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Introduction
Spinal cord injury (SCI) is a highly debilitating disorder 
with no effective therapeutic plan until now. Regardless of 
the extensive research conducted nowadays, it still remains 
one of the most daunting challenges in all neuroscience re-
search. Due to the development of novel cell-based and scaf-
fold-based treatment strategies with the advances of neural 
tissue engineering, there are now some promising results 
that raise hope for the treatment of SCI in the future. Giv-
en the rapid pace of the advancement in the field of neural 
engineering and neuroregeneration, there is a need for con-
stant vigilance. The aim of the current review is to summa-
rize all the current therapeutic options for SCI and brief the 
scientists for novel emerging therapies of great potential that 
could soon be applied to the clinic.

Epidemiology
SCI is a devastating disorder worldwide. Excluding the 
number of people who die at the scene of the accident, it is 
estimated that the annual incidence of SCI is approximately 
40 cases per million population in the United States, or, in 
other words, about 12,000 new cases of SCI patients each 
year, while at the same time it primarily affects young adults 

(Sebastià-Alcácer et al., 2013; National Spinal Cord Injury 
Statistical Center, March 2013). The main cause of SCI refers 
to motor vehicle crashes, followed by falls and violent acts 
(Akdemir et al., 2013; Chen et al., 2013). There is tremen-
dous impact of the disorder to their social, personal and pro-
fessional life and a great financial and psychological burden 
for the patient himself and the whole family (Selvarajah et 
al., 2013). Nevertheless, despite the fact that there are certain 
benefits on the overall outcome of the SCI patients due to 
the medical and surgical management, there is currently no 
effective treatment plan for the major SCI-related neurolog-
ical deficits (Garcia-Altes et al., 2012; National Spinal Cord 
Injury Statistical Center, March 2013). The different types of 
the injuries, as well as the complex pathophysiology of SCI, 
may account for the difficulty in establishing an efficient 
treatment plan (Blesch and Tuszynski, 2009; Lo et al., 2013). 

Pathophysiology
In fact, traumatic injury to the spinal cord can be caused by 
compression, laceration or contusion, which in turn leads to 
motor, sensory and/or autonomic deficits at the injured site 
and below. The range of signs and symptoms (sensory and 
motor impairment, neuropathic pain, bowel and bladder 
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Figure 1 Schematic illustration of glial scarring in spinal cord injury 
(SCI). 
The figure schematically demonstrates the process of cavitation during 
the subacute and chronic phases of SCI and the inflammatory response 
triggered. Around the cyst there are hypertrophic astrocytes initiat-
ing the cavitation process. The inflammatory response is shown with 
inflammatory cells invading the central nervous system from the pe-
riphery. Many neuronal axons are interrupted and undergo Wallerian 
degeneration. From: Obermair et al. (2008). Copyright © and courtesy 
of the American Physiological Society (2008). 

Figure 2 The figure demonstrates transplantation of different sources 
of stem cells into the injured spinal cord.
The stem cells depicted include neural stem/progenitor cells (NSPCs), 
induced pluripotent stem cells (iPSCs), skin-derived precursors (SKPs) 
and mesenchymal stem cells (MSCs) and direct conversion methods 
are used for yielding nerve cells for transplantation. The differentiation 
of NSPCs can either lead to oligodendrocyte precursor cells (OPCs), 
mature oligodendrocytes, astrocytes or neurons depending on the cul-
ture conditions and the growth factors exposure. There are certain con-
ditions that can promote OPC generation derived by embryonic stem 
cells (ESCs) even though by default they differentiate to neural cells. 
MSCs can be harvested by a variety of different tissues such as the bone 
marrow, umbilical cord, adipose tissue, muscle and dental pulp from 
deciduous baby teeth and, in vitro in culture, they show neural cell 
properties. Many studies have used a variety of methods to reprogram 
fibroblasts from the skin into iPSCs or even to directly convert them 
to neurons and NSPCs without the need to pass into the pluripotent 
stage. This opens a window of great potential for the neural cell trans-
plantation techniques. From: Advances in stem cell therapy for spinal 
cord injury. (Mothe and Tator, 2012). Copyright © and courtesy of the 
American Society for Clinical Investigation (2012).

Figure 3 The figure illustrates the various inhibitory factors which 
are blocking the axon regeneration in the central nervous system 
(CNS). 
This schematically demonstrates the imbalance within the CNS be-
tween the factors inhibiting nerve regeneration and the factors enabling 
it. The CNS is a “hostile” environment for nerve regeneration after an 
injury and this is why the nerves can not regrow properly even though 
there is such a potential. This inhibition can either be central due to 
the “switched off ” growth program of the CNS neurons, or it can be 
caused by environmental factors around the lesion site. The latter one 
can be either due to the increase of inhibitory molecules or due to the 
reduction of promoting factors. Around the lesion site inhibitory mol-
ecules of nerve regeneration such as Nogo, MAG, and OMgp, which are 
being included in the myelin sheath, are up-regulated; the same applies 
for the inhibitory surface molecules within the extracellular matrix. 
Contrary to that, neurotrophins, which are growth factors facilitating 
nerve growth are down-regulated, further inhibiting the regenerative 
potential within the CNS. Mechanically speaking, it is proven that neu-
rons can not grow well through empty spaces and this is the concept of 
neural tissue engineering which uses scaffolds to mechanically support 
neurons to enable their regrowth. From: http://tuszynskilab.ucsd.edu/
rosenz.php Copyright © and courtesy of Dr. Ephron Rosenzweig (2006). 
With the kind permission of Dr. Ephron Rosenzweig, Center for Neural 
Repair, University of California, San Diego, USA.

Why do spinal cord axons not regenerate?

The lesion cavity 
Neurons do not grow 
well through empty 
spaces. 

Lack of growth factors
Molecules called neurotrophins 
can increase and guide axon 
growth. Without them, growing 
axons wither. 

Inactive growth program
Neurons may possess a good 
program for regeneration, but 
need to have it switched on. 

Myelin

Extracellular matrix

Myelin, the insulation wrapped 
around axons, contains molecules 
such as Nogo, MAG, and OMgp, 
which inhibit axon growth. 

