed in the 3 h mRNA to 3 h pro-

tein and 5 h protein time points (Figure 6F).

To probe whether other cytoskeletal networks could influ-

ence RNA subcellular positioning, we treated the cells with

the actin polymerization inhibitor cytochalasin D (cytoD) for

1 h before fixation of cells and compared FISH and IF data

for the Arhgdia mRNA-protein pair. Arhgdia mRNA’s centrality

and cytoplasmic spread were slightly increased (Figure S7B),

whereas the concentration of the mRNA was slightly lower on

the periphery of cytoD-treated cells compared with control

cells (Figure S7C). The centrality and cytoplasmic spread of

Arhgdia protein were not significantly affected in the presence

of cytoD (Figure S7B); however, the peripheral concentration

of the protein was slightly decreased in the cytoD-treated cells

(Figure S7C). Taken together, these data suggest that a lower

Arhgdia mRNA peripheral concentration leads to reduced pe-

ripheral Arhgdia protein concentration or that mechanisms

anchoring Arhgdia mRNA and protein to the periphery are

lost in the presence of the drug.

Sarcomeric mRNAs cluster in a striated pattern in
differentiated myofibers
To further validate Dyp-FISH, we sought a cellular model in

which RNA subcellular localization and potential local protein

translation linked to changes in cells’ state could be interrogated.

We focused on the unusually large multinucleated muscle cells
Cell Reports Methods 1, 100068, September 27, 2021 11



Figure 6. Effects of cytoskeleton disturbance on mRNA-protein localization and interdependent dynamics

(A) Nocodazole was added to cells seeded on micropatterns, inducing inhibition of microtubule polymerization (tubulin IF images). Scale bars, 10 mm.

(B) Centrality of Arhgdia and Pard3 transcripts and proteins (at 3 h and 5 h combined) is defined as a statistic measuring the evenness of amolecule spread across

the cell, with the value 1 for even distribution. Error bars show standard error of the mean.

(C) The peripheral fraction of Arhgdia and Pard3 transcripts and proteins (at 3 h and 5 h combined) were calculated similarly to Figure 3B.

(D) mRNA quadrant density (MTOC enrichment profiles) for Arhgdia and Pard3 shown for nocodazole-treated and control cells at 3 h and 5 h combined.

(E) MPI scores shown for control and nocodazole-treated cells for Arhgdia and Pard3 transcripts at 3 h and 5 h combined. Representative smFISH images of

Arhgdia in control and nocodazole-treated cells are shown. Scale bars, 10 mm. A cartoon representing the effect of nocodazole treatment on the MPI scores is

shown in the bottom panel.

(F) Interdependent dynamics for Arhgdia and Par3 in the presence of nocodazole and in control cells.
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termed myofibers that are formed by fusion of mononucleated

cells, with the myonuclei being spaced at regular intervals, their

main function being to generatemechanical force via contraction

(Bruusgaard et al., 2003, 2006). Muscle contraction is achieved

by the shortening of sarcomeres that are organized along the

length of the myofiber and each sarcomere is flanked by a Z

line, the site of anchoring of the actin filaments, resulting in the

striation of the myofiber (Franzini-Armstrong and Peachey,

1981). We used skeletal muscle, given that the myofiber has an
12 Cell Reports Methods 1, 100068, September 27, 2021
invariable tubular shape and a highly predictable cytoplasmic or-

ganization. In vitro differentiation of myofibers allows for high-

resolution imaging throughout developmental stages, including

the formation of patterned sarcomeres with well-defined Z-line

striations, similar to what is observed in neonatal myofibers (Fal-

cone et al., 2014; Pimentel et al., 2017; Vilmont et al., 2016).

Thus, the size and regularity of myofiber architecture make

them an excellent candidate to compute spatial distribution pro-

files of mRNAs and proteins.
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We analyzed the distribution of an mRNA that encodes a pro-

tein found at the Z lines during muscle differentiation. We chose

the actn2mRNA, which encodes for a-actinin, the main compo-

nent of Z lines in relation to the sarcomeric Z lines (Figure 7A).

The majority of the actn2 mRNA was found in the vicinity of the

Z line in mature myofibers (Figure 7B). To understand whether

this depends on the developmental stage, we imaged immature

myofibers in which the Z lines are less organized. We also

probed the Gapdh mRNA distribution as a non-sarcomeric con-

trol in both immature and mature myofibers. The degree of

mRNA proximity was lower in both cases, suggesting that

possibly actn2mRNA localization precedes protein organization

(Figure 7B) of the Z line. To address this question, we quantized

each cell perpendicularly to the cell axis in vertical quadrants by

using a number of various divisions (Figures 7C and S8A), simi-

larly to sarcomeres’ organization. The mRNA local density was

computed in each quadrant by normalizing the counts by the

relevant area (Figures 7C, S8A, and S8B). We observed a

wave-like clustering for actn2 inmature comparedwith immature

fibers by using various divisions (Figures 7C, S8A, and S8B). No

clustering was observed for Gapdh (Figures 7C, S8A, and S8B).

Curiously, in adult mouse myofibers, it was recently described

thatGapdhmRNA also clusters at the Z line, suggesting that my-

ofiber hypertrophy alters mRNA clustering properties (Denes

et al., 2021).

The highest degree of clustering was observed for actn2

mRNA in mature myofibers when compared with the immature

counterpart or with Gapdh mRNA. These data suggest that the

actn2 mRNA distribution specifically follows the respective pro-

tein organization instead of preceding it (Figure 7D). These data

shed light on a long-standing question in the field and produce a

basis of testable hypotheses for how actn2 mRNA is directed to

the Z line.

DISCUSSION

Awide variety of methods have been proposed for studying RNA

localization with subcellular accuracy, including microscopy-

based methods, such as those based on FISH (Battich et al.,

2013; Chen et al., 2015; Lécuyer et al., 2007). We set out to

develop a quantitative, reproducible, and reusable computa-

tional method for investigating the spatial distribution of RNA

and protein. To achieve this, we hypothesized that the best

showcase of our approach would be to use micropatterning of

cells in order to reduce cellular heterogeneity and enhance the

reproducibility of spatial distributions. We combined this with

smFISH, IF labeling, and automated high-content imaging, as

well as the development of our DypFISH computational frame-

work. We revealed dependence of mRNA-protein localization

and dynamics onMTOCorientation and cell polarization in polar-

ized fibroblasts. Through perturbation studies, we have demon-

strated DypFISH’s ability to quantitatively detect changes in

localization behavior, confirming both the robustness of the

approach and its ability to test mechanistic hypotheses. This

approach can be applied to other systems in which (1) there is

a clear constrained architecture, such as the skeletal muscle

shown in Figure 7, or/and (2) cellular landmarks can be stained,

similarly to the MTOC landmark in our study.
RNA subcellular localization patterns and the role of the
MTOC in subcellular spatial distribution
The association of different mRNA species with MTOC orienta-

tion indicates specific subcellular distribution patterns in accor-

dance with broader processes, which are also responsible for

controlling the nucleus and MTOC relative orientation during po-

larization (Kim et al., 2014; Razafsky et al., 2014). We posed the

question as to whether proteins translated from mRNAs that

consistently localize to similar subcellular locations are trans-

lated in these locations. By revealing the existence of correla-

tions of spatial distributions for mRNA-protein pairs at different

time points, which are associated with the MTOC orientation

and can be impaired by applying perturbations including inhibi-

tion of protein translation, our results suggest local translation.

Additionally, our methodology can be applied to study variability

of localized gene expression in morphologically constrained bio-

logical contexts.

We revealed various aspects of the spatial distribution of spe-

cific mRNA transcripts and proteins of interest in time, such as

Arhgdia and its protein product RhoGDIa. We have shown that

the majority of the Arhgdia mRNA population relates to the

MTOCposition, with a small fraction being localized to the periph-

ery. The reduced cytoplasmic MPI of Arhgdia mRNA, altered CS

plots for Arhgdia mRNA-protein in the presence of a cytoskeletal

polymerization inhibitor, and the reduction in peripheral enrich-

ment and clustering of Arhgdia protein when translation is in-

hibited suggest MTOC-dependent peripheral local translation.

Furthermore, depletion of PRRC2C, an Arhgdia mRNA binding

protein, led to changes in the subcellular localization of Arhgdia

in relation to the MTOC, changes in translation of the correspond-

ing protein, and further downstream effects related to RhoGDIɑ
function as a regulator of Rho GTPases, including inhibition of

cell migration. Taken together, these data exemplify the impor-

tance of characterizing the spatial distribution of mRNA quantita-

tively and how measurable changes in the subcellular distribution

of the transcript are linked to RNA and protein function.

