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ABSTRACT
◥

Purpose:Cell-free DNA (cfDNA) offers a noninvasive approach
to monitor cancer. Here we develop a method using whole-exome
sequencing (WES) of cfDNA for simultaneously monitoring the
full spectrum of cancer treatment outcomes, including minimal
residual disease (MRD), recurrence, evolution, and second primary
cancers.

Experimental Design: Three simulation datasets were generated
from 26 patients with cancer to benchmark the detection perfor-
mance ofMRD/recurrence and second primary cancers. For further
validation, cfDNA samples (n ¼ 76) from patients with cancer
(n ¼ 35) with six different cancer types were used for performance
validation during various treatments.

Results:We present a cfDNA-based cancer monitoring method,
named cfTrack. Taking advantage of the broad genome coverage of
WES data, cfTrack can sensitively detect MRD and cancer recur-

rence by integrating signals across known clonal tumormutations of
a patient. In addition, cfTrack detects tumor evolution and second
primary cancers by de novo identifying emerging tumor mutations.
A series ofmachine learning and statistical denoising techniques are
applied to enhance the detection power. On the simulation data,
cfTrack achieved an average AUC of 99% on the validation dataset
and 100% on the independent dataset in detecting recurrence in
samples with tumor fractions ≥0.05%. In addition, cfTrack yielded
an average AUC of 88% in detecting second primary cancers in
samples with tumor fractions ≥0.2%. On real data, cfTrack accu-
rately monitors tumor evolution during treatment, which cannot be
accomplished by previous methods.

Conclusions: Our results demonstrated that cfTrack can sensi-
tively and specificallymonitor the full spectrum of cancer treatment
outcomes using exome-wide mutation analysis of cfDNA.

Introduction
Despite the rapid development of cancer treatments, a large fraction

of patients experience recurrence, resistance, or progression of cancer
during or after treatment (1). Even after the surgical removal of tumors,
a patient can still have minimal residual disease (MRD), which is
associatedwith an increased likelihood of recurrence (2). Thus, patients
with cancer need continuous monitoring to detect MRD, recurrence,
and progression, thereby facilitating early intervention and therapy
adjustment (2, 3). Although cancer monitoring is clinically important,
the sequential sampling of tumor tissue from the patient poses a
significant challenge. In this context, liquid biopsy is an attractive
option, especially the usage of cell-free DNA (cfDNA) in blood. Blood
samples can be obtained noninvasively for continuousmonitoring, and
the tumor-derived DNA fragments in cfDNA can provide comprehen-
sive genetic profiling even of heterogeneous tumors (4).

However, a major challenge associated with cfDNA-based cancer
monitoring is low tumor content. In patients with cancer receiving
treatment orwithMRD, the fraction of tumorDNA in a cfDNA sample
can be as low as 0.1% (5). Previous studies on cancer monitoring in
plasma have used deep sequencing on a small mutation panel to
discover the weak tumor signal (2, 5, 6, 7, 8). However, these methods
have several crucial limitations: (i) the high cost of deep sequencing
restricts the panels to a small number of known mutations (either
commoncancermutationsormutations selected from thepretreatment
tumor sample of a specific patient); (ii) personalized panels usually
require a labor-intensive experimental design; (iii) panel-based mon-
itoring cannot detect emerging tumorswith a differentmutation profile,
for example, a second primary cancer, yet approximately 30% patients
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develop a second primary cancer (9), driven by de novo tumor muta-
tions; and (iv) panels usually set detection thresholds by studying a
cohort of noncancer individuals, which exposes the test to systemic bias
from interindividual variations and interexperimental differences.
Recently, two studies (10, 11) presented cancer monitoring methods
using whole-genome sequencing (WGS), but they do not yet address
limitations (iii) and (iv) mentioned above, and focus onmutations seen
in pretreatment tumor samples. In addition, the high cost ofWGS limits
the clinical applications of those two methods.

