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The renin-angiotensin-aldosterone system (RAAS) is the regulatory system by which

renin induces aldosterone production. Angiotensin II (Ang II) is the main effector

substance of the RAAS. The RAAS regulates blood pressure and electrolyte balance

by controlling blood volume and peripheral resistance. Excessive activation of the RAAS

is an important factor in the onset of cardiovascular disease and the deterioration of this

disease. Themost common RAAS abnormality is primary aldosteronism (PA). Parathyroid

hormone (PTH) is a peptide secreted by the main cells of the parathyroid gland, which

promotes elevated blood calcium (Ca2+) levels and decreased blood phosphorus (Pi)

levels. Excessive secretion of PTH can cause primary hyperparathyroidism (PHPT).

Parathyroidism is highly prevalent in postmenopausal women and is often associated

with secondary osteoporosis. PA and PHPT are common endocrine system diseases.

However, studies have shown a link between the RAAS and PTH, indicating a

positive relationship between them. In this review, we explore the complex bidirectional

relationship between the RAAS and PTH. We also point out possible future treatment

options for related diseases based on this relationship.

Keywords: renin-angiotensin-aldosterone system, aldosterone, angiotensin II, primary aldosteronism, parathyroid

hormone, primary hyperparathyroidism

INTRODUCTION

Primary aldosteronism (PA) is often accompanied by primary hyperparathyroidism (PHPT) (1).
In general, the higher the serum aldosterone concentration, the higher the serum Parathyroid
hormone (PTH) concentration (2). Patients with PA often present with hypertension, and
hypertension patients have a 2- to 8-fold higher risk of developing hyperparathyroidism as
individuals with normal blood pressure (3). Hyperparathyroidism increases PTH levels and
promotes bone absorption, which increases the risk of osteoporosis, indicating that the renin-
angiotensin-aldosterone system (RAAS) is associated with osteoporosis. Meanwhile, RAAS can
also cause osteoporosis by other mechanisms. Studies by Hatton et al. and Beavan et al. showed
that bone may contain a tissue-renin-angiotensin-aldosterone system. Angiotensin I (Ang I),
angiotensin II (Ang II), and aldosterone can effectively stimulate bone resorption of osteoclasts,
causing osteolysis, thus leading to osteoporosis (4, 5). Mineralocorticoid receptor antagonism
(MRA) may directly or indirectly, via PTH, affect human bone health (6).
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It has been reported that PHPT patients have a higher
prevalence of cardiovascular abnormalities than the general
population (7, 8). PHPT leads to an increased prevalence of
cardiovascular diseases and cardiovascular mortality (9–13).
PTH is even used to predict cardiovascular risk (13, 14).
The increase in cardiovascular mortality is associated with
disturbances in the RAAS (15). PTH stimulates aldosterone
secretion in human adrenocortical cells (12, 16, 17), which
increases blood pressure. PTH can also raise blood pressure
in five ways, thus increasing the risk of cardiovascular disease.
Firstly, PTH may act as an ionophore for Calcium ion (Ca2+)
and promote Ca2+ entry into cells, increasing vasoconstriction
and raising blood pressure (18, 19). Secondly, PTHmay promote
vascular and cardiac remodeling, accelerating the development of
cardiovascular disease in patients with PHPT (17, 20), but this is
explained by the direct effect of PTH on vascular smooth muscle
cells and endothelial cells, instead of the RAAS (21). Thirdly,
higher PTH levels increase the degree of vascular stiffness and
thereby increase cardiac afterload (22, 23). Fourthly, PTH can
also increase plasma renin activity (PRA) and thereby increase
blood pressure, while hypertension is associated with vascular
calcification and aging (24). Moreover, the PRA level decreases to
normal after parathyroidectomy (25, 26). Finally, elevated serum
uric acid in PHPT patients may also lead to high blood pressure;
the serum uric acid level falls significantly in patients with PHPT
after parathyroidectomy (27, 28). Therefore, parathyroidectomy
may reduce the risk of cardiovascular disease (11, 29, 30).

Considering that it is clinically important to find out whether
a drug that affects one system will affect another system, thereby
facilitating clinical diagnosis and treatment, it is interesting to
discuss the complex relationship between the RAAS and PTH.