Our analyses also revealed important aspects of Pard3 spatial

and temporal distribution. The transcript and protein show a

correlated temporal degree of clustering and a reduction in pe-

ripheral enrichment and clustering of the Pard3 protein in the pres-

ence of a translational inhibitor. In contrast to Arhgdia, there is an

increase in the MPI of Pard3mRNA upon disruption with nocoda-

zole, indicatingMTOC-MT influence onPard3 transport. Localiza-

tion of the Pard3 protein in peripheral clusters at cell-cell adhe-

sions was previously shown in fibroblasts when grown in culture

(Schmoranzer et al., 2009), which is concordant with the periph-

eral enrichment of Pard3 mRNA and protein in our system.

Resolving spatial distribution of RNA and protein in a
quantitative manner across time points
We have shown our approach to be suitable for the identification

of patterns of RNA spatial and temporal distribution and RNA-

protein interdependent localization, both globally and locally.

We demonstrated how our analytical tools can be applied to mi-

cropatterned cells for studying RNA subcellular distribution and

how it can be used for other constrained cellular geometries.

Several aspects of our approach are suitable as a basis for

diverse kinds of spatially resolved omics (Crosetto et al., 2015).
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Figure 7. Sarcomeric mRNAs cluster in a stri-

ated pattern in differentiated myofibers

(A) Typical epifluorescent images of immature and

mature muscle fibers. The DNA was stained with

DAPI (blue), F-actin was visualized by using IF

(green), and Actn2/Gapdh were visualized by using

smFISH (red). Z-line and RNA spot detection masks

were extracted by using IF and single-molecule

data, respectively.

(B) mRNA distance profiles. For each mRNA we

computed its distance to the closest Z lines, which

allowed us to count the number of mRNAs having a

certain distance to Z lines. Normalized median

counts are represented on the y axis. A higher

number of actn2 immature mRNA falls inside or

close to Z lines in comparison with mature fibers,

suggesting greater clustering of mRNA between Z

lines for mature actn2. The Z-line distance is a

Euclidean distance.

(C) The mRNA local density was computed between

two nuclei. Each cell was quantized in vertical

quadrants, and relative concentration of mRNA in

each quadrant was computed by normalizing the

counts by the relevant surface. A wave-like clus-

tering is observed for actn2 in mature comparedwith

immature fibers. No clustering is observed for

Gapdh.

(D) Model describing actn2 mRNA distribution in

immature and mature fibers.
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The quantitative nature of the computational analyses, autono-

mous image acquisition, and automated features of our data

processing make DypFISH highly scalable to high-throughput

studies and in mammalian tissue cells. Particularly, the capacity

of the approach to investigate changes in localization under

perturbation make DypFISH suitable for inferring spatially orga-

nized regulatory networks (Crosetto et al., 2015) and capable

of being combined with multiplexing techniques (Chen et al.,

2015) to reveal dynamic changes in cell state. As well as corre-

lated mRNA-protein localization, our generalized clustering

approach can be used to detect interdependent clustering

patterns between RBPs and different kinds of RNAs (long non-

coding RNAs, mRNAs, microRNAs) or interdependent protein-

protein clustering patterns. Finally, we believe that techniques

such as those presented here will help to make possible further

development of integrated approaches and thus contribute to

large-scale multi-omics studies at subcellular resolution, such

as the Human Cell Atlas.

Limitations of study
This study provides a toolbox to characterize various aspects of

subcellular localization of RNA and protein molecules. These

include subcellular location, relation toa cellularmarker, clustering

patterns, and colocalization between molecules, among others.

The limitations of this study include the following: (1) The subcellu-

lar localization of a biomolecule is defined in relation to a chosen

cellular marker and it is not an absolute parameter. (2) Micropat-

terned cells and muscles have a specific, defined topology but

standardcells in culture donot, and thus the definitionsof ‘‘periph-

eral,’’ ‘‘central,’’ and so forth are less clear-cut. (3) The annotation

of the MTOC has been done manually; automation is difficult, as

the signal using the anti-tubulin antibody might be blurry, there is

a certain percentage of cells with more than one MTOC, and the

annotation often requires looking through a fewZ slices. However,

we do expect the annotation to be automated in the future. (4)

Althoughmanycell lines andsomeprimary cells spreadwell onmi-

cropatterns, not all primary cell types and cell lines spread and

adopt the shape of the micropattern, limiting the number of cell

types that can be used. (5) The effect of modification of cell quan-

tization parameters (such as number of quadrants and isolines) on

the resulting statistical results has not been evaluated.
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Marty, I., Nishino, I., Charlet-Berguerand, N., Romero, N.B., et al. (2014). N-

WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning

and triad organization in skeletal muscle and is involved in the pathophysiology

of centronuclear myopathy. EMBO Mol. Med. 6, 1455–1475.

Fomina-Yadlin, D., Du, Z., and McGrew, J.T. (2014). Gene expression mea-

surements normalized to cell number reveal large scale differences due to

cell size changes, transcriptional amplification and transcriptional repression

in CHO cells. J. Biotechnol. 189, 58–69.

Franzini-Armstrong, C., and Peachey, L.D. (1981). Striated muscle-contractile

and control mechanisms. J. Cell Biol. 91, 166s–186s.

Garcia-Mata, R., Boulter, E., and Burridge, K. (2011). The ‘invisible hand’:

regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12,

493–504.

Gomes, E.R., Jani, S., and Gundersen, G.G. (2005). Nuclear movement regu-

lated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization

in migrating cells. Cell 121, 451–463.

Gupta, S., Marcel, N., Sarin, A., and Shivashankar, G.V. (2012). Role of actin

dependent nuclear deformation in regulating early gene expression. PLoS

One 7, e53031.

Hale, C.M., Chen, W.C., Khatau, S.B., Daniels, B.R., Lee, J.S., and Wirtz, D.

(2011). SMRT analysis of MTOC and nuclear positioning reveals the role of

EB1 and LIC1 in single-cell polarization. J. Cell Sci. 124, 4267–4285.

Hengst, U., Deglincerti, A., Kim, J.K., Jeon, N.L., and Jaffrey, S.R. (2009).

Axonal elongation triggered by stimulus-induced local translation of a polarity

complex protein. Nat. Cell Biol. 11, 1024–1030.

Jain, N., Iyer, K.V., Kumar, A., and Shivashankar, G.V. (2013). Cell geometric

constraints induce modular gene-expression patterns via redistribution of

HDAC3 regulated by actomyosin contractility. Proc. Natl. Acad. Sci. U S A

110, 11349–11354.

Jansen, R.P. (2001). mRNA localization: message on the move. Nat. Rev. Mol.

Cell Biol. 2, 247–256.

Katz, Z.B., Wells, A.L., Park, H.Y., Wu, B., Shenoy, S.M., and Singer, R.H.

(2012). b-Actin mRNA compartmentalization enhances focal adhesion stability

and directs cell migration. Genes Dev. 26, 1885–1890.
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Théry, M. (2010). Micropatterning as a tool to decipher cell morphogenesis and

functions. J. Cell Sci. 123, 4201–4213.
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Antibodies

Anti-Tubulin Abcam # ab6160; RRID:AB_305328

anti RhoGDI antibody Santa Cruz # sc-360; RRID:AB_2227516

Anti-PARD3 Abcam # ab64646; RRID:AB_1603911

Anti b-Actin Santa Cruz # sc-81178; RRID:AB_2223230

Anti Gapdh Santa Cruz # sc-25778; RRID:AB_10167668

anti-GM130 BD Biosciences # 610823; RRID:AB_398142

Goat Anti-RABBIT IgG

ATTO 550 Conjugated

Rockland # 611-154-122S; RRID:AB_10894121

Donkey anti Rat AlexaFluor647 Abcam # ab150151

Donkey anti Mouse

Alexa488

Thermo Fisher Scientific # A21202; RRID:AB_141607

Chemicals, peptides, and recombinant proteins

Collagenase type I Sigma-Aldrich Cat #C0130

Dispase Roche Cat #04942078001

Iscove’s Modified Dulbecco’s Medium

(IMDM) with GlutaMAX

Invitrogen Cat #31980022

Fetal bovine serum (FBS) Eurobio Cat #CVFSVF00-01

Penicillin/streptomycin (Penstrep) Thermo Fisher Scientific Cat #15140122

Matrigel Corning Cat #354230

Recombinant Rat Agrin R&D systems Cat #550-AG-100

Horse serum Thermo Fisher Scientific Cat #26050088

DMEM/F12 medium Thermo Fisher scientific (Gibco) # 11054001

EGM-2 Bulletkit Lonza # CC-3162

FBS Biochrom # S0613

Cytochalasin D Sigma # 22144-77-0

Cycloheximide Sigma # 66-81-9

Nocodazole Sigma # 31430-18-9

penicillin/streptomycin Gibco # 15140122

Hepes Sigma # H0887-100 ML

Human umbilical vein endothelial cells

(HUVECs)