The framework between cells has 
surface molecules that can inhibit 
axon growth, especially after 
injury. 
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dysfunction, autonomic dysreflexia, etc.) is dependent on the 
level and severity of SCI (Akdemir et al., 2013; Ovechkin et 
al., 2013). The pathophysiology relies on two separate mech-
anisms: primary injury mechanisms and secondary injury 
mechanisms (Lis et al., 2013; Silva et al., 2013). In the acute 
phase of SCI (seconds to minutes after the injury), the ini-
tial mechanical impact leads to direct damage of the tissue, 
meaning hemorrhage, local edema, necrosis, and laceration 
of the tissue (Kakulas, 2004; Silva et al., 2013). During this 
phase, various systemic and local events emerge (Hulse-
bosch, 2002), such as systemic hypotension, spinal shock, 
vasospasm, plasma membrane compromise, ischemia, neu-
rotransmitter/ionic disturbances (Pineau and Lacroix, 2007; 
Rowland et al., 2008; Silva et al., 2013). Some of the acute 
phase events pass into the subacute phase (minutes to weeks 
after the injury), just like some subacute phase events con-
tinue into the chronic phase of SCI (months to years after 
injury). In the subacute phase, a cascade of secondary events 
take place, including further edema, vasospasm, excitotoxici-
ty, inflammation, free radical production, lipid peroxidation, 
ischemia, apoptosis, demyelination and neurotransmitter/
electrolyte disturbances (Donnelly and Popovich, 2008; 
Silva et al., 2013). In the subacute and chronic phases, the 
central part of the spinal cord contains a lentiform-shaped 

cyst filled with fluid, while hypertrophic astrocytes are found 
around that cyst, initiating a process called “cavitation” pro-
cess (Rowland et al., 2008; Bauchet et al., 2009; Silva et al., 
2013) (Figure 1). Those astrocytes along with other cells se-
crete extracellular matrix and inhibitory molecules, thereby 
inhibitory factors such as chondroitin sulfate proteoglycans 
(CSPGs) get up-regulated locally. In turn, that leads to the 
glial scar formation, which sets both a physical and a chem-
ical barrier to the process of neuroregeneration (Yiu and 
He, 2006; Liu et al., 2013b). Interestingly though, it has been 
observed that the subpial region contains a certain amount 
of preserved tissue (Hulsebosch, 2002), thereafter, trying to 
remyelinate the axons of the region is for sure one of the fu-
ture treatment targets (Mekhail et al., 2012).

Current Management
The current therapeutic approach to the SCI patient mainly 
aims at eliminating further damage to the spinal cord. The 
spinal cord gets operatively decompressed, any unstable le-
sions are stabilized and fused, the secondary complications 
are addressed and the patient enters a rehabilitation pro-
gram to improve functional outcome (Wilson et al., 2013). 
Even though they do improve the clinical outcome of SCI 
patients, no therapeutic approach targets the neurologic 

Table 1 Common materials for hydrogel fabrication

Material Source
Inherently cell 
adhesive Injectable Comments References

Matrigel Mouse tumor 
cells

Yes Yes Coating for cell adhesion, mainly cell carrier, 
unlikely approval for human use

Hawryluk et al., 2012b; Kubinova and 
Sykova, 2012; Silva et al., 2013

Collagen Animals Yes Sometimes* Great biocompatibility, mimicking natural 
ECM

Lanfer et al., 2010; Suri and Schmidt, 
2010; Macaya et al., 2013

Hyaluronic 
acid

Animals, 
bacteria

No Yes Injectable gels after chemical derivatization, 
mostly for brain injuries

Austin et al., 2012; Caicco et al., 2013; 
Collins and Birkinshaw, 2013; Mothe et 
al., 2013

Fibrin Blood No Yes Cell and biomolecule delivery suitability 
after extensive in vivo tests

King et al., 2010; Lu et al., 2012; Liu et 
al., 2013a

Alginate Algae No Sometimes* Preformed scaffold for cell transplantation 
and regeneration studies

Mekhail et al., 2012; Collins and 
Birkinshaw, 2013

Agarose Seaweed No No Preformed scaffold, regeneration promoting 
potential

Wylie and Shoichet, 2008; Gros et al., 
2010

Chitosan Insects and 
crustaceans

Sometimes Sometimes* Abundance in nature, crosslinked and 
injectable gel formation after derivatization

Crompton et al., 2006; Collins and 
Birkinshaw, 2013; Donoghue et al., 
2013

Dextran Bacteria No Sometimes* Recent macroporous scaffold fabrication Hiemstra et al., 2007; Collins and 
Birkinshaw, 2013

Peptide 
amphiphiles

Synthetic No Yes Easy production, modification with peptide 
domains, gel formation

Tysseling-Mattiace et al., 2008; Tan et al., 
2012

PEG Synthetic No Sometimes* Controlled studies of scaffold degradation 
and cell adhesion use

Park et al., 2011; Chen et al., 2012; 
Mekhail et al., 2012; Collins and 
Birkinshaw, 2013

PHEMA Synthetic No No Biomolecule delivery support, tunability of 
mechanical properties

Hejcl et al., 2008; Kubinova and Sykova, 
2012; Kubinova et al., 2013

PHPMA Synthetic No No Functionalization with peptide domains, 
similar mechanical properties to CNS

Cholas et al., 2012; Kubinova and 
Sykova, 2012; Mekhail et al., 2012

ECM: Extracellular matrix; PEG: polyethylene glycol; PHEMA: poly(2-hydroxyethyl methacrylate); PHPMA: poly[N-(2-hydroxypropyl)
methacrylamide]; CNS: central nervous system. *The material is used either in an injectable hydrogel form or not interchangeable within the 
literature.
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Table 2 Common materials for nerve guidance channel construction

Material

In vivo 
studies in 
the CNS? Source

Cell 
adhesive

Electrically 
active? Comments Common outcomes References

PAN/PVC Yes Synthetic No No Mainly SC or OEC 
delivery

Large numbers of peripherally 
myelinated axons in SC bridges 
created

Moon et al., 2006

PHEMA Yes Synthetic No No Similar mechanical 
properties to the 
spinal cord

The elastic modulus of the spinal 
cord can be approximated with 
such nerve guides but their 
biocompatibility is still being 
assessed

Dalton et al., 2002

*Poly- 
(α-hydroxy 
acids)

Yes Synthetic No No Family of synthetic 
polymers, 
spectrum of 
mechanical 
properties