PHYSIOLOGICAL MECHANISM OF RAAS
BIOMARKERS AND RAAS INHIBITORS

The RAAS is an important body fluid regulation system in
the human body and one of the most important regulators of
sodium retention, potassium (K+) excretion, and blood volume
and blood pressure. The RAAS has an important influence
on cardiovascular hemodynamics and the development and
progression of cardiovascular disease (31). RAAS includes renin,
angiotensinogen, Ang I, angiotensin converting enzyme (ACE),
Ang II, angiotensin II receptor 1 (AT1), aldosterone, and other
components (32). Angiotensinogen is an alpha 2-globulin that
is formed primarily by the liver and also by the kidney and
other tissues. Renin is mainly formed and secreted by proximal
glomerular epithelioid cells of afferent arterioles. The active form
of renin has 340 amino acids (33). Decreased sodium intake,
decreased extracellular fluid and blood volume, decreased arterial
pressure, and increased sympathetic activity can stimulate renin
release. Renin is an aspartic protease that cuts 10 peptides
(Ang I) from angiotensinogen (34, 35). Renin is specific for
angiotensinogen, and the activity of renin determines how much
Ang I is produced (36, 37). Ang I is further cleaved to Ang II
by ACE in pulmonary capillaries, endothelial cells, and renal
epithelial cells (32, 35). Ang II can be converted to Ang III
by removing aspartic acid from position 1 of the octapeptide.

The role of angiotensin III is modest compared to the effect
of angiotensin II (31). ACE2 is a monocarboxypeptidase that
converts Ang I to Ang 1-9 and Ang II to Ang 1-7 (38).

Although the renin angiotensin system (RAS) contains
multiple peptides, Ang II is the major active metabolite and
acts on many different tissues and organs. Ang II promotes
vasoconstriction and sympathetic enhancement and increases
renal tubular reabsorption of sodium, leading to decreased blood
flow and increased vascular resistance. Almost every organ
system in the body responds to Ang II (37). Improper elevation
of Ang II can lead to high blood pressure and increase the
morbidity and mortality of cardiovascular disease (39). AT1
receptor (AT1R) is the primary receptor that mediates Ang
II action in the heart and circulatory system (32). AT1R is
widely distributed throughout the vasculature. The AT2 receptor
(AT2R) can counteract the effects of the AT1R (31) and has
a lower expression level in adults, but in some cardiovascular
diseases, such as heart failure, the expression level of AT2R
may increase.

Ang II and Ang III stimulate adrenal globular zone
cells to secrete aldosterone, but Ang IV and Ang 1-7 do
not induce adrenal aldosterone secretion. The subtype of
angiotensin receptor they act on is not clear (40). Studies
suggest that Ang II primarily stimulates aldosterone release
by acting on AT1R (41). Mazzocchi et al. suggest that
AT2R activation causes local release of catecholamines from
chromaffin cells, which in turn enhances aldosterone secretion
in a paracrine manner (42). Aldosterone promotes sodium
retention and K+ excretion, retains water, and increases
fluid volume (32). Excessive secretion of aldosterone causes
PA (43). Excess aldosterone is associated with cardiovascular
and kidney damage (inflammation, remodeling, and fibrosis)
(44, 45). Aldosterone acts on the mineralocorticoid receptor
(MR) of the kidney, thereby promoting tissue remodeling and
angiogenesis (46).

RAAS inhibitors include renin inhibitors, ACE inhibitors
(ACEIs), AT1R antagonists, and MRAs (47). RAS inhibitors
(RASIs) mainly contain the first three (44). ACEIs (ramipril,
perindopril, captopril) control hypertension by inhibiting ACE
to reduce the biosynthesis of Ang II (48). AT1R antagonists can
block the action of Ang II on ATR1 and decrease aldosterone
release (Figure 1) (40). RASIs inhibit the RAS, increase blood
flow, and reduce peripheral vascular resistance, leading to
decreased arterial pressure (37). Inhibition of RAS components
has been successfully used to treat hypertension, heart failure,
and end-organ damage (36). MRA (spironolactone, eplerenone)
can be used to treat hypertension, PA, and peripheral edema
associated with heart failure and other pathologies associated
with aldosteronism (49). In addition, the combined use of ACEI,
angiotensin receptor blocker (ARB), MRA, and other drugs can
better improve heart failure, especially for patients with a reduced
ejection fraction (50).