Lonza # C2519A

PLL(20)-g[3.5]- PEG(2) Surface Solutions (SuSoS) N/A

PBS Thermo Fisher Scientific (Gibco) # 10010023

Fibronectin Thermo Fisher Scientific (Gibco) # 3010018

Fibrinogen-Alexa Fluor 488 Thermo Fischer Scientiifc (Invitrogen) # F13191

NaHCO3 Sigma # 144-55-8

Sodium tetraborate Sigma # 1330-43-4

ATTO-565 NHS-ester dye ATTO-TEC # AD 565

Formaldehyde Sigma # 50-00-0

SSC-Buffer Sigma # S6639-1L

Ethanol 99.8 % Sigma # 64-17-5

Dextran Sulfate VWR # 0198-50G

Ribonucleoside Vanadyl Complex NEB (New England Labs) # S1402S
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tRNA from E. coli MRE 600 Sigma # TRNAMRE-RO

Formamide Sigma # F9037-100ML

BSA Thermo Fisher Scientific # AM2616

D-(+)-Glucose solution Sigma # 50-99-7

Glucose oxidase Sigma # 9001-37-0

Catalase Sigma # 9001-05-2

DAPI Life Technologies # D1306

Critical commercial assays

DharmaFECT one reagent Dharmacon, GE Healthcare # T-2005-01

RNeasy Mini Kit (Qiagen) Qiagen # 74104

Superscript IV First-Strand Synthesis

System

Invitrogen # 8091050

Experimental models: Cell lines

NIH/3T3 ATCC, Cellonex # CCL-92

Human umbilical vein endothelial cells

(HUVECs)

Lonza # C2519A

Experimental models: Organisms/strains

Mouse: C57BL/6 Strain Charles River code: 027

Oligonucleotides

ON-TARGETplus Human PRRC2C (23215)

siRNA - SMARTpool, 10 nmol

Dharmacon # L-014078-00-0010

On-Targetplus Non-targeting siRNA #1,

20 nM

Dharmacon # D-001810-01-05

human GAPDH forward sequence

GTCAAGGCTGAGAACGGGAA

This manuscript N/A

human GAPDH reverse sequence

TGGACTCCACGACGTACTCA

This manuscript N/A

human PRRC2C forward sequence

GAAGCAGTTCCAGTCAGCC

This manuscript N/A

human PRRC2C reverse sequence

GTTGCGTGGACTGAAGAACC

This manuscript N/A

Gapdh probes - 24-48 20-mers, each

20-mer containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

Arhgdia probes - 24-48 20-mers, each

20-mer containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

b-Actin probes - 24-48 20-mers, each 20-

mer containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

Rab13 probes - 24-48 20-mers, each

20-mer containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

(Continued on next page)
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Pkp4 probes - 24-48 20-mers, each 20-mer

containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

Pard3 probes - 24-48 20-mers, each

20-mer containing a mdC(TEG-Amino) 3’

modification used to conjugate an NHS-

ester ATTO-565 fluorescent dye (ATTO-

TEC) to the probe

Biosearch Technologies N/A

Deposited data

HDF5 data files of primary and secondary

image descriptors for FISH Micropatterned

images, CHX, CytoD, Nocodazole,

PRRC2C and Muscle data

http://dypfish.org/ https://doi.org/10.5281/zenodo.5155127

Software and algorithms

Chemotaxis and Migration Tool Chemotaxis and Migration Tool (https://

ibidi.com/chemotaxis-analysis/

171-chemotaxis-and-migration-tool.html)

N/A

FiJi/ImageJ (2.0.0) Schindelin et al., 2012 N/A

GraphPad Prism GraphPad Prism (https://graphpad.com) N/A

MATLAB - polarity analysis script to

calculate the Polarity Index (PI)

Carvalho et al., 2019 N/A

ICY and mManager de Chaumont et al., 2012

https://icy.bioimageanalysis.org

Edelstein et al., 2014

https://doi.org/10.14440/jbm.2014.36

N/A

SV Control software Optical Biosystems N/A

HDF5 The HDF Group, Hierarchical data format

version 5, 2000-2010, http://www.

hdfgroup.org/HDF5

N/A

DypFISH code https://github.com/cbib/dypfish https://doi.org/10.5281/zenodo.5153514
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Musa M. Mhlanga

(belenus@mhlangalalab.org).

Materials availability
This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and medium
NIH/3T3cells (mousefibroblast sarcomacell line)werepurchased fromATCC,Cellonexandwerecultured inDMEM-F12 (ThermoFisher

Scientific -Gibco, # 11054001) supplementedwith 10% fetal bovine serum (Biochrom, # S0613). Human umbilical vein endothelial cells

(HUVECs)werepurchased fromLonza,andcultured inEGM-2Bulletkit (Lonza,#CC-316) supplementedwith1%penicillin/streptomycin

(Gibco, # 15140122). Primary muscle cells were isolated from newborn mice and differentiated as described in Pimentel et al., 2017.

METHOD DETAILS

Cell culture and treatments
NIH/3T3 cells were grown at 37�C to 100 % confluence in DMEM/F12 medium supplemented with 10 % FBS in a humidified atmo-

sphere containing 5 % CO2. Prior to micropatterning cells were serum-starved for 16 hr in DMEM/F12. For disruption of microtubule
e3 Cell Reports Methods 1, 100068, September 27, 2021
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polymerization, nocodazole (Sigma) was added to a final concentration of 50 ng/ml to the medium, post removal of unattached cells

and incubated for 3/5 hours before fixation of cells. Cytochalasin D (Sigma) was added to a final concentration of 1 mg/ml to the

medium post removal of unattached cells and incubated for 1 h before fixation of cells. Cycloheximide (Sigma) was added to a final

concentration of 10 mg/ml 24 h prior to seeding on micropatterns, as well as post washes of unattached cells, following standard

practice. HUVECs were cultured following the manufacturer’s guidelines with complete medium EGM-2 Bulletkit (CC-3162, Lonza)

supplemented with 1% penicillin/streptomycin (#15140122, Gibco). HUVECs were transfected with 25 nM of siRNA using the

DharmaFECT one reagent (Dharmacon, GE Healthcare) and following the Dharmacon siRNA Transfection Protocol. L-014078-00-

0010 ON-TARGETplus Human PRRC2C (23215) siRNA - SMARTpool, 10 nmol and D-001810-01-05 On-Targetplus Non-targeting

siRNA #1 (Dharmacon), 20 nM.

RNA isolation and analysis
RNA extraction from HUVECs was performed using RNeasy Mini Kit (Qiagen) as described by the manufacturer’s protocol,

followed by cDNA synthesis (Superscript IV First-Strand Synthesis System, Invitrogen) and subsequent quantitative real-time

PCR (RT-qPCR). The following primers were used: human GAPDH forward sequence GTCAAGGCTGAGAACGGGAA and reverse

sequence TGGACTCCACGACGTACTCA, human PRRC2C forward sequence GAAGCAGTTCCAGTCAGCC and reverse sequence

GTTGCGTGGACTGAAGAACC, mouse PRRC2C forward sequence GAAGCAGTTCCAGTCAGCC and reverse sequence

GTTGCGTGGACTGAAGAACC.

Cell micropatterning
Micropattern production was performed as previously described (Azioune et al., 2009). Briefly, glass coverslips were exposed to

deep UV light using a UVO Cleaner (Jelight Company) for 5 mins. Cleaned coverslips were incubated with 0.1 mg/ml PLL-g-PEG

(Surface Solutions) in 10 mM HEPES, pH 7.4 at RT for 1 hr. They were then rinsed once in PBS followed by one rinse in MilliQ water.