Successful long-term drug/
biomolecules release (i.e., 
NT-3 with NSCs and SCs), 
promising carriers to facilitate 
neuroregeneration, multi-
channel scaffolds and tubes 
facilitating axonal regeneration

Xiong et al., 2012

*Chitosan No Insects 
and 
crust-
aceans

Sometimes No Neural adhesion 
improvement 
possibly due to its 
cationic nature

Promising carriers of drugs/
biomolecules (i.e., NT-3 
with NSCs), for channels 
with NSPCs increasing cell 
survival and differentiation 
percentage but no functional 
improvement but for channels 
with peripheral nerve grafts 
great increase in remyelinated 
axons, amine content can be 
tuned to optimize

Freier et al., 2005; 
Nomura et al., 2008a, 
b; Li et al., 2009

*Collagen Yes Animals Yes No Cell growth and 
differentiation 
enhancement

Scaffolds facilitate neural 
differentiation, axon 
regeneration and functional 
recovery, delivery of sustained 
cells and genes is achieved 

Li et al., 2013; Yao et 
al., 2013

*PHB No Bacteria 
and 
algae

Yes No Neurons and 
glia-guided 
longitudinally 
oriented fibers

Surface functionalization can 
achieve better cell attachment 
and proliferation, scaffolds 
promote SCs’ attachment, 
proliferation and survival, 
facilitating neuroregeneration, 
similar modulus to 
human spinal cord, good 
biocompatibility

Novikova et al., 2008; 
Ribeiro-Samy et al., 
2013

PVDF No Synthetic No Yes Electrical 
stimulation 
without external 
source

Inhibitory effect on NSCs 
differentiation, influenced/
altered by environmental 
factors

Hung et al., 2006

PP No Synthetic No Yes Controlled 
external electrical 
stimulation

Electrically conductive meshes 
support neural growth and 
differentiation with aligned 
nanofibers improving axon 
growth, the content of the 
material and the porosity can 
be tuned for optimization

Wan et al., 2005; Lee et 
al., 2009

CNS: Central nervous system; PAN/PVC: polyacrylonitrile/polyvinylchloride; SCs: Schwann cells; OECs: olfactory ensheathing cells; 
PHEMA: poly(2-hydroxyethyl methacrylate); NT-3: neurotrophin-3; NSCs: neural stem cells; NSPCs: neural stem/progenitor cells. PHB: 
poly(3-hydroxybutyrate); PVDF: polyvinylidene fluoride; PP: polypyrrole. *Indicates biodegradable.
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deficits after SCI. The ultimate goal for the management 
of SCI patients is: 1) to reduce cell death and minimize 
the extent of the injury, while 2) to facilitate the process of 
neuroregeneration to repair the damaged tissue (Wilcox et 
al., 2012). To this direction, there are a few ongoing clinical 
trials which are currently testing the use of neuroprotective 
agents for SCI patients (Kwon et al., 2011; Tator et al., 2012). 
This might serve the first part of the aforementioned goal 
but it is not thought to promote regeneration and tissue re-
pair. Thus, in terms of neuroregeneration, stem cell therapy 
is thought to provide several attractive potentials for neural 
repair (Mothe and Tator, 2012; Wilson et al., 2013). Strate-
gies improving the survival and the function of the grafted 
stem cells are needed, leading to further research to optimize 
the therapeutic strategies used (Guest et al., 2011; Silva et 
al., 2013), i.e., stem cell seeding on various biomaterials and 
scaffolds, growth factor administration, etc. 

It is beyond the scope of this review to analyze all the 
therapeutic approaches for SCI patients. There is a tremen-
dous amount of ongoing research projects, in vivo, in vitro 
models and clinical trials for SCI, making it hard to follow 
the advances on the field as well as the advantages and 
disadvantages of each method tested. There are also many 

questions, which need to be addressed in order to maximize 
the efficiency of future research experiments. The aim of 
this article is to gather all the pieces of this puzzle in order to 
provide insight into the recent advances on the regenerative 
therapies for SCI. The main focus is the use of biomaterials, 
trying to find the missing parts, which will give rise to the 
future perspectives and facilitate the research of the scientific 
community worldwide.

Treatment strategies
Cell-based treatment strategies
There was an accepted dogma for several years up to the 
1960s, supporting the opinion that the central nervous sys-
tem (CNS) has no regenerative ability. Shortly after that pe-
riod though, specific regions of the adult human brain were 
found to maintain the capacity for neuroregeneration for a 
lifetime (Mothe and Tator, 2012; English et al., 2013). In par-
ticular, the subependymal zone of the lateral ventricles and 
the subgranular zone of the hippocampus are two major re-
gions of neuroregeneration in the adult human brain (Aim-
one et al., 2010; Mothe and Tator, 2012; English et al., 2013). 
This microenvironment, which facilitates neurogenesis in the 
subependymal zone and subgranular zone is called neural 

Table 3 Currently running stem cell clinical trials for spinal cord injury

Stem cell type Country; sponsor Phase; ASIA scale No. of patients

Timing of 
transplantation after 
injury Route of cell delivery

Estimated 
completion 
date

Human fetal 
brain NSPCs 
(Hu-CNS-SC)

Switzerland; 
StemCells Inc.

I/II; ASIA A–C 12 3–12 months (chronic 
stage)

Intraspinal, single dose March 2016

Autologous 
BMSCs

USA; Memorial 
Hermann Healthcare 
System

I/II; ASIA A–D 
children

10 estimated 
enrollment 
(eligible ages 
1–15 years)

6 months–4 years 
(chronic stage)

Intravenous October 2014

Autologous 
BMSCs

China; Guangzhou 
General Hospital of 
Guangzhou Military 
Command

I/II; ASIA A–B 20 estimated 
enrollment 
(eligible ages 
16–60 years)

2 weeks–1 year Combined intravenous 
and intrathecal via 
LP

June 2014

Autologous 
BMSCs

India; TotipotentRX 
Cell Therapy Pvt. 
Ltd.