PHYSIOLOGICAL ROLE OF PTH

PTH is an 84 amino acid single-stranded peptide hormone
secreted by the chief cells of the parathyroid gland. The
active form of PTH (pth1-84) is inactivated via liver and
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FIGURE 1 | Components and effects of the RAAS. Renin cuts 10 peptides (Ang I) from angiotensinogen. The effect of renin can be inhibited by renin inhibitors. Ang I

is further cleaved to Ang II by ACE. ACEI can inhibit the effect of ACE. Ang I and Ang II are converted into Ang1-9 and Ang1-7 by ACE2, respectively. Then, Ang II is

converted into Ang III. Ang II acts on AT1R and AT2R. The effects of Ang II on AT1R can be blocked by ARB. Ang II promotes vasoconstriction and sympathetic

enhancement and increases renal tubular reabsorption of sodium. Aldosterone retains water and promotes sodium retention, potassium excretion, tissue remodeling,

and angiogenesis. Excessive secretion of aldosterone causes PA. Aldosterone acts on MR, which can be blocked by MRA. Ang I, angiotensin I; Ang II, angiotensin II;

ACE, angiotensin converting enzyme; ACEI, angiotensin converting enzyme inhibitor; Ang1-9, angiotensin 1-9; Ang1-7, angiotensin 1-7; Ang III, angiotensin III; AT1R,

angiotensin II receptor 1; AT2R, angiotensin II receptor 2; ARB, angiotensin receptor blocker; MR, mineralocorticoid receptor; MRA, mineralocorticoid receptor

antagonism; PA, primary aldosteronism.

kidney metabolism (plasma half-life is about 2–4min) (51).
The secretion of PTH is mainly regulated by the concentration
of serum Ca2+ (52). When the serum Ca2+ concentration is
low, the secretion of PTH increases. When the serum Ca2+

concentration is high, the secretion of PTH decreases (51). This
relationship is mediated by the interaction between Ca2+ and the
presence of calcium-sensitive receptors (CASR) on the surface
of parathyroid cells (52–54). The serum phosphorus (Pi) level is
another important factor regulating PTH secretion. Pi in serum
can indirectly stimulate the proliferation of parathyroid cells
and the secretion of PTH, thereby reducing the concentration
of serum Ca2+ (55). Serum Pi can also directly enhance the
secretion function of parathyroid cells by increasing the stability
of PTH mRNA (56).

The main target organs of PTH are the bones and kidneys
(57, 58). PTH functions by binding to the receptor PTH/PTHrP
receptor 1 (PTH1R) on target cells. PTH can mobilize bone
Ca2+ into the blood and promote renal tubular reabsorption

of Ca2+ and Pi excretion (54). PTH promotes the conversion
of 25-hydroxyvitamin D (25OHD) in the kidney to 1,25-
dihydroxyvitamin D (1,25[OH]2D3), which acts on the vitamin
D receptor (VDR) to promote the intestinal reabsorption of Ca2+

and Pi, thereby increasing serum Ca2+ and Pi concentrations
(Figure 2) (59, 60).

Parathyroid adenoma, hyperplasia, or cancer can secrete
excessive amounts of PTH, causing PHPT (52). PHPT is
the most common manifestation of abnormal PTH levels. In
patients with PHPT, long-term increases in PTH levels can lead
to bone lesions such as osteoporosis, fragility fractures, and
bone pain, as well as kidney lesions such as kidney stones,
kidney calcification, and reduced renal function (30, 43, 52, 57,
58). Long-term PHPT can cause a serious condition known
as fibrocystic cysts, proximal muscle weakness due to type
II fiber atrophy, and even neuropsychiatric symptoms (59).
Parathyroidectomy is the most important treatment for PHPT.
However, for patients who are not suitable for surgery or who
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FIGURE 2 | The physiological mechanism of PTH action. PTH is secreted by parathyroid cells. Excessive PTH secretion can cause PHPT. PTH functions by binding to

the PTH1R in bone and kidney. PTH promotes bone absorption and the release of bone Ca2+, as well as the reabsorption of Ca2+ and the excretion of Pi in the

kidney. PTH can also promote the conversion of 25OHD to 1,25[OH]2D3 in the kidney. 1,25[OH]2D3 binds to VDR, increasing the reabsorption of Ca2+ and Pi in the

intestine. Serum Ca2+ regulates PTH secretion by binding to CASR on parathyroid cells. PTH, parathyroid hormone; PHPT, primary hyperparathyroidism; PTH1R,