The pegylated glass coverslips were then placed on a custom designed chromium photomask (Delta mask) (containing the desired

micropatterns) and exposed to deep UV light for 5 mins. The patterned glass coverslips were then incubated with a fibronectin/fibrin-

ogen-Alexa Fluor488 mixture (Life Technologies) in 100 mM NaHCO3, pH 8.5, at RT for 1 hr. The coverslips were then rinsed in PBS

and used immediately for cell seeding. Serum-starved NIH/3T3 cells were seeded on the micropatterned surfaces at a density of

10,000 cells/cm2. After 30 mins, unattached cells were removed by gentle aspiration and replacement of the medium to DMEM/

F12 medium supplemented with 10% FBS, which induced polarization of cells. Attached micropatterned cells were incubated at

37�C for 2 to 7 hours.

RNA probes and reagents
Design and manufacture of RNA FISH probes for use in the single molecule FISH method were performed according to the protocol

by (Raj et al., 2008). Multiple 20-mer oligonucleotide probes targeting the following mRNAs: Gapdh, Arhgdia, b-Actin, Rab13, Pkp4

and Pard3 were purchased (Biosearch Technologies). Each 20-mer contains a mdC(TEG-Amino) 3’ modification used to conjugate

an NHS-ester ATTO-565 fluorescent dye (ATTO-TEC) to the probe. In brief, concentrated oligonucleotide probes were resuspended

in 0.1 M Sodium tetraborate (Sigma) and mixed with resuspended 0.25 mg of the NHS-ester dye and incubated overnight at 37�C.
This was followed by ethanol precipitation of the probes and purification by reverse phase HPLC on a XBRIDGETMOST C18 column

to enrich for dye conjugated probes.

Immuno-RNA FISH staining
For experiments utilizing the Gapdh, Arhgdia, b-Actin RNA probes: micropatterned NIH/3T3 cells were fixed in 3.7 % formaldehyde

for 10 min at 37�C followed by washes in PBS and overnight permeabilization in 70% ethanol at 4�C. For experiments utilizing the

Rab13, Pkp4, Pard3 RNA probes: micropatterned NIH/3T3 cells were fixed in pre-chilled methanol for 10 min, followed immediately

by RNA FISH. The single molecule FISH method was modified from (Raj et al., 2008) to include immunofluorescence staining to

detect the microtubule cytoskeleton. Cells were rehydrated in wash buffer (10 % formaldehyde, 2X SSC) for 5 min. Hybridization

was conducted overnight in a humidified chamber at 37�C in Hyb buffer (10 % dextran sulfate, 1 mg/ml E.coli tRNA, 2mM Vanadyl

ribonucleoside complex, 0.02 % RNAse-free BSA, 10 % formamide, 2X SSC) combined with 50 ng of the desired RNA probe along

with primary antibody - rat monoclonal anti-tubulin antibody (Abcam). Cells were then washed 2X (30 min at room temperature) with

antibody wash buffer (10% formaldehyde, 2X SSC, anti-rat secondary antibody conjugated to Alexa Fluor 647 (Abcam)) followed by

1X wash with wash buffer. Cells were then incubated in equilibration buffer (0.4 % glucose, 2X SSC) for 5 mins and counter stained

with 1 mg/ml DAPI (4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were mounted in imaging buffer (3.7 mg/ml glucose

oxidase and 1U catalase in equilibration buffer) and imaged.

Immunofluorescence staining
Micropatterned cells were fixed in 3.7% formaldehyde for 10 min at 37�C, then washed with PBS followed by overnight incubation in

70 % ethanol at 4�C. The cells were then washed with FBS followed by permeabilization for 10 min in 0.25 % Triton-X at room tem-

perature. Following this, the cells were washed thrice with PBS for 5 min each and incubated in blocking buffer (0.2 % BSA/PBS) for

30 min at room temperature. The cells were then incubated in the desired primary antibody solution (diluted in PBS) along with rat
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monoclonal anti-tubulin antibody (Abcam) to detect the microtubule cytoskeleton for 1 hr at room temperature. RhoGDIɑ, Par3,
b-Actin and Gapdh proteins were detected using rabbit polyclonal anti-Arhgdia (Santa Cruz), rabbit polyclonal anti-Pard3 (Abcam),

mouse monoclonal b-Actin (Santa Cruz) and mouse monoclonal anti-Gapdh (Santa Cruz) respectively. Cells were then washed 3X

with PBS following incubation with corresponding anti-rabbit secondary antibody conjugated to ATTO 550 (Rockland) together with

anti-rat secondary antibody conjugated to Alexa Fluor 647 (Abcam) for 1 hr at room temperature. A further 3X wash with PBS was

conducted followed by incubation in equilibration buffer (0.4 % glucose, 2X SSC) for 5 mins and counter stained with 1 mg/ml

DAPI (4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were mounted in imaging buffer (3.7 mg/ml glucose oxidase

and 1U catalase in equilibration buffer) and imaged. For immunofluorescence in HUVECs, cells were fixed using 1% Paraformalde-

hyde (PFA) supplemented with 1 MMgCl2 and 1 M CaCl2 (1 ml/2 ml). Blocking and permealization was made with 3% BSA in PBS-T

(PBS with 0.1 % Triton X-100). Primary antibody - mouse anti-GM130 (BD Biosciences) was diluted in blocking solution and incu-

bated for 2 h. Secondary antibody donkey anti-mouse Alexa488 (Thermo Fisher Scientific) was diluted in the blocking solution

[3% BSA in PBS-T (PBS with 0.1 % Triton X-100)] and incubated for 1 h. For nucleus staining, HUVECs were incubated with 1x

DAPI and then coverslips were mounted on microscopy glass slides using Mowiol DABCO (Sigma-Aldrich).

Polarity and migration assays
To calculate axial cell polarity and analyze cell migration, scratch-wound assays were performed. The wound was created on the

surface of a 12-well-plate for cell migration assessment and on a microscopy glass-slide for axial polarity measurements with a

200 mL pipette tip. HUVECs migration was followed for 16 hours, individual cells were tracked and migration behavior, directness

and cell velocity, were analyzed using the FIJI TrackMate plug in and the Chemotaxis and Migration Tool (free software from Ibidi).

Tile-scan images of cells stained for Golgi (GM130) and nucleus (DAPI) were imported and analyzed in MATLAB using a polarity anal-

ysis script in order to calculate the Polarity Index (PI). PI shows the orientation strength of the cell monolayer and it varies from 0 to +1,

where 0 corresponds to random localization of the Golgi and +1 corresponds to same directionality of the Golgi in all.

Image acquisition
Most samples were imaged on a custom built spinning disk confocal Revolution XD system (Andor) comprising of a Zeiss Axio Ob-

server.Z1 microscope with a 63X Plan-Apochromat objective (numerical aperture 1.4) and a cooled EMCCD camera (Andor iXon

897). Z-dimension positioning and control was accomplished by a piezoelectric motor (NanoScanZ, Prior Scientific). Images were

captured using a custom developed algorithm based on ICY and mManager that allowed autonomous image acquisition (Figure S1A).

In brief, the position of the micropatterns on the micropatterned surface were determined autonomously using the grid detection,

alignment and calibration algorithm. This was then followed by sequential autonomous stepping through the micropatterned grid

to determine the presence of a cell on the micropattern. If a single cell was detected on the micropattern surface by the algorithm

then a z-dimension series of images was captured every 0.3 mm in four different fluorescence channels using emission filters for

DAPI (DNA), Alexa Fluor 488 (micropatterns), ATTO 565 (mRNA/protein) and Alexa Fluor 647 (tubulin) and exposure times of

10 ms, 350 ms, 1 s (mRNA) or 500 ms (protein) and 350 ms respectively. A few samples were imaged on a custom built Nikon Ti

Eclipsewidefield TIRFmicroscope using a 100XN.A. 1.49 Nikon Apochromat TIRF oil immersion objective and equivalent fluorescent

channels as above, followed by processing using an automated background noise subtraction algorithm using ImageJ (Abràmoff

et al., 2004). Samples were also imaged on a StellarVision microscope using Synthetic Aperture Optics technology (Optical Bio-

systems) and processed to obtain stacked single cell images for analysis. These are listed in the relevant supplementary tables.

All images acquired on the Zeiss Axio Observer.Z1 microscope were 512x512 pixels in size, whereas the ones acquired on the Stel-

larVision were 251x251 pixels. See Tables of image acquisition characteristics for image counts.

Materials
Imageswere acquired forArhgdia,Gapdh, b-Actin,Pard3,Pkp4, andRab13 genes. Tables of image acquisition characteristics below

recapitulate acquisition conditions, techniques and number of acquired images in each series of FISH and IF data.