I/II; ASIA A–C 15 estimated 
enrollment 
(eligible ages 
18–60 years)

6 months–8 years 
(chronic)

Not indicated October 2013

UCB MNCs China; Spinal Cord 
Injury Network

I/II; ASIA A 20 (aged 18–60 
years)

> 1 year  (chronic stage) Intraspinal August 2013

UCB MNCs China; Spinal Cord 
Injury Network

I/II; ASIA A 60 (aged 18–65 
years)

<  4 weeks (acute/
subacute stage)

Intraspinal, single dose May 2013

Autologous 
BMSCs

Brazil; Hospital Sao 
Rafael

I; ASIA A 20 (aged 18–50 
years)

Not indicated Intraspinal January 2013

Autologous 
BMSCs

USA; TCA Cellular 
Therapy, LLC

I; ASIA A 10 (aged 18–65 
years)

>  2 weeks Intrathecal via LP, 
single dose

June 2012

MSCs (umbilical 
cord-derived)

China; General 
Hospital of Chinese 
Armed Police Forces

I/II; ASIA scale not 
indicated

60 estimated 
enrollment 
(eligible ages 
20–50 years)

Interval time not 
indicated; acute and 
chronic transplants

Not indicated May 2012

ASIA: American Spinal Injury Association; NSPCs: neural stem/progenitor cells; BMSCs: bone marrow stromal cells; UCB: umbilical cord blood; 
MNCs: mononuclear cells; LP: lumbar puncture; LLC: limited liability company; MSCs: mesenchymal stem cells. 
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Table 4 Previously completed stem cell clinical trials for spinal cord injury

Stem cell type
Country; 
sponsor

Phase; ASIA 
scale

Number 
of patient 
receiving 
transplantation

Timing of 
transplantation 
after injury

Route of cell 
delivery Comments References

ESC-derived 
OPCs 
(GRNOPC1)

USA; Geron I; ASIA A 5 transplanted, 
(18–65 years 
old)

1–2 weeks 
(subacute 
stage)

Intraspinal, single 
dose

No safety issue 
reported but 
complete results not 
published

–

Autologous 
   BM-MNCs

Brazil I; ASIA A–C 10 (median age 
34 years)

mean 3 years 
(chronic stage)

Intrathecal via 
LP, single dose

No adverse effects, 
but patients only 
followed for 12 
weeks; efficacy not 
reported

Callera and do 
Nascimento, 
2006

Autologous 
   BM-MNCs

Czech 
Republic

I/II; ASIA A 20 (aged 19–41 
years)

10–30 days 
(subacute 
stage), 2–17 
months 
(chronic stage)

Intra-arterial or 
intravenous

No complications 
reported, 5/6 
patients who 
received cells intra-
arterially reported 
improvement, 
5/7 acute but 
only 1/13 chronic 
patients reported 
improvement

Syková et al., 
2006

Autologous 
   BM-MNCs

Korea I/II; ASIA A 35 (aged 15–57 
years)

> 2 weeks 
(acute stage), 
2–8 weeks 
(subacute 
stage), > 8 
weeks (chronic 
stage)

Intraspinal; 
single dose

Some improvement 
reported in acute and 
subacute stages but 
not in chronic stage

Yoon et al., 
2007

Autologous 
   BM-MNCs

Ecuador I/II 8 (aged 27–44 
years)

5 days–6 months 
(acute stage), 
5–21 years 
(chronic stage)

Intraspinal, 
spinal canal, or 
intravenous, 
single dose

No adverse 
effects reported; 
improvement in 
bladder function

Geffner et al., 
2008

Autologous 
BMSCs

Korea I/II; ASIA 
   A–B

10 (aged 34–61 
years)

> 1 month 
(chronic stage)

Intraspinal 
followed by 
intrathecal via 
LP (2 doses)

3 patients showed 
improvement in 
upper limb recovery 
with MRI and 
electrophysiological 
changes

Park et al., 
2012

Autologous 
BMSCs

Egypt; Cairo 
University

I/II; ASIA 
scale not 
indicated

80 (aged 10–36 
years)

10 months–3 
years (chronic 
stage), >2 
months

Not indicated No published reports –

Autologous 
MSCs 
(adipose-
derived)

Korea; 
RNL Bio 
Company 
Ltd.

I; ASIA A–C 8 (aged 19–60 
years)

> 2 months Intravenous; 
single dose

No serious adverse 
events during 3 
month follow-up 
were reported

Ra et al., 2011

Autologous 
BMSCs

India; 
International 
Stemcell 
Services Ltd.

I/II; ASIA A 12 (aged 20–55 
years)

> 2 weeks 
(acute stage), 
2–8 weeks 
(subacute 
stage), > 
6 months 
(chronic stage)

Intrathecal for 
acute and 
subacute; 
intraspinal for 
chronic

No published reports –

ASIA: American Spinal Injury Association; ESCs: embryonic stem cells; OPCs: oligodendrocyte precursor cells; BM: bone marrow; MNCs: 
mononuclear cells; LP: lumbar puncture; BMSCs: bone marrow stromal cells; MRI: magnetic resonance imaging; MSCs: mesenchymal 
stem cells. “–” means the data are taken from the website clinicaltrials.gov. 
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stem cell niche (Mothe and Tator, 2012; English et al., 2013).
Ever since then, neural stem cells (NSCs) have been iso-

lated from several areas in the CNS (Ourednik et al., 2001; 
English et al., 2013), opening the pathway for stem cell based 
therapies to facilitate regenerative processes in the adult 
brain. Cell-based therapies aim at facilitating neuroregen-
eration, either directly via having the cells to replace and/or 
repair the damaged cells themselves or indirectly via secret-
ing factors, which alter the environment, thereafter making 
it more conductive for regeneration (Miller and Gauthi-
er-Fisher, 2009; Bliss et al., 2010; Mothe and Tator, 2012). 
Mesenchymal stem cells (MSCs) (Kode et al., 2009; English 
et al., 2013; Silva et al., 2013), neural stem/progenitor cells 
(Kokaia et al., 2012; English et al., 2013; Silva et al., 2013), 
embryonic stem cells (English et al., 2013; Silva et al., 2013), 
induced pluripotent stem cells (Willerth SM., 2011; English 
et al., 2013), and their differentiated progeny have been used 
as treatment strategies into the injured CNS (Fehlings and 
Vawda, 2011; Tetzlaff et al., 2011; Thomas KE., 2011; Mothe 
and Tator, 2012). Recently, ectomesenchymal stem cells have 
shown promise for spinal cord repair as well (Ibarretxe et 
al., 2012; Liu et al., 2013a). At the moment, adipose-derived 
MSCs have been thought to be the most promising cells for 
tissue engineering since they can easily be obtained in larger 
quantities than bone marrow (BM). They proliferate more 
rapidly and undergo more efficient neural differentiation in 
comparison to BM-MSCs (Zhang et al., 2012). Each of those 
types of cells can be obtained from various sources (Figure 
2) and has its own advantages and disadvantages for treating 
SCI patients (Fehlings and Vawda, 2011; English et al., 2013), 
even though this goes beyond the scope of this review. 