PTH1 receptor; Ca2+, calcium ions; Pi, phosphorus; 25OHD, 25-hydroxyvitamin D; 1,25[OH]2D3, 1,25-dihydroxyvitamin D; VDR, vitamin D receptor; CASR,

calcium-sensitive receptors; ↑, upregulated.

refuse surgery, various drugs, such as bisphosphonates and
calcimimetics, can be taken appropriately according to patient
symptoms (61).

CHRONOBIOLOGY AND
CHRONOTHERAPY OF THE RAAS/PTH

Blood pressure and biomarkers of RAAS have been shown to have
circadian rhythms in humans (62); this circadian rhythm is also
found in dogs (63). Studies have shown that the human circadian
rhythm of RAAS is influenced by sodium intake (64), age, sex,
and recumbency (65). Cugini et al. showed that limiting sodium
intake amplifies the circadian rhythm of PRA and aldosterone.
However, ACEIs inhibit this rhythm (66). The administration of
ACEI at bedtime is more effective at controlling hypertension
as compared to in the morning in hypertensive patients (67)
and in a transverse aortic constriction (TAC) mouse model (68).
Mochel et al. found that the timing of food intake is critical to the
circadian rhythm of RAAS and blood pressure in dogs (69).

Similarly, the secretion of PTH is also rhythmic. In healthy
humans, PTH is secreted primarily in a dual fashion. In addition
to the most important tonic secretions, PTH can also be secreted
in a low-amplitude and high-frequency pulse approximately
every 20min (70, 71). PTH release is affected by the blood Ca2+

concentration (72). This rhythmic secretion of PTH may be very
important, as continuous administration of PTH leads to bone

damage, while pulsed administration increases bone formation
(73). Shinagawa et al. found that osteoporosis can be improved
by simulating the pulsatile secretion of PTH to promote bone
formation by oral administration of short-acting antagonists of
CASR to rats (74).

Therefore, reference to the rhythmic secretion of RAAS
and PTH has important diagnostic and therapeutic values
for cardiovascular diseases or endocrine diseases in humans
and animals.

EFFECTS OF RAAS BIOMARKER LEVELS
ON PTH LEVELS

How Does the RAAS Affect PTH
The RAAS mainly affects the secretion of PTH through AT1R
and MR expressed in parathyroid tissue. AT1R and MR were
detected in parathyroid adenoma tissue, with a 2- to 4-fold
increase in expression when compared to normal parathyroid
(75, 76). Chronic elevated aldosterone may increase PTH levels
mainly by affecting renal function and serum Ca2+ (77). This can
also be explained at the genetic level. Long-term injection of Ang
II downregulates the expression of the Klotho gene in the kidney
of rats (78), and downregulated Klotho expression will eventually
cause an increase in PTH levels (79).

The relationship between the RAAS and PTH is significantly
positive, as patients with PA exhibit higher PTH levels
compared to secondary aldosteronism and primary hypertension
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FIGURE 3 | Interactions between the PTH and RAAS. (A,B) Brief illustration of RAAS and PTH. Under chronic conditions, the aldosterone secreted by the adrenal

gland binds to the MR of the parathyroid gland. Under acute conditions, Ang II binds to AT1R in the parathyroid gland. PTH can bind to PTH1R in the adrenal gland to

promote aldosterone secretion. In addition, PTH secretion can also increase the levels of renin and Ang II. (C) Several possible mechanisms for aldosterone to

increase PTH levels. Excessive secretion of aldosterone causes PA, leading to the increase in blood pressure and serum Pi, the decrease in serum Ca2+ and K+, and

the impairment of renal function, finally increasing the level of PTH, while ACEI can protect renal function and reduce PTH levels. (D) The possible mechanism of PTH