The following table recapitulates all the image acquisition series characteristics and numbers for mouse fibroblast cells grown in

micropatterned and standard cultures (indicated by *).
Gene Molecular species Technique Time point (number of images)

Arhgdia* mRNA FISH 1 h (76); 3 h (24)

Arhgdia (control) mRNA FISH 2 h (59); 3 h (45); 4 h (52); 5 h (48)

Arhgdia (control) protein IF 2 h (31); 3 h (14); 5 h (61); 7 h (21)

b-Actin mRNA FISH 2 h (41); 3 h (42); 4 h (28); 5 h (29)

b-Actin protein IF 2 h (9); 3 h (19); 5 h (17); 7 h (24)

Gapdh mRNA FISH 2 h (58); 3 h (62); 4 h (50); 5 h (43)

Gapdh protein IF 2 h (27); 3 h (31); 5 h (21); 7 h (21)

(Continued on next page)
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Gene Molecular species Technique Time point (number of images)

Pard3 (control) mRNA FISH 2 h (25); 3 h (13); 4 h (15); 5 h (12)

Pard3 (control) protein IF 2 h (25); 3 h (20); 5 h (9); 7 h (26)

Pkp4 mRNA FISH 2 h (17); 3 h (32); 4 h (11); 5 h (26)

Rab13 mRNA FISH 2 h (16); 3 h (13); 4 h (22); 5 h (8)

Table describing Image acquisition characteristics for micropatterned and cultured cells.
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Image acquisition series characteristics and numbers for mouse fibroblast cells grown in micropatterned cultures in control and

drug-disrupted conditions for the CytoD experiment are detailed in the following table.
Gene (condition) Molecular species Technique Time point (number of images)

Arhgdia (Control) mRNA FISH 1 h 15 (19)

Arhgdia (Control) Protein IF 1 h 15 (19)

Arhgdia (CytoD) mRNA FISH 1 h 15 (22)

Arhgdia (CytoD) protein IF 1 h 15 (25)

Pard3 (Control) protein IF 1 h 15 (24)

Pard3 (CytoD) protein IF 1 h 15 (20)

Table describing the image acquisition characteristics for the CytoD experiments.
Below are listed the image acquisition series characteristics and numbers for mouse fibroblast cells grown in micropatterned cul-

tures in control and drug-disrupted conditions for the nocodazole experiment.
Gene (condition) Molecular species Technique Time point (number of images)

Arhgdia (control) mRNA FISH 2 h (59); 3 h (45); 4 h (52); 5 h (50)

Arhgdia (control) protein IF 2 h (31); 3 h (14); 5 h (61); 7 h (21)

Arhgdia ( nocodazole) mRNA FISH 3 h (41); 5 h (32)

Arhgdia ( nocodazole) protein IF 3 h (20); 5 h (20)

Pard3 (control) mRNA FISH 2 h (29); 3 h (13); 4 h (15); 5 h (12)

Pard3 (control) protein IF 2 h (25); 3 h (20); 5 h (9); 7 h (26)

Pard3 (nocodazole) mRNA FISH 3 h (25); 5 h (21)

Pard3 (nocodazole) protein IF 3 h (14); 5 h (22)

Table describing the image acquisition characteristics for the Nocodazole experiments.
All image acquisition series characteristics and numbers for mouse fibroblast cells grown in micropatterned cultures in control and

drug-disrupted conditions for the CHX experiment are presented in the following table.
Gene (condition) Molecular species Technique Time point (number of images)

Arhgdia (Supp. control) mRNA FISH 2 h (19); 3 h (11); 5 h (11)

Arhgdia (Supp. control) protein IF 2 h (34); 3 h (25); 5 h (26)

Arhgdia (CHX) mRNA FISH 2h (5); 3h (2); 5h (4)

Arhgdia (CHX) protein IF 2h (16); 3h (16); 5h (16)

Pard3 (Supp. control) mRNA FISH 2h (15); 3h (12)

Pard3 (Supp. control) protein IF 2h (34); 3h (24); 5h (18)

Pard3 (CHX) mRNA FISH 2h (5); 3h (4); 5h (3)

Pard3 (CHX) protein IF 2h (10); 3h (12); 5h (3)

Table describing the image acquisition characteristics for the CHX experiments.
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The following table recapitulates the image acquisition series characteristics and numbers for mouse fibroblast cells grown in mi-

cropatterned cultures in control and siRNA conditions for the PRRC2C experiment.
Gene Molecular species Technique Time point (number of images)

Arhgdia (PRRC2C) mRNA FISH PRRC2C (20); Control (38)

Arhgdia (PRRC2C) protein IF PRRC2C (36); Control (46)

Table describing the image acquisition characteristics for the PRRC2C experiments.
Myofibers were differentiated and fixed as previously described (Pimentel et al., 2017; Roman et al., 2017).

Images were acquired for Actn2 and Gapdh genes. Acquisition conditions, techniques and number of acquired images in each

series are recapitulated in the following table.
Gene Element Technique Number of images

Actn2 Phalloidin mature fibers FISH / IF 12

Actn2 Phalloidin immature fibers FISH / IF 8

Gapdh Phalloidin mature fibers FISH / IF 14

Table describing the image acquisition characteristics for muscle cells.
In all of our experiments, we stained different cellular elements acquired at the same time as the FISH and IF signals, with different

staining as detailed in the Feature staining table.
Feature Staining

DNA DAPI - 358⁄461

Micropatterns (only for micropatterned

cells)

Fibrinogen - Alexa Fluor 488

Tubulin Alexa Fluor 647

Table showing the summary of labeled cellular markers in the same images as the FISH and IF signals.
Images were acquired in the TIFF format. Our image processing pipeline transformed images into an HDF5 file (downloadable from

the website www.dypfish.org).

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analysis performed in the DypFISH project and described below were implemented in Python.

Primary image descriptors
Given the TIFF files, we first computed primary image descriptors for each image and stored them in an HDF5 file for each acquisition

series.

MTOC and nucleus centroid

FISH and IF images were manually annotated using the g-Tubulin signal to obtain the coordinates ðx; yÞ of the MTOC. The nucleus

centroid was computed as the geometric center of the nucleus mask (see below).

Cell, nucleus and cytoplasm masks

Cell and nucleus masks were computed for all images (FISH and IF) using g-Tubulin and DAPI signals, respectively.

For each image we obtained the maximum projection of the g-Tubulin stained z-stack. A vignetting correction is further applied to

each resulting image individually by performing a pixel wise multiplication between each pixel value and the vignetting function. The

detected cells being in the microscope’s focus, we assumed the optical center to be the center of the image and the intensity fall-off

to be radially symmetric and the vignetting function is defined for each pixel x; yas e�d = ½ðw=2Þ2�ðh=2Þ2 �; where d =

ðx �w=3Þ2 + ðy � h=2Þ2and wand hare the image’s width and height, respectively. For contrast enhancement we performed histo-

gram stretching by applying a linear normalization in order to stretch the interval of the intensities to the ½0; 255�interval.
Cell Mask was detected from the g-Tubulin channel. We applied a local entropy filter to each pixel i as follows: eðiÞ = �P

j˛Ni

pj log2pj, where pj is the proportion of pixels in the neighborhood Ni having the same intensity as pixel j. The neighborhood
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size was set to303 30. For certain noisy image series we further applied a percentile thresholding to the resulting entropy histogram.

As a last step, we performed Canny edge detection, which detected edges by applying Sobel operators to the smoothed image, fol-

lowed by hysteresis. However, the resulting edgeswere usually non-contiguous due to aweak g-Tubulin signal or a high rate of noise.

Thus, we successively applied mathematical morphological operators, such as dilation and closing, followed by erosion convention-

ally used to fill small gaps.

As the result we obtained a contiguous contour to which we applied the marching squares algorithm in order to obtain a 2D cellular

segmentation mask, Mcellðx;yÞ, which is 1 for the cellular region and 0 otherwise.

Nucleusmask procedurewas very similar using theDAPI signal and yieldingMnucleusðx;yÞ, except that the local entropy filter was in

most instances replaced by an Otsu filter, depending on the quality of the DAPI signal. Mathematical morphology algorithms were

applied to neighborhoods ranging from 16316 to 20320 depending on the image acquisition characteristics.