The main issue in regard to this therapeutic approach for 
CNS disorders, is the limited clinical efficacy of stem cell 
transplantation techniques primarily due to the inhospita-
ble environment at and around the injury site (inhibitory 
molecule up-regulation, glial scar formation, inflammation, 
absence of astrocytes to guide axon regrowth), which lead 
to the poor cell survival, uncontrolled differentiation and 
ineffective integration into the host tissue (Parr et al., 2008; 
Mothe et al., 2013). There are several reports supporting 
the aforementioned problems. For example, in the adult 
rat lesioned brain, rosettes (Schulz et al., 2004), teratomas 
(Brederlau et al., 2006; Sonntag et al., 2007) or cellular 
masses inducing a gliotic host response have been reported 
after the free injection of hESC-derived neural cells. After 
non-human ESC injection, the formation of a mass, show-
ing signs of overgrowth in the core and deformations, has 
been found (Erdo et al., 2003; Dihne et al., 2006; Hayashi et 
al., 2006). Since the injection of stem cells can lead to tumor 
formation (Hansmann et al., 2012), and given that most of 
the effects obtained with free stem cells injection have been 
mainly attributed so far to the growth factors rather than the 
ability of the cells to differentiate and form new tissue (Joyce 
et al., 2010; English et al., 2013), there was a hypothesis that 
the delivery of specific growth factors may cause a more 
favorable outcome in terms of regeneration. It is actually 
known today that lack of growth factors, as well as inhibiting 

biomolecules and the lesion cavity itself are some of the fac-
tors which inhibit the effective regeneration in CNS (Liu et 
al., 2013a; Silva et al., 2013) (Figure 3). 

Taking this to the next level, the development of advanced 
novel biomaterials, which will mimic the natural stem 
cell niche’s microenvironment in order to support the cell 
growth effectively, while providing structural support at the 
same time, could hold the key of success in neuroregenera-
tion for SCI.

Biomolecules delivery treatment strategies
Bioactive molecules, such as growth factors, are implicated in 
neuroregeneration mechanisms since, as mentioned above, 
the trophic microenvironment plays a crucial role in the 
whole process. The supporting cells in the neurogenic niches 
normally release extrinsic factors such as epidermal growth 
factor, vascular endothelial growth factor, brain-derived 
neurotrophic factor, Noggin, Sonic hedgehog, bone morpho-
genetic protein, etc. (Panchision and McKay, 2002; Jiao and 
Chen, 2008). In addition, the extracellular matrix proteins 
(laminin, fibronectin, collagen) of the niches (Kazanis et al., 
2010) are highly important for activating stem cell integrins 
to bind growth factors (Campos et al., 2004); this way they 
facilitate the formation of a protein scaffold is supportive of 
the survival, proliferation, migration and differentiation of 
the cells. 

Trying to mimic this system, the delivery of such mole-
cules in the CNS has been pursued in order to promote neu-
ral regeneration. The grafted stem cells themselves are capa-
ble of producing neurotrophic factors such as nerve growth 
factor, brain-derived neurotrophic factor, neurotrophin-3, 
ciliary neurotrophic factor, glial cell-derived neurotrophic 
factor, leukemia inhibitory factor  (Sahni and Kessler, 2010; 
Hawryluk et al., 2012a; Hawryluk et al., 2012b). Although 
the proteins such as laminins, fibronectin and collagen I/
III and IV (White and Jakeman, 2008; Fortun et al., 2009), 
promote CNS neural repair, but there are several concerns 
linked to free stem cell injection for CNS repair (Kozłowska 
et al., 2007; Sahni and Kessler, 2010). Another option is the 
in situ growth factor injection, which facilitated neurogene-
sis and improved functional recovery. Nevertheless, the low 
permeability of the blood-brain barrier and blood-spinal 
cord barrier limits diffusion of the molecules (Pardridge, 
2012); therefore, conventional delivery strategies require 
high systemic doses of the growth factors in order to achieve 
a therapeutic concentration at the injury site, resulting in 
systemic cytotoxicity. Once again, tumor formation, as well 
as fibrosis and other undesired effects are possible due to the 
off-target therapeutic distribution of the molecules (Sahni 
and Kessler, 2010). To avoid these, local delivery strategies 
have been pursued. In terms of SCI, the injections into the 
intrathecal space surrounding the spinal cord can in fact 
yield higher local concentration of the therapeutic agent, 
but the rapid distribution and the elimination of the thera-
peutics by the cerebrospinal fluid affect the efficiency of this 
method too (Pardridge, 2012). Thus, the encapsulation of 
growth factors in liposomes, nanoparticles or different kinds 
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of scaffolds is considered a better approach (Mekhail et al., 
2012; Collins and Birkinshaw, 2013; Silva et al., 2013). The 
delivery of the growth factors can be controlled and guided, 
showing promising research results so far.