regulating renin and aldosterone levels. PTH increased the serum levels of 1,25 [OH]2D3 and Ca2+. Acute elevation of Ca2+ and 1,25 [OH]2D3 inhibited renin

secretion, while chronic elevation of Ca2+ could increase the renin level. Ca2+ can inhibit the diurnal decline of aldosterone, and it may also reduce the level of

aldosterone by weakening the response of the kidney to Ang II. PTH, parathyroid hormone; RAAS, renin-angiotensin-aldosterone system; MR, mineralocorticoid

receptor; Ang II, angiotensin II; AT1R, angiotensin II receptor 1; PTH1R, PTH1 receptor; PA, primary aldosteronism; Pi, phosphorus; Ca2+, calcium ions; K+,

potassium; ACEI, angiotensin converting enzyme inhibitor; 1,25 [OH]2D3, 1,25-dihydroxyvitamin D. ↑, upregulated; ↓, downregulated.

patients (2, 17, 77). Recent studies have suggested that mild
hyperparathyroidism is a characteristic of PA (80), irrespective
of the subtype of PA (81). Furthermore, PA may even contribute
to secondary hyperparathyroidism (77). The regulatory effect of
Ang II on PTH is influenced by the injection dose of Ang II and
the adequacy status of vitamin D. Supplementation with vitamin
D3 can enhance the secretion-promoting effect of low-dose Ang
II (1 ng/kg/min for 90min) on PTH. A high-dose infusion of
Ang II (3 ng/kg/min for 90min) leads to greater increases in
aldosterone and a more robust PTH response. Under acute and
chronic conditions, the components of the RAAS that affect
PTH secretion may also be different. Brown et al. demonstrated
that, under acute conditions, it is the acute increase in the

Ang II level rather than the acute increase in the aldosterone
level that increases the PTH level, indicating that Ang II may
be an acute regulator of PTH (76). However, aldosterone may
be a chronic regulator of PTH (Figures 3A,B). Studies have
shown that chronic long-term increases in aldosterone levels can
lead to an increase in PTH levels (2, 17, 77). Chhokar et al.
and Rossi et al. reported that an aldosterone infusion led to
hyperparathyroidism (82, 83). A study of 11 PA patients and
15 non-PA patients showed that the PTH level in PA patients
was elevated and recovered after surgery or spironolactone
treatment (43). Another study by Fischer et al. showed that a
high aldosterone-to-renin ratio (ARR) was associated with high
serum PTH concentrations in the general population, but they
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found no associations between serum aldosterone or renin and
PTH levels (84).

Changes in PTH After the Inhibition of
RAAS Function
Several studies have shown that PTH levels return to normal after
medical or surgical treatment in PA patients (81). A study by
Mizobuchi et al. showed the lowering effect of enalapril on PTH
levels in uremic mice (85). A series of human studies also reached
similar conclusions. A multi-ethnic study of atherosclerosis
showed that the use of ACEI reduces the level of aldosterone,
thereby reducing the level of PTH. Moreover, RAAS inhibitor
(RAASI) use decreased the level of mean PTH significantly than
the use of non-RAASI antihypertensives. In addition, Ca2+-
channel blockers were associated with higher PTH levels (2).
In a single-arm pilot study, Zaheer et al. (86) found that
1 week of lisinopril therapy titrated to maximally tolerated
blood pressure lowering resulted in a modest and marginally
statistically significant lowering of PTH levels among participants
with PHPT, but did not impact the level of PTH among
participants without PHPT. However, there was a decrease in
systolic blood pressure, an increase in PRA, and no changes
in serum and urine Ca2+ in both groups. Studies showed that
RASI use induced a lower PTH level in patients with continuous
ambulatory peritoneal dialysis (CAPD) or end-stage renal failure
(79, 87).