In this study, we describe a new cancer monitoring approach,
named cfTrack, based on the cfDNAwhole-exome sequencing (WES).
cfTrack addresses all the aforementioned limitations of existing meth-
ods. Specifically, not only can itmonitor the preexisting cancer (i.e., the
original, primary cancer) to detect recurrence or MRD, but it can also
monitor tumor evolution by detecting cancer progression or the
emergence of a second primary cancer. To monitor the preexisting
cancer, cfTrack (i) uses exome-wide somatic mutations collected in
pretreatment samples (solid tumor or blood samples) to provide a
robust statistical index, then (ii) models sample-specific background
noise in the cfDNA sequencing data to provide an unbiased detection
threshold for each patient. To monitor tumor evolution, cfTrack
performs detection of exome-wide de novo tumor mutations in the
posttreatment plasma samples, using our recently developed cfSNV
method (12). With exome-wide sequencing and comprehensive anal-
ysis of mutations, cfTrack can sensitively identify these previously
undiagnosed patients with second primary cancers, comprehensively
describe their tumor status, and enable early intervention and person-
alization of treatment. Using both simulation data and a cohort of
patients with cancer (n ¼ 35, 18 prostate cancer, 8 lung cancer, 4
ovarian cancer, 3 glioma, 1 bladder cancer, and 1 germ cell cancer), we
show that cfTrack achieves sensitive and specific monitoring of tumor
MRD/recurrence and evolution from cfDNA, even with very low
tumor fractions. These results demonstrate that cfTrack enables
full-spectrum monitoring of cancer treatment outcomes.

Materials and Methods
Data collection

We collectedWES data from four public datasets.We collected data
of 18 patients with metastatic cancer from Adalsteinsson and collea-
gues (13) under dbGaP accession code phs001417.v1.p1. Eachpatient’s

data include a white blood cell (WBC) sample, a tumor biopsy sample,
and two plasma samples.We also collectedWES data of 3 patients with
cancer (1 bladder cancer, 1 prostate cancer, and 1 germ cell cancer)
from Tsui and colleagues (14) under NCBI BioProject accession code
PRJNA679359 and WES data of 3 patients with glioma under NCBI
BioProject accession code PRJNA641696. Each patient has a WBC
sample, a solid tumor sample, and a plasma sample.We collectedWES
data of 17 patients with prostate cancer from Ramesh and collea-
gues (15) under NCBI BioProject accession code PRJNA554329. All
patients have oneWBC sample; 8 of the 17 patients have a solid tumor
sample (metastatic site); 5 (7, 2, 2, and 1) patients have one (2, 3, 4, and
5, respectively) plasma sample collected at different timepoints. We
also collected samples from 8 patients with non–small cell lung cancer
(NSCLC) and 4 patients with ovarian cancer and generated our own
WES data as described below. For all 8 patients with NSCLC, a tumor
biopsy sample, a WBC sample, and three plasma samples were col-
lected. For all 4 patients with ovarian cancer, a WBC sample and two
serum samples were collected. In addition, for the patient with ovarian
cancer OV4, who underwent surgical resection at the first blood col-
lection, we collected the patient’s tumor tissue sample. For all sources,
only oneWBC sample (or its WES data) was collected for each patient
with cancer.

Human subjects
We collected blood samples, tumor samples, and WBC samples

from 8 patients with NSCLC from KEYNOTE-001 (16) and KEY-
NOTE-010 (17), who all provided informed consent for research use.
The blood and tissue collection protocols were described in the full
protocol of KEYNOTE-001 and KEYNOTE-010. The project was
approved by the Institutional Review Board (IRB) of University of
California, Los Angeles, CA (IRB# 12-001891, IRB# 11-003066, and
IRB# 13-00394) and was conducted in accordance with the Belmont
Report.We also collected samples from 4 patients with ovarian cancer.
Serumwas harvested fromwhole blood by centrifugation (400� g, 150)
and immediately flash frozen. Peripheral blood mononuclear cells
were harvested from whole blood collected in a blue top phlebotomy
tube with sodium citrate, centrifuged (400 � g, 150), and aliquoted
from the buffy coat before being immediately flash frozen. Portions of
solid tumor from the operating room were brought back to the lab
and flash frozen. Clinical information from consenting patients was ob-
tained frommedical records. Longitudinally collected clinical specimens
from patients with ovarian cancer were obtained using IRB-approved
protocols (IRB# 10-000727) and were studied in accordance with the
Belmont Report. All patients provided written informed consent.