Apart from the use of growth factors, drug delivery ther-
apeutic strategies have been applied, affecting different 
pathways. Some of those include inhibition of inflammatory 
response (Silva et al., 2013), inhibition of inflammatory an-
giogenesis, administration of classical immunosuppressives 
(Hawryluk et al., 2012a; Silva et al., 2013), stimulation of 
inflammatory response, vaccination with myelin self-anti-
gens (Hauben et al., 2001; Tetzlaff et al., 2011), suppression 
of myelin-associated inhibitor molecules (e.g., NOGO-A, 
myelin-associated glycoprotein (MAG), OMgp) and its 
pathways (Borisoff et al., 2003; Wright et al., 2011), and 
CSPGs digestion (e.g., administration of chondroitinase 
ABC (ChABC) or hyaluronidase) (Tetzlaff et al., 2011; Wil-
cox et al., 2012; Silva et al., 2013). Even though some of the 
above seems controversial, in fact it has been indicated that 
the inflammatory response has a dual role; therefore, even 
though acute inflammation leads to increased neuronal loss 
and reduced neurogenesis (Liu et al., 2012b; Mekhail et al., 
2012), there is also growing evidence that inflammation may 
support neurogenesis and recovery, facilitating the migra-
tion of progenitors to the lesion site and the expression of 
neurotrophic factors (Liu et al., 2012b; Mekhail et al., 2012). 
In support to that, the inhibition of the Rho/ROCK signal-
ing pathway, which is the pathway activated by the axonal 
growth-inhibitory molecules (i.e., Nogo, MAP, CSPGs) (Raad 
et al., 2012; Forgione and Fehlings, 2013; Silva et al., 2013; Wu 
et al., 2013), has demonstrated beneficial effects via the mod-
ulation of the inflammatory response after the injury (Silva et 
al., 2013; Wilson et al., 2013; Wu et al., 2013). There have been 
several studies though which are associated with negative 
effects, such as increased spinal cord tissue atrophy (Silva et 
al., 2013), decreased axonal sprouting/regeneration, impaired 
functional recovery (Sung et al., 2003; Chan et al., 2005) and 
increased astroglial activation and CSPGs deposition (Chan et 
al., 2005). A recent promising technique regards the adminis-
tration of ChABC, which has been shown to degrade CSPGs, 
allowing significant axon regeneration both in vitro and in 
vivo (Karimi-Abdolrezaee et al., 2012; Liu et al., 2012a; Silva et 
al., 2013; Zhao et al., 2013; Zhao and Fawcett, 2013). Yet, the 
short half-life of the enzyme remains an obstacle, which needs 
to be addressed (Tester et al., 2007; Liu et al., 2012a).

Thus, the complexity of the CNS and its response to the in-
jury imposes the advancement of those strategies or the com-
bination of them with other more effective techniques, which 
will overcome the obstacles of neuroregeneration in CNS.

Scaffold-based or combination strategies
Scaffold-based strategies have established a very attractive 
alternative for neuroregeneration after SCI. Scaffolds are, 
by definition, temporary supporting structures for growing 
cells and tissues (Murugan and Ramakrishna, 2007; Zhong 
and Bellamkonda, 2008). Different types of scaffolds have 
been used for CNS repair, taking into account aspects such 

as the biodegradability, mechanical strength, channels/fibers, 
porosity, capability of cell adhesion, and electrical activity of 
the scaffold (O’Brien, 2011). Up to date, electrospun guid-
ance channels and hydrogels, seem to be very promising for 
neural engineering in SCI (Liu et al., 2012b, 2013b; Collins 
and Birkinshaw, 2013; Silva et al., 2013). 

Hydrogels are found to be biocompatible implants for SCI 
repair. They not only can mechanically support the injured 
spinal cord, forming a local bridge for nerve regeneration, 
but also can prevent scarring, thereafter creating a permissive 
environment for tissue regeneration. The three-dimensional 
porous structure of the hydrogels provides a matrix for the 
ingrowth of supportive tissue, while it can be combined with 
other regenerative strategies (i.e., growth factors, stem cells), 
further contributing to neural regeneration after SCI. They 
can also be synthesized in large quantities, while they have 
similar elastic modulus to the spinal cord, something that has 
been proven to contribute to axonal regrowth. Especially, fab-
rication of injectable hydrogels is highly beneficial for treat-
ment of SCI since it is a minimally invasive technique and is 
easily applied by neurosurgeons (Macaya and Spector, 2012).

Electrospun nanofiber guidance channels have also been 
highly promising, either alone or after being implemented in 
a hydrogel. Various techniques have been reported to devel-
op nanofibers namely, template synthesis, phase separation, 
self-assembly, drawing and electrospinning. Among these 
techniques, electrospinning offers more advantages due to 
its ease of fabrication (Subramanian et al., 2009). The nano-
fibres provide a three-dimensional network, which is proven 
to be better for cell attachment, migration, proliferation and 
differentiation in comparison to traditional scaffolds (Fan 
et al., 2013). The fibers morphology and diameter highly 
resemble to the native extracellular matrix, providing an 
excellent supportive environment for neuroregeneration. 
The extent of the axonal ingrowth is dependent on the fibers 
density and the spatial orientation of the nanofibre layers. 
There is strong evidence that electrospun nanofibers, espe-
cially aligned nanofibers, are suitable for neural tissue engi-
neering due to their extraordinary mechanical strength and 
high surface area/volume ratio (Liu et al., 2012b).

Scaffolds can often be based on particular extracellular 
matrix molecules (e.g., fibrin, collagen, fibronectin) (Col-
lins and Birkinshaw, 2013; Li et al., 2013; Liu et al., 2013a; 
Macaya et al., 2013; Yao et al., 2013), other natural polymers 
(alginate, agarose, chitosan) (Mekhail et al., 2012; Tan et 
al., 2012; Collins and Birkinshaw, 2013; Silva et al., 2013) or 
synthetic polymers (e.g., poly(α-hydroxy acids), poly(2-hy-
droxyethyl methacrylate), polyethylene glycol) (Xiong et al., 
2012; Donoghue et al., 2013; Hejcl et al., 2013; Kubinova 
et al., 2013). Their aim is to provide structural and active 
growth support to the damaged axons (Brock et al., 2010; 
Park et al., 2010; Lu et al., 2012; He and Lu, 2013); some bio-
materials can provide both through the biofunctionalization 
with biologically active peptide sequences (Park et al., 2011; 
Hejcl et al., 2013; Kubinova et al., 2013). The implantation 
of a scaffold not only aims at the mechanical and trophic 
support of the spinal cord, or at the seeding of stem cells to 
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facilitate nerve regeneration, but it also discourages the scar 
formation through the bridging of the lesion site. To this 
direction, a study by Liu et al. (2012b) using nanofibrous 
collagen nerve conduits not only demonstrated that this type 
of scaffold is capable of promoting neural ingrowth after 
SCI, but it is also capable of inhibiting glial scar hyperpla-
sia. Therefore, scaffolds can not only be used as space filling 
agents, but they can also act as bioactive molecule delivery 
systems (Lu et al., 2012; Macaya et al., 2013; Zhao et al., 
2013; Zhao and Fawcett, 2013) and as cell delivery systems 
(Chen et al., 2012; Xiong et al., 2012; Caicco et al., 2013; 
Hejcl et al., 2013). In the latter cases, their aim is to enhance 
cell survival and integration after cell transplantation and to 
achieve local delivery of therapeutic factors locally, avoiding 
any systemic side effects. 