The use of ARB also significantly reduces the level of PTH
(76, 87, 88), although this conclusion remains controversial.
A study by Zaheer et al. demonstrated that chronic MRA use
modestly lowered PTH levels and raised serum Ca2+ (86).
Contrary to the above result, a randomized, placebo-controlled
trial found that short-term low-dose valsartan (a kind of ARB)
treatment affected neither PTH levels nor the aldosterone levels;
however, valsartan increased renin levels (89). A randomized,
placebo-controlled trial showed that the level of PTH was not
decreased after treatment with eplerenone, a new aldosterone
receptor antagonist. However, short-term (1–8 weeks) treatment
with RAASI (ACEI and MRA) is unlikely to induce a robust
and clinically meaningful reduction in PTH in patients with
PHPT (90). Moreover, ACEIs and ARBs do not consistently
inhibit the RAAS, which in turnmay increase plasma aldosterone
levels in some patients. This phenomenon is called “aldosterone
escape” or “aldosterone breakthrough” (91). This phenomenon
may explain why the use of ACEIs and ARB does not affect
the level of PTH. Aldosteronoma resection decreases the PTH
level (83). Adrenalectomy not only cures hyperaldosteronism
but also corrects hyperparathyroidism (17, 80). Compared with
MRA, surgical treatment reduces PTH levels more obviously in
PA patients (77). However, adrenalectomy can cause short-term
aldosterone deficiency, resulting in hyperkalemia (92), and can
even cause adrenal insufficiency, such as Addison’s disease, which
is rare (93). The findings mentioned above provide convincing
evidence for a causal relationship between the RAAS and
PTH levels.

THE LEVEL OF RAAS BIOMARKER
CHANGES WITH THE LEVEL OF PTH

How Does PTH Affect the RAAS
PTH receptor mRNA can be detected in the adrenal gland
(94). PTH also autoradiographically binds to the adrenal cortex,
suggesting that the adrenal gland is one of the target organs of
PTH (95, 96). PHPT may lead to the inactivation of VDR and
then increase the level of renin expression (97). The type 1 PTH
receptor is expressed in the cytoplasm of aldosterone-producing
adenoma cells and nodule cells, indicating that PTH could
directly influence the synthesis of aldosterone (17, 75). PTH
binds to PTH/PTH-related peptide receptors and voltage-gated
l-type calcium channels to initiate multiple signal transduction
pathways that activate the RAS (98). PTH can increase the release
of cAMP and inositol triphosphate from adrenocortical cells
through activating G-protein-coupled signaling cascades (99–
101). PTH inhibitors have been shown to inhibit the production
of cAMP by adrenocortical cells (95). Both adenylate cyclase
inhibitors and phospholipase C blockers block the production of
PTH. PTHmay function through the PTH receptor coupled with
PLC/PKC-dependent signaling cascades (102).

PTH has been demonstrated to have a positive effect on the
RAAS (12, 99), and PTH can induce renin release (103–105).
Saussine et al. reported that the renin stimulation of PTH may
be mediated by the inhibition of calcium influx (106); however,
a study by Hulter et al. showed that PTH infusion resulted in
a significant transient increase in aldosterone excretion, but no
significant changes in PRA were observed (107). Verheyen et al.
proposed that the high incidence of arterial hypertension in
PHPT may be partially explained by elevated aldosterone levels
(108). PTH promotes aldosterone secretion in a dose-dependent
manner with minimal and maximal effective concentrations of
10−10 M and 10−8 M (102); the stimulatory effect of PTH
on aldosterone secretion is induced by Ca2+ (109). Jespersen
et al. reported that serum Ang II levels are elevated in patients
with PHPT (110). PTH alone or in combination with Ang II
stimulates adrenal glomerular cells to secrete aldosterone as
well as enhancing the role of Ang II in promoting aldosterone
secretion (Figures 3A,B) (96). A study by Maniero et al. showed
that PTH can trigger and/or maintain hyperaldosteronism in
patients with secondary aldosteronism (17). Akmal et al. used
a dog model of chronic renal failure (CRF) to cause secondary
hyperparathyroidism to demonstrate that increased PTH levels
can cause pulmonary hypertension (111), which has been shown
to be related to RAAS disorders in humans (112).

Some studies have shown that PTH does not have a
significant impact on the RAAS. Bernini et al. compared PRA in
hyperparathyroidism patients vs. normal subjects and essential
hypertensive (EH) patients, observing no activation of the RAAS,
and only found a weak positive correlation between PTH and
PRA (113). A study by Richards et al. showed that aldosterone
levels in patients with PHPT were not elevated (Table 1) (117).