Binary cellular and nucleus masks above were used to define a binary cytoplasm mask of the cell, Mcytoplasmðx; yÞ =
Mcellðx; yÞ^:Mnucleusðx; yÞ
Zero level

An acquired image stack might contain irrelevant slices because the focal field of themicroscope is outside the cell (above or below).

To determine which slice contained the bottom of the cell and had to be considered as the first relevant bottom slice of the stack, we

defined the zero level descriptor corresponding to the index of the slice having the maximum summed g-Tubulin intensity. This zero

level reference z-slice was used in further analysis such as e.g. the height-map computation or the degree of clustering.

Height-map and cell volume

The height-map was built by segmenting each z-slice of a stacked image, which generated the 3D segmentation of the cell. It was

performed for all FISH and IF images using the g-Tubulin signal. Given a z-slice above the zero level we applied the cell mask detec-

tion procedure previously described, which defined a z-slice mask Mzðx;yÞ with values corresponding to the height of the slice (zÞ
within the mask and 0 outside. This set of slice masks defined the 3D representation, called height-map and denoted hðx; yÞ where

the value at each coordinate ðx; yÞ is the maximum over all slice masks, maxzðMzðx;yÞÞ.
Based on the height-map we defined the cell volumeV =

Pn
z=1Mzðx; yÞ as the sum of volumes of all pixels within the height-map,

where for each pixel p˛Mzðx;yÞ, its volume isvðpÞ = ð1O9:75mmÞ2 3 0:3mm, where 9:75 mm is a size coefficient between pixel in

mm, and 0:3 mmis the height of the slice (Specific constants are dependent on the microscope and camera settings).

Protein intensities

Protein signal was computed for each immunofluorescence (IF) image as the sum of intensities across all z-slices and denoted as

Iðx; yÞ.
mRNA spot detection

To detect transcript positions from FISH data we used the ICY spot detector (Olivo-Marin, 2002). For images havingmaxðzÞ% 12 we

used the following parameters: 2D wavelets and sensitivity 70 at pixel-scale 2; otherwise the parameters were set to: 1 pixel and 2

pixel length-scales with sensitivity 80. These parameters have been adapted for the detection of transcripts in the PRRC2C analysis,

the sensitivity has been set to 50 at pixel-scale 2 when the images havemaxðzÞ%12; otherwise we used the 2Dwavelets and a sensi-

tivity of 70 at the pixel-scale 2.

For cultured cells, as well as for CytoD micropatterned cell series, we have applied a custom-developed spot detection script

(these images present a very high noise content preventing efficient use of ICY). First, we applied a background noise subtraction

by using Sobel and Gaussian filters, successively. Second, we applied the white top-hat filter in order to enhance bright objects

of interest (potential mRNA spots) on a dark background. Finally, we used the Laplacian of Gaussians filter for mRNA spot detection.

Furthermore, for the 3D analyses spots detected below the zero level were eliminated. Cells with less than 10 spots and 100 for the

PRRC2C data (due to acquisition noise in cytoplasm) were eliminated.

Secondary image descriptors
Based on the primary image descriptors we computed secondary descriptors that corresponded to per image statistics.

Cytoplasmic total counts

Let us denoteM the set of all mRNA spots for a given FISH image, jMj = N. The cytoplasmic total mRNA descriptor was calculated as

the number of transcripts within Mcytoplasm; that is TmRNA =
��fm ˛M

��Mcytoplasmðx;yÞ = 1g��. The cytoplasmic total IF intensity is the

summed IF intensity across the Mcytoplasmregion for protein images: TIF =
PfIðx;yÞ ��Mcytoplasmðx;yÞ = 1g.

Peripheral distance map

For a given image, the peripheral distance map corresponds to a collection of peripheral masks based on Mcytoplasmðx;yÞ, where the

width of the periphery varies as a proportion of the cytoplasmic radial distance. We segmentedMcytoplasmðx; yÞ into 100 isolines from

the nucleus contour to the periphery by projecting a ray from the nucleus centroid to the cell border, which was then segmented in

100 equidistant points. The 100 isolines were then built by constructing polygons that connect 360 points (one ray per degree). These

isolines define a symbolic distance map D, where Dðx; yÞ is the isobar value for ðx; yÞ corresponding to the ‘‘distance’’ from the nu-

cleus envelope, with 100 at the nucleus and 0 at the cell edge. Given a fixed percent p between 0 and 100, the maskMperipheryðx; y;pÞ
is 1 for Dðx; yÞ<p and 0 otherwise. Hence, the periphery mask for a given p contains a strip at the cell edge whose width is a fixed-

proportion of the radial distance. Thus defined peripheral distancemap allows to compute in 3D peripheral volumes Vperiphery = ðViÞ at
each isoline and consequently distances from any voxel to either cell periphery or nucleus wall in 3D.
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Cell quantization

In order to compute localisation statistics over multiple micropatterned images, compatibility of these images is required. We have

chosen the MTOC position to be the reference point for the 2D cell geometry.

2D quantization: quadrants and per quadrant statistics. As shown on the schematic in Figures 4A and 4B, given a cell mask

Mcellðx;yÞ, we generate the tessellation of the image by centering two orthogonal axes at the nucleus centroid and rotating them

over 360 degrees, each position of these axes defining a partition of the cell mask into four quadrants, one of them containing the

MTOC, QM. We retained the orientation that maximizes the mRNA count within a quadrant containing the MTOC, that is

maxdðTmRNA =
��fm ˛M

��Mcytoplasmðx;yÞ = 1 ^ QMðx;yÞ = 1g��Þ; d˛½0;359�. The resulting four quadrants Q1; Q2; Q3; Q4 are

numbered so that Q1 always corresponds to QMand the remaining three quadrants are numbered in a clockwise fashion.

For protein intensities, quadrants are defined in a similar fashion using TIF . Definition of cell mask partitioning in quadrants

q; q2; q3; q4 enables cell’s quantization in 2D in terms of per quadrant statistics of mRNA and protein signal. Quadrants’ respective

areas are denoted by a1;a2;a3;a4. We denoted by ti the total number of mRNA spots falling in qi in the case of FISH data, or the

summed intensity across qi in the case of IF data.

Then the local mRNA density was computed as the relative concentration ci of mRNA in quadrant i and is defined to be ci =
ti=ai

TmRNA=A
,

where A is the cell mask area. In the case of protein signal we replaced TmRNA by TIF .

Fine-grained quantization. In the same fashion as for the peripheral distancemapwe defined an additional subdivision of the cellular

mask in isolines, their number being defined by the percent p. Given the previously defined quadrants, we further subdivided each of

them in 2, yielding the tessellation in 8 parts that divide the circle in 45 degree sectors. Using the isolines and the 8 sectors we

quantized the cell masks into 8 3 p segments organized in a concentric fashion starting from the nucleus towards the cell periphery

(see the schematic in Figure 5A). Quantization for thus obtained segments was computed in the same fashion as for quadrants,

resulting in a 8 3 p vectors of per segment signal concentration statistics for each cell, that we denoted C = ðciÞ.
3D quantization: 3D quadrants and per quadrant statistics. Cell mask’s tessellation into quadrants as defined in II.3.A (axes position)

is projected onto each z-slice, thus yielding the cell’s partition into four 3D quadrants Q1; Q2; Q3; Q4, their respective volumes being

denoted by v1;v2;v3;v4. The volume of each quadrant is calculated as the sumof volumes of pixels within it using the same coefficients

as for the cell volume.

We denoted by ti the total number of mRNA spots falling in Qi in the case of FISH data, or the summed intensity across Qi in the

case of IF data.

Then the relative concentration ci of mRNA in quadrant Qi is defined to beci =
ti=vi

TmRNA=V
: In the case of protein signal TmRNAis

replaced by TIF .

In the same fashion as for 2D, we computed fine-grained quantization statistics in 3D. Specifically, signal densities (mRNA or pro-

tein) were computed for 8 quadrants and each 1/3 of isolines, that is for 8 3 3 volumic segments, yielding signal concentration per

volumic region vectors for each cell, that we denoted C = ðciÞ. Notice that these vectors can be aligned between cells since all the

quadrants are anchored by the MTOC position.

Statistical analysis
Primary and secondary image descriptors were used to compute statistics for image acquisition series and to compare them.