Materials Used for Scaffold Fabrication
The biomaterials used for scaffold fabrication can be natural 
or synthetic polymers (degradable or non-degradable). Each 
of those has its own advantages and disadvantages (Kubinova 
and Sykova, 2012; Liu et al., 2012b). Natural polymers are 
easily obtained from natural sources and they have predict-
able physical, mechanical and biologic properties since they 
undergo highly controlled synthesis, resulting in regular 
structures. They are biodegradable and contain signals for 
cell adhesion, but they are also hard to be sterilized, thereby 
containing contaminating molecules often. Another thing 
that we need to consider is the low reproducibility of the 
research results, since the exact parameters, which affected 
the experiment, are unknown like their impact on the results 
(Kubinova and Sykova, 2012; Saracino et al., 2013). The fast 
biodegradation rate of natural materials (i.e., collagen) and 
the low mechanical strength come as great disadvantages, 
which need to be addressed via cross-linking techniques in 
order to achieve the optimal results (Mitra et al., 2013). On 
the other hand, synthetic biomaterials are easy to sterilize. 
Key parameters of the synthetic biomaterials are easily con-
trolled and modified according to our needs (e.g., porosity, 
architecture, stiffness, degradation rate). Even though they 
lack recognition signals and they usually have poor biocom-
patibility, their biofunctionalization can easily overcome 
such issues (Kubinova and Sykova, 2012; Saracino et al., 
2013). Below, we summarize some of the most commonly 
used biomaterials in the construction of hydrogel scaffolds 
or conduits (Tables 1, 2).

Studies and Clinical Trials on Regenerative 
Therapies for SCI
There is a growing number of research studies on regen-
erative therapies for SCI, since the investigation remains 
ongoing due to the complexity of the condition and the 
lack of effective treatments. Some studies have investigated 
the role of stem cells alone for the treatment of SCI, others 
have studied the role of growth factor delivery systems in 
neuroregeneration, while some others have looked into the 
possibility of developing a novel scaffold to facilitate nerve 
regeneration or even better combine the aforementioned 

approaches. 
The aim of this section is not to comprehensively analyze 

the various studies conducted on the field of regenerative 
medicine in regard to SCI management. However, since 
there is an enormous amount of information on nerve re-
generation for SCI patients, the main concept is to summa-
rize most of the significant advances on neuroregeneration/
neural engineering SCI-related research.
 
Stem cell therapy clinical trials
Ever since 1998, stem cell in vivo studies have started man-
ifesting positive results in terms of CNS repair, leading to a 
gradually increased number of stem cell clinical trials that 
are currently running today. The preclinical data of stem cell 
transplants in SCI models in vivo were that the US Food and 
Drug Administration (FDA) first approved the conduction 
of a human ESC trial in 2009. With the stem cells-related 
clinical trials reaching almost 5,000, there is a growing num-
ber of ongoing (Table 3) and completed clinical trials (Table 
4) on CNS repair and SCI in particular. 

The first attempts from 2005 up to date also assessed the 
safety of stem cells use, indicating that there are no adverse 
effects from their use in spinal cord injured people. Sev-
eral studies have demonstrated that there are functional 
improvements in the acute and subacute stages of SCI but 
no significant improvement was manifested in the chron-
ic stage of SCI. The transplantation of autologous Bone 
Marrow Stromal Cells (BMSCs) also showed improvement 
in hand-limb function according to one study conducted 
in Korea. The results of those clinical trials, as well as the 
results of the ongoing clinical trials of stem cell therapy for 
SCI are anticipated by 2016 according to the researchers’ 
estimates, in order to provide insight into the effectiveness 
of stem cells on neuroregeneration. It is definitely too early 
to jump into conclusions since this research field is still in 
its infancy.

Tissue engineering therapy studies
On the other hand, tissue engineers have started their own 
combinatorial approaches in order to help to regenerate 
neurons in the CNS (Table 5). The approaches are using 
scaffolds encapsulated with cells and or embedded with mol-
ecules to achieve neural regeneration. 

Fibrin/fibronectin (Itosaka et al., 2009; Johnson et al., 
2009; Liu et al., 2013a) and collagen (Guo et al., 2007; Han 
et al., 2009; Hatami et al., 2009; Fan et al., 2010; Cholas et 
al., 2012) are the mostly used natural biomaterials for scaf-
folds to be used for neural tissue engineering application 
in the CNS repair and they have manifested very promising 
results so far. On the other hand, poly(α-hydroxy acid) are 
the most commonly used biomaterials for scaffolds in SCI 
repair from the synthetic biomaterials point of view (Hur-
tado et al., 2006; Piantino et al., 2006; Olson et al., 2009; 
Xiong et al., 2012). The stem cells are the most commonly 
studied supporting cells (Nomura et al., 2008b; Hatami et 
al., 2009; Itosaka et al., 2009; Gros et al., 2010; Mothe et al., 
2013; Ribeiro-Samy et al., 2013), followed by Schwann cells 
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(SCs) (Hurtado et al., 2006; Guo et al., 2007; Zhang et al., 
2007; Olson et al., 2009; Suri and Schmidt, 2010; Xiong et 
al., 2012). Other cell types have also been studied though, 
such as modified SCs releasing various neurotrophic factors 
(Hurtado et al., 2006), neonatal astroglial cells (Joosten et 
al., 2004), nasal olfactory mucosal cells (Rochkind et al., 
2006; Ribeiro-Samy et al., 2013), human embryonic spinal 
cord cells (Rochkind et al., 2006; Lu et al., 2012), embryonic 
nerve cells (Yarygin et al., 2006), neural stem cells-derived 
progenitor cells (Nomura et al., 2008b; Li et al., 2013; Mothe 
et al., 2013), human embryonic stem cells-derived neuronal 
progenitor cells (Hatami et al., 2009) and recently ectomes-
enchymal stem cells (Liu et al., 2013a). The transplanted 
cell survival has been shown to be prolonged in most of the 
studies, even though there are studies which withhold the 
respective information (Rochkind et al., 2006; Pan et al., 
2008; Gros et al., 2010). Even though in most studies stem 
cells seem to remain undifferentiated, there are studies com-
menting on the increased differentiation of stem cells into 
neuronal cell lines in the presence of 3D collagen (Guo et al., 
2007; Hatami et al., 2009; Li et al., 2013), and fibrin scaffolds 
(Pan et al., 2008; Liu et al., 2013a). 