Other studies have revealed a link between PTH1R and PRA.
In the spontaneous hypertensive rat model driven by somatic
human PTH1R (hPTH1R) gene expression, the overexpression
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TABLE 1 | Representative studies on the effects of PTH on aldosterone secretion.

Study design Subjects Main conclusions References

Single-center, randomized,

placebo-controlled,

double-blind, parallel-armed

cross-sectional study

136 patients diagnosed with PHPT Hypertension in PHPT patients may be caused by

elevated aldosterone levels

(108)

Case-control study 105 consecutive hypertensive patients, of whom 44

had PA and 61 had primary (essential) hypertension.

PTH can trigger and/or maintain hyperaldosteronism

in patients with secondary aldosteronism

(17)

Clinical trial 8 patients with PA (6 hypertensive and 2

normotensive patients)

Aldosterone levels in patients with PHPT were not

elevated

(113)

Clinical trial 34 patients with PHPT (10 hypertensive and 24

normotensive patients)

PTH stimulates aldosterone release, while

parathyroidectomy reduces aldosterone levels

(26)

Clinical trial 16 patients with PHPT (13 females, 3 males) PTH stimulates aldosterone release, while

parathyroidectomy reduces aldosterone levels

(114)

Clinical trial 20 patients with PHPT, 26 EH patients, and 13

normotensives

There was no significant change in aldosterone levels

in hyperparathyroidism patients, EH patients, and

control group after parathyroid adenoma resection

(115)

Clinical trial 24 patients with PHPT, 16 patients with PHPT and

EH, and 19 normal subjects

Parathyroidectomy did not change plasma

aldosterone levels in hypertensive patients with

PHPT and normal subjects

(116)

Experimental study Dispersed adrenocortical cells obtained from

adrenal glands removed from 16 consenting

patients undergoing unilateral nephrectomy with

ipsilateral adrenalectomy for renal cancer.

PTH promoted aldosterone secretion in a

dose-dependent manner. PTH receptor antagonists

can eliminate the secretory effect of PTH on

aldosterone

(102)

Experimental study Bovine adrenal glomerulosa cells PTH alone or in combination with Ang II stimulates

adrenal glomerular cells to secrete aldosterone

(96)

PHPT, primary hyperparathyroidism; PTH, parathyroid hormone; Ang II, angiotensin II; PA, primary aldosterone; EH, essential hypertensive.

of hPTH1R increases PRA, but the blood pressure remains
unchanged (118). Interestingly, however, another study in adult
rats in which PTH1R was overexpressed in the blood vessels,
heart, kidneys, and other organs showed that PRA decreased 3
weeks after plasmid injection, thereby lowering blood pressure
and heart rate in the rats (119). These rat models are very
important for studying the function of PTH1R, because they have
a high degree of genetic similarity with humans. Humans can not
only accurately simulate human diseases in rat models but also
guide the genetic modification of rats, so as to provide references
for the treatment of human diseases.

Changes in the RAAS After the Inhibition of
Parathyroid Function
PTH receptor antagonists have been demonstrated to
eliminate the secretory effect of PTH on aldosterone (102).
Parathyroidectomy has been shown to reduce systolic and
diastolic blood pressure in patients with PA and to improve
metabolic complications associated with PHPT (120). However,
the hypotensive effect of parathyroidectomy was only manifested
in PHPT patients with hypertension (114), and this effect
was not observed in patients with normal blood pressure (8).
Conversely, Kovács et al. found that, in 16 patients with normal
blood pressure in PHPT, removal of the parathyroid gland
caused a significant decrease in systolic blood pressure (121).
Diamond et al. reported that, after parathyroid surgery, systolic
blood pressure decreased significantly in patients with normal
blood pressure and hypertension (122). There are also studies

showing that parathyroidectomy does not lower blood pressure
(11, 123, 124). Studies by Kovács et al. and Gennari et al. showed
that the direct effect of PTH on the RAAS may explain the role
of parathyroidectomy on blood pressure (26, 121).