Genomic DNA WES library construction
For the 8 patients with NSCLC, WBC genomic DNA (gDNA) was

isolated with QIAGEN DNeasy Blood & Tissue Kit. Library prepara-
tion and exon capture was performed with KAPA HyperPrep Kit and
Nimblegen SeqCap EZ Human Exome Library v3.0 (Roche) and 2�
150 bp paired-end sequencing by Genewiz. For the 4 patients with
ovarian cancer, WBC and tumor tissue gDNA were isolated with
DNeasy Blood & Tissue Kit and sonicated by Covaris system. Ampure
XP beads (Beckman-Coulter) size selection was performed to enrich
100–250 bp DNA fragments before library construction. In brief,
0.9 volume beads were added to the fragmented gDNA. After incu-
bation, supernatant was transferred to a new tube and an additional
1.1 volume beads were added (“0.9�–1.1� bead size selection”). After
wash, gDNA was eluted. gDNA WES library was constructed with
SureSelect XT HS kit from Agilent Technologies according to man-
ufacturer’s protocol. In brief, 100 ng gDNA was used as input. The

Translational Relevance

Continuous cancer monitoring is clinically necessary for patients
with cancer to detect minimal residual disease (MRD), recurrence,
and progression, allowing for early intervention and therapy adjust-
ment. Cell-free DNA (cfDNA) in blood has become an appealing
option due to its noninvasiveness. Until now, cfDNA-based cancer
monitoring methods have been focused on deep sequencing at a few
known mutations, which is insufficient when tumors evolve or new
tumors emerge. We present the method, cfTrack, which uses whole-
exome sequencing of cfDNA to track the full range of cancer
treatment outcomes for the first time, including MRD, recurrence,
evolution, and second primary cancer. We demonstrate that, even
with very low tumor fractions, cfTrack achieves sensitive and specific
monitoring of tumor MRD/recurrence/evolution based on both
simulation data and a cohort of patients with cancer. These findings
demonstrate the clinical utility of cfTrack.
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adaptor-ligated library was amplified with index primer in 8-cycle
PCR. A total of 1,000 ng pre-capture library was hybridized to capture
panel. The post-capture library was reamplified with 9-cycle PCR and
2� 150 bp paired-end sequenced by Genewiz.

Plasma cfDNA WES library construction
For each of the 8 patients withNSCLC, venipuncturewas performed

by trained phlebotomists. Plasma samples were isolated within 2 hours
of blood collection and stored in �80�C until cfDNA extraction with
QIAGEN QIAamp circulating nucleic acid kit. WES libraries were
constructed with SureSelect XT HS kit. A total of 10 ng cfDNA was
used, and 10-cycle PCR was performed for both pre- and post-capture
libraries. A total of 700–1,000 ng pre-capture library was hybridized to
the capture panel.

Serum cfDNA WES library construction
Serum cfDNA from the 4 patients with ovarian cancer was extracted

by QIAamp circulating nucleic acid kit. To eliminate gDNA contam-
ination, 0.5�–2.0� bead size selection was performed. WES libraries
were constructed with SureSelect XT HS kit. Input was 5–20 ng
cfDNA. Pre-capture libraries were amplified by PCR with 11 (10–
20 ng input) or 12 (input less than 10 ng) cycles. Post-capture libraries
were reamplified with 9-cycle PCR.

Data preprocessing