In terms of the neurotrophic factors, most studies have 
used the NT-3 (Johnson et al., 2009; Fan et al., 2010; Gros 
et al., 2010; Liu et al., 2012a; Xiong et al., 2012; Yao et al., 
2013), or BDNF (Hurtado et al., 2006; Stokols et al., 2006; 
Han et al., 2009; Horne et al., 2010), NGF (King et al., 2003; 
Iwata et al., 2006) and granulocyte colony-stimulating factor 
(G-CSF) (Pan et al., 2008). Scaffold binding domains (Han 
et al., 2009; Fan et al., 2010; Kubinova et al., 2013) as well 
as heparin-based delivery systems (Johnson et al., 2009; Liu 
et al., 2012a) are some of the delivery methods commonly 
employed. Interestingly, a dose-response curve for axonal re-
generation has been shown by Johnson et al. (2009), suggest-
ing that a target delivery of 500 ng/mL of NT-3 incurs more 
growth in comparison with a delivery of 1,000 ng/mL. 

Still, all those attempts are limited to in vivo animal mod-
els and mainly to transection (Nomura et al., 2008b; Pan 
et al., 2008; Olson et al., 2009; Fan et al., 2010; Gros et al., 
2010; Lu et al., 2012; Liu et al., 2013a; Zhao and Fawcett, 
2013) or hemisection models (Han et al., 2009; Hatami et 
al., 2009; Itosaka et al., 2009; Johnson et al., 2009; Hejcl et 
al., 2013; Kubinova et al., 2013; Li et al., 2013; Ribeiro-Samy 
et al., 2013), with promising results so far. The majority of 
publications reported axonal regeneration with only a cou-
ple of exceptions (Hatami et al., 2009; Itosaka et al., 2009). 
The most significant study so far seems to be the study of 
Lu et al. (2012) which has manifested a rapid, enormous 
growth of axons in high density, with elongation rates of 
1–2 mm per day, despite the inhibitory white matter, after 
having grafted fibrin matrices, which were embedded with 
green fluorescent protein (GFP)-expressing NSCs, and also 
contained growth factors cocktails, to sites of severe SCI. 
It is evident that the fibrin matrices along with the growth 
factors cocktail could trigger long-distance axonal growth, 
leading to the functional improvement of severe SCI models, 
with no need of manipulating the inhibitory environment of 

the adult CNS. This study might soon lead to the initiation 
of clinical trials on SCI repair in humans, but once again 
further studies need to be conducted in order to secure those 
promising results and optimize the techniques to achieve a 
better outcome. 

Conclusion and Future Perspectives
While stem cells alone have been investigated before as a po-
tential answer for nerve regeneration, there is now a growing 
number of researchers who are turning to tissue engineering 
or even better to combinatorial approaches which are more 
likely to give the answer. It is the complexity of the condition 
of SCI itself, which urges researchers to seek for a combina-
torial approach. This approach could, thereafter, provide not 
only structural support, but also a trophic microenviron-
ment via biomolecule and cell delivery strategies, in order to 
mimic nature, trying to achieve effective neuroregeneration 
and functional improvement in SCI patients.

Some of these approaches have shown promising results in 
vitro and have also met some success in small-animal mod-
els, promoting nerve regeneration. Stem cells therapeutic 
strategies have even reached the stage of clinical trials, but it 
is too early to determine the effectiveness on neuroregenera-
tion. Most of the studies were conducted to test the safety of 
stem cell use during the acute or subacute stages of SCI, so 
more studies are needed, especially during the chronic stage 
of SCI in order to investigate the real regenerative capacity 
of stem cells transplanted to SCI patients. 

On the other hand, tissue engineering techniques have 
developed a variety of scaffolds taking into account the bio-
degradability, mechanical strength, channels/fibers, porosity, 
cell adhesion-capability or electrical activity of the scaffolds. 
There are many factors which seem to influence the effec-
tiveness of a scaffold. It is suggested that the biomaterials 
used in a scaffold should have similar mechanical properties 
to the spinal cord.

Given that the elastic modulus of the spinal cord (includ-
ing pia/dura) is approximately 230 kPa (Dalton et al., 2002), 
while that of the gray/white matter is 2–5 kPa (Ozawa et al., 
2001), there is a tendency to consider that an elastic modulus 
between 2–230 kPa could be the range for an ideal scaffold 
construction. Therefore, hydrogels have preferable properties 
for SCI repair, even though gel patterning in a relatively new 
approach in this area of research. Another parameter which 
is widely discussed is whether nano- or micro-scale fibers are 
better for SCI repair with an increasing number of researchers 
supporting the necessity to go for the nanoscale in the CNS 
to achieve better outcomes (Xie et al., 2009; Silva et al., 2013). 
The different fabrication and micro-patterning techniques 
of conduits or hydrogels have provided such a wide variety 
of options that the studies are hard to follow. For now, elec-
trospinning, self-assembly and phase separation techniques 
seem to be very promising for designing a good scaffold for 
SCI repair (Kubinova and Sykova, 2012; Tan et al., 2012). In 
addition, the 3D architecture of CNS imposes to seek bet-
ter patterning techniques, since most of them are currently 
producing only 2D structures. While the biomaterial choice 
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seems crucial for scaffold fabrication, researchers have not 
yet determined the optimal choice of biomaterial for CNS 
repair. Fibrin/fibronectin and collagen-based scaffolds seem 
to manifest currently the more promising results though. As 
for the nanofibers, not only the alignment of the fibers in a 
scaffold is significant, but also there is also evidence suggest-
ing that the density of the fibers can also affect the outcome 
(Lanfer et al., 2010). 

Taken all together, it is well understood that there is room 
for major research advances on neural tissue engineering in 
order to investigate all the different parameters which could 
help to optimize the results in terms of neuroregeneration in 
SCI. The combination of the scaffolds with stem cells and/or 
growth factors and biomolecules such as the enzyme ChABC 
seems beneficial in order to regulate the balance between the 
inhibitory and excitatory factors implicated in neuroregen-
eration. Thus, it is more and more prominent that a combi-
natorial therapeutic approach will be the one that will prob-
ably provide the conclusive solution to the complex problem 
of SCI repair.
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