Studies by Kovács et al. (26), Gennari et al. (121), and Pacifici
et al. (115) showed that PTH stimulates the release of aldosterone
and that parathyroidectomy reduces blood pressure as well
as plasma levels of renin and aldosterone. However, Bernini
et al. demonstrated that PH patients are similar to EH patients
regarding controls on PRA and aldosterone levels, and there was
no significant change after parathyroid adenoma resection (113).
Additionally, Salahudeen et al. found that parathyroidectomy did
not alter PRA and plasma aldosterone levels in normotensive and
hypertensive patients with PHPT (Table 1) (116). The above two
studies indicate that PTHmay not affect RAAS. Studies have also
shown that PTH may have an indirect negative regulatory effect
on the RAAS. Zawada et al. used a model of dogs with normal
blood pressure and renovascular hypertension to confirm that
thyroparathyroidectomy or chelation with EDTA to reduce blood
Ca2+ will cause an increase in PRA (125).

DISCUSSION

The parathyroid gland expresses AT1R and MR, which supports
the hypothesis that aldosterone contributes to the regulation of
PTH secretion. The adrenal gland also expresses the type 1 PTH
receptor, which likely explains why human adrenocortical cells
respond with aldosterone and cortisol release to either PTH or

Frontiers in Endocrinology | www.frontiersin.org 7 August 2020 | Volume 11 | Article 539

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zheng et al. The Relationship Between RAAS and PTH

PTH-related peptide (75). Studies have shown that the RAAS and
PTH have a positive effect on each other.

There may be several other mechanisms that explain the
increase in PTH as RAAS levels increase. Firstly, patients with
PA often present with elevated blood pressure, and high blood
pressure may alter the kidney’s handling of Ca2+, which may
lead to increased 24-h renal Ca2+ excretion and decreased
serum Ca2+ (43, 126–129). Several studies have shown that
the increase in the PTH level may be caused by a decrease
in serum Ca2+ rather than a direct effect of aldosterone in
patients with PA, as a low Ca2+ level may contribute to
secondary hyperparathyroidism and eventually affect bone mass
and strength (17, 77, 82, 88, 126, 130, 131). Secondly, a negative
correlation between serum K+ and PTH levels has also been
found (81). However, aldosterone can lower serum K+, so the
stimulatory effect of aldosterone on PTH secretion may be
mediated by K+. Thirdly, early impaired renal function in PA
patients may cause parathyroid function enhancement (126), but
the renoprotective effect may result in lower PTH levels (85).
Enalapril reduces serum creatinine levels in rats, but enalapril
reduces PTH levels through a protective effect on the kidney,
rather than by directly acting on the parathyroid gland (85).
Finally, changes in serum Pi levels in patients with PA and their
effects on PTH levels also need to be considered (Figure 3C).

PTH exerts its effects on RAAS biomarkers through several
possible mechanisms. PTH can increase the level of 1,25[OH]

2D3 (59, 60), which will inhibit the expression of renin (97). Acute
increases in plasma and extracellular and intracellular Ca2+

concentrations also inhibit renin secretion in renal proximal
tubular cells, but long-term Ca2+ elevation can cause elevated
PRA, which may be a compensation mechanism caused by
Ca2+-mediated polyuria (132). PTH increases serumCa2+ levels,
and the increase in Ca2+ may inhibit the diurnal decline in
PRA and aldosterone (133). In the case of hypercalcemia, the

response of aldosterone to Ang II is weakened (134), which may
explain why PTH inhibits the secretion of aldosterone levels
(Figure 3D) (132).

As reviewed above, the interaction between RAAS and
PTH-Calcium metabolism may be indirectly influenced by
secondary factors such as electrolytes, blood pressure, and
renal function. However, the direct interaction between the
two systems is predominant. Further research is needed to
investigate the complex interactions between PTH and RAAS
and to assess whether PTH measurements can contribute
to the diagnosis of PA. Elucidating the relationship between
the RAAS and PTH has important clinical significance and
future implications for the treatment of patients with PA
or PHPT. RASIs might decrease PTH levels and improve
these symptoms. MRA may reduce PTH-induced increases
in the fracture rate in PA patients. However, the effect of
MRA on PTH in patients without PA is unclear. MRAs may
be a promising, novel, and inexpensive therapeutic option
for PA patients with elevated PTH levels. Further studies
are needed to investigate more medications that mitigate
cardiovascular or skeletal diseases mediated by aldosterone
and PTH.
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