Peripheral fraction and enrichment

Based on the cytoplasmmasks, we calculated the peripheral fraction ofmRNA and proteins at a given percent p of the radial distance

between the cell periphery and the cytoplasm. First, the peripheral density is defined as the ratio of the transcript counts (respectively,

summed IF intensities) across theMperipheryðx; y;pÞ and volumes ofMcytoplasmregions. First thanks to the distance map D we define a

vector C = ðc1; :::; c100Þ containing the counts of mRNAs (resp., summed intensities) at distances smaller or equal to i ˛ ½0; :::;100�
from the cell edge. This count vector C is divided by values of corresponding peripheral volumes Vperipheryto obtain spot (or protein)

densities in concentric regions from the periphery to each isoline ðci=ViÞ. These local peripheral densities are further normalized by

the total density of the cytoplasm dcytoplasm = N=Vcytoplasm, resulting in a vector of relative densities for all regions from the periphery

F =

 
ci=V

i

dcytoplasm

!
. The mRNA (resp., protein) fractions for each gene and for each isobar were defined as vector of median relative den-

sities over all FISH images for this gene over all time points.

Volume corrected noise measure

We have measured the cell-to-cell expression variability in mRNA levels that cannot be accounted for by cell-to-cell differences in

volume by computing the volume corrected noise measure Nm for micropatterned and standardly cultured cells. It was calculated

following the approach of a previous study (Padovan-Merhar et al., 2015):

Nm =
� sN

EðNÞ
�2

�
�

b3EðVÞ
a+b3EðVÞ

��
Covðm;VÞ
EðmÞ EðVÞ

�
where N is the total mRNA count,V is the cell volume, a; b are the offset and slope of the least-squares best-fit linear regression of

EðNÞ on V, and s; E and Cov are the notations for standard deviation, expectation and covariance, respectively.
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Cytoplasmic spread

Cytoplasmic spread is measured by two statistical parameters that estimate how evenly a molecule is spread across the cell: cyto-

plasmic centrality and cytoplasmic entropy. The centrality statistics formRNAs corresponds to the average distance from the nucleus

envelope of cytoplasmic mRNAs, normalised by the maximal distance from the nucleus (corresponding to the number of isolines

used to compute the distance map D). For the protein intensities, computation is the same but for peaks of intensity that are

above the average. The higher the value, the closer to the periphery of the cell is the signal (mRNA or protein) distribution, value

of 1 corresponding to 100% of the signal being at the periphery. The uniformity of the spread of molecule distributions in the cyto-

plasm is measured by computing Kozachenko-Leonenko entropy estimates H of a spatial random variable in 2D or in 3D based on

the kth-nearest neighbour distances between mRNA (intensity peaks, respectively) coordinates following [Kozachenko and Leo-

nenko, 1987]. Entropy is a unitless measure, to make the results comparable all the values are normalised by the maxðHÞacross
all cells.

MTOC polarity index

We defined a polarity index PIM˛½ � 1;1�, termed theMTOC polarity index, that measures the enrichment of mRNA or protein signal

for a given image acquisition series in the vicinity of the MTOC location.

For the set S of images from an acquisition series under study, we denoted by SM = fSig and S:M = fSjg the sets of all MTOC con-

taining quadrants and quadrants that do not contain the MTOC, respectively. Intuitively, the MTOC polarity index measures how

frequently the relative concentration within the MTOC quadrants is higher than in the non-MTOC quadrants. Formally it is defined

as follows:

PIM =
2 jf Si j ci > m gj

j S j � 1;

where m is the median of relative signal concentrations cj for quadrants in S:M.
Positive values of PIM imply MTOC correlated enrichment of RNA transcripts or proteins, negative values imply enrichment away

from the MTOC and a value of zero implies no detectable enrichment.

Statistical relevance of PIM is measured using the null hypothesis that ci; ci = m, which corresponds to the complete spatial

randomness. Under this hypothesis the population value ofPIMis 0. However, we have shown in (Warrell et al., 2016) that the empirical

distribution of PIMfollows the binomial distribution asymptotically. Thus, the binomial test was used to evaluate the statistical rele-

vance of PIMfor a given set of images.

mRNA / protein distribution profile

In order to define a spatial distribution profile of mRNAs and proteins for images acquired at a given time point, we used the fine-

grained quantization of the cells (see paragraphs IV.4.B and IV.4.C). A single vector was computed at each time point by averaging

across the pool of acquired images, hence estimating its expected value at that time point. Recall, that for each cell we computed a

vector C= ðciÞ of per segment signal (mRNA or protein) concentration statistics and that these vectors are comparable. Then for a

given time point we computed a median spatial profile �C= ð �ciÞ representative of this time point by averaging per segment all Ci

for this acquisition series.

Colocalization score

The goal of this analysis is to measure the interdependence between the mRNA and protein spatial distributions. To do this, we

defined the Colocalization Score (CS) as an effect size computed based on correlations between mRNA and protein spatial distribu-

tions for image acquisitions that we applied for several sets of time points: those where protein acquisition time is greater that mRNA

acquisition time and the others. Colocalization Score for a given mRNA-protein pair is calculated based on mRNA and protein dis-

tribution descriptor vectors �CmRNA and �CP and takes values between 0 and 1.

Notice that CS can be calculated for any measure of correlation between mRNA and protein distributions, which allowed us to

examine the interdependence of a molecule’s dynamics within specifically defined subcellular regions and at different time points.

More formally, we supposed a 2-measure discrete time process F, containing observations
�
fti

�
and ðjtj Þat time points T1 = ftig

and T2 = ftjg, respectively. Then, the (empirical) Colocalization Score is defined for pairs of data S =
	ðftiÞ3�jtj

� 

at time points T1

and T2 using a similarity function g and the Vargha and Delaney’s A12 statistics [Vargha and Delaney, 2000], a measure of stochastic

superiority when comparing two distributions (generalized effect size):

A12 = Pða > bÞ + 0:5Pða = bÞ
where a and b are the rank-sums a =

P
t1 ; t2

rg0
��
ft1 ;jt2

��
; t1 < t2and b =

P
t1 ; t2

rg0
��
ft1 ;jt2

��
; t1 > t2, respectively and where rg is the

rank of the tuple where the order is given by the g function. This g function is the similarity between pairs of observations is computed

as g
0��

t1;t2
��

/gð bE ½s�ft1

��; bE ½sðjt2 Þ �Þ. The ‘forward-leading’ setS1 is defined asS1 = fðt1;t2Þ ˛T1 3 T2 j t1 <t2g, and its complement

S2 contains all pairs of time-points such that t1Rt2. Thus, A12 can be understood as the effect size between the rank-sum of the sim-

ilarities g0ðt1;t2Þ across all ‘forward-leading’ time point pairs versus the rank-sum of the similarities g0ðt1;t2Þ across all the other time-

points. Notice that A12 statistics lies in the ½0; 1� interval.
In practice, for the analysis of mRNA / protein colocalizations, we considered computing the CS for a 2-measure discrete time pro-

cesses F in which f is a point process and j a general random measure (representing mRNA locations and protein concentrations
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respectively). In the current study we used relative density distributions of mRNA at T1 = f2;3;4; 5g and proteins at T2 =

f2; 3; 5;7g(the discrete time points representing time in hours), and g is the Pearson Correlation Coefficient between two relative den-

sity distribution vectors (see ‘‘mRNA/protein distribution profile’’). We note that these distributions can be computed based on a

particular quantization of cells and can cover the whole cell (forming a global CS) or a some section of the cell (e.g. the periphery).

Notice that measuring a correlation between a local density of some mRNA in a given voxel and its protein counterpart at a later

time point is dependent on the choice of timepoints and howdynamic themolecules are. To alleviate this issue, instead of considering

isolated voxels, we consider their direct neighborhoods.

Moreover, from the rank-sum of the similarities g0ðt1; t2Þ across S1 defined previously, an exact permutation test can be derived to

calculate significance levels for a given value of A12 and a steady-state null hypothesis.

Degree of clustering (Ripley-K)

The degree of clustering statistic has been previously introduced based on the framework of point processes by (Lee et al., 2013). It is

a unitless measure that can be used to compare clustering between different molecules and conditions. In (Warrell et al., 2016) we

generalized this definition to the framework of continuous randommeasures, which allows us to calculate the degree of clustering for

both FISH and IF data, the former being modelled as point processes, and the latter modelled as a continuous-valued randommea-

sure. Our generalized algorithm for calculating the degree of clustering is summarized below. For theoretical considerations please

see (Warrell et al., 2016).

A classical tool for the point process analysis is the Ripley’s K function defined as themean number of events that occurred inside a

ball of radius r around a randomly selected event normalized by l, the number of events per unit area (Ripley, B. D. 1977). A classical

estimator of the Ripley’s K function can be defined as in (Chiu et al., 2013; Ripley 1977):

bKðrÞ = 1

l2nðwÞ
Xn
i = 1

NiðrÞ

where Ni is the number of event points (mRNA transcripts) in a ball of radius r centered on i, l is the density, n is the volume or area (in

3D and 2D, respectively) of the observed region w, and n is the number of points.

We normalized cK under a homogeneous Poisson process, which is commonly known as Ripley’s H functionbHðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 bKðrÞÞ=ð4pÞd

q
� r; d˛f2;3g where d is equal to 3 in the case of volume-based computation and 2 in the case of 2D.

This in turn makes it possible to define the clustering index H� as an estimator of bHðrÞ by comparing the Ripley’s H function calcu-

lated empirically to its distribution under complete spatial randomness (CSR):

cH� ðrÞ= bHðrÞ=bH95ðrÞ if bHðrÞR0

�bHðrÞ=bH5ðrÞ otherwise

where bH95ðrÞ and bH5ðrÞ are the 95th and 5th percentiles respectively of bHðrÞ.
CSR is modeled using random permutations of actual data points (100 times in our study), which enabled us to compute the 95%

and 5%confidence bounds of CSR. Spatial clustering is considered to be significant at radius r if the computed bKðrÞ is over the upper
(95%) or lower (5%) bounds of the random distribution.

In (Warrell et al., 2016) we have introduced a convolution-based cH� estimator based on the random permutation-test. This esti-

mator normalizes bHðrÞ so that jcH�ðrÞj>1 only when bHðrÞ falls outside the 95% confidence interval for a homogeneous Poisson Pro-

cess. Moreover, we have shown that our permutation test using the convolution-based estimator reduced to the clustering index

estimator used by (Lee et al., 2013) for the point process case. This enabled the implementation of a common consistent computa-

tional framework for both point and continuous processes. The degree of clustering bdðrÞ is then defined as the area of bH�
above 1, that

is bdðrÞ =
R
x˛ð0;rÞmaxð bHðxÞ � 1; 0Þdx.

Within this unified framework we can use the same computational approach for mRNA data as in (Lee et al., 2013) to compute the

degree of clustering. Below we define the specific procedure for its computation in the case of protein data.

Cells are quantized into voxels V1,., Vn where each voxel t the value of the observed quantity 4ðV1Þ;:::; 4ðVnÞ in the case of 3D anal-

ysis (or into pixels in the case of 2D). We denoted by I an array in which each element corresponded to the intensity value for each voxel.

The convolution-based estimator cKc can be computed using the following formula: cKcðrÞ= 1
l2V

R ½jxj% r �ðI �I0ÞðxÞdx �1
l
where l

is an estimate of average intensity per unit volume, ½:� is the indicator function that is 1 for a true statement and 0 otherwise, I0ðxÞ =
Ið � xÞ, � is the convolution operator, and V is the volume of the window over which the cell is observed. In practice, given the fact

that the cell thickness is quite low, we can approximate the 3D convolution by a 2D convolution.

Thuswehavea commoncomputational framework toevaluate thepresenceor absenceof clustering for bothmRNAandprotein data.

Additional methods for muscle data analysis
In this section we report adaptations of the methods presented in ‘‘primary image descriptors,’’ ‘‘secondary image descriptors,’’ and

‘‘additional methods for muscle data analysis’’ to the case of muscle cells (see the table describing the Image acquisition character-

istics for muscle cells).
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Cell and nucleus masks, nucleus centroid

Cell and nucleus masks were computed for all muscle images, using g-Tubulin and DAPI signals, respectively, using the same gen-

eral principles as in ‘‘peripheral distance map.’’ As these acquisition series benefit from a better segmentation, only Otsu threshold

method was necessary to obtain the binarized images.

After these steps, we obtained a contiguous contour with small white spots due to noise in the images. We applied mathematical

morphological operators such as dilatation and closing to get a full mask of the muscle cellMcellðx;yÞ. The nucleus maskMnucleusðx; yÞ
detection followed the exact same steps and parameters as for the micropatterned images - the nucleus centroid was computed as

the geometric center of the nucleus mask.

mRNA signal detection

mRNA spots detection was done using ICY spot detector (Olivo-Marin 2002) to find transcript positions, the parameters were set to: 1

pixel and 2 pixel length-scales with a fixed sensitivity of 80.

Z-lines’ masks

The main component of Z-lines is the Alpha actinin protein. To facilitate the analysis, we have defined an additional secondary

descriptor computed from the Phalloidin signal, called Z-lines mask MZ�linesðx;yÞ.
For each z-slice of each imagewe performed the contour detection for the Z-lines. First, we applied a vertical Sobel operator, which

detected the vertical edges of an image, followed by a Gaussian kernel to smooth artifacts of the Sobel filtering and reinforce the Z-

line signal. An Otsu binarization was then processed. As a result we obtained a set of Z-lines masks MZ�lines = fMZ�lines
z ðx; yÞg

(Figure 7).

For further analysis we restricted the cell to z-slices containing more than 25 mRNA spots (to avoid false positives due to high

noise). Notice that the spots falling in the eliminated slices were also excluded from the analysis.

We defined an additional descriptor called Z-line spacing Z that represented the median spacing between two lines. For each

z-slice at each y coordinate we computed all the distances dððxi; yÞ; ðxj; yÞÞ where xi and xj were 2 consecutive Z-lines contours.

Zwas defined as the median of all d for all acquired cells. For our data Z = 15 pixels.

Z-line mRNA distance profile

In order to evaluate the mRNA clustering in the vicinity of Z-lines, we computed the average 2D Euclidean distance of mRNA spots to

their nearest Z-line for mature and immature cells.

Using theMZ�linesðx;yÞmasks, we computed for eachmRNA spotm˛M positioned at ðx; y; zmÞ theminimal 2D Euclidean distance to

a Z-line falling within a disk of radius Z. This computation was performed within the MZ�lines
z ðx; yÞ z-mask such that z = zm. If m fall

withinMZ�lines
z ðx;yÞ, then the minimal distance was set to 0. Thus for each image we obtained a D= fdg; jDj=N the set of all minimal

distances between mRNA and Z-lines. In turn this allowed us to define for each image a count vector d= ðdiÞ of size Z where di is the

number of mRNA spots at each distance d = i; d%Z normalized by N.

For a given image acquisition we defined its Z-line mRNA distance profile to be �d = ð�diÞ, where �di is the median of all di (Figure 7B).

Cell quantization

Given that muscle cells contained more than one nucleus, each cell mask was restricted to be between two consecutive nuclei cen-

troids as shown on the schematic in Figure 7C). Given a cell maskMcellðx;yÞ, definition of cell mask tessellation in n vertical segments

qi::: qn enables cells quantization in 2D in terms of per segment statistics of mRNA concentrations. Quantization was performed with

n = 20 and n = 80, see results in Figure 8C.

mRNA spatial distribution

To estimate mRNA clustering along muscle cells, we computed local mRNA density for each cell using the cell quantization intro-

duced in ‘‘cell quantization.’’ We denote by ti the total number of mRNA spots falling in a given qi. Then the local mRNA density is

computed in the same way as for fibroblast cells (see ‘‘peripheral fraction and enrichment’’) as the relative concentration ci of

mRNA in qi and is defined to be ci =
ti=ai

TmRNA=A
, whereA is the cell mask area.We produced distribution plots and heatmaps representing

mRNA local density between two nuclei (Figure 7C).

Additional methods for CHX inhibition analysis
Image processing has been performed for Arhgdia (Supp. control), Arhgdia (CHX), Pard3 (Supp. Control), Pard3 (CHX) (see table

describing image acquisition characteristics for CHX) as presented above for primary and secondary image descriptors except

for the FISH signal being used to detect cell masks for mRNA images. The number of acquired mRNA images was quite low for these

experiments, consequently we have only performed global analysis (compared to the datasets where we could analyse time point by

time point). We performed peripheral fraction enrichment and degree of clustering analyses in the same way as described in ‘‘periph-

eral fraction and enrichment’’ and ‘‘degree of clustering (Ripley-K),’’, respectively, except for 2 points: (i) all the analysis was per-

formed in 2D, (ii) for mRNA the computation was done using the continuous signal in the same way as for the IF, similarly to Stueland

et al., 2019.

DypFISH software code (in Python) as well as data (in HDF5 format) used in this study are freely available from http://www.dypfish.

org and https://github.com/cbib/Dypfish.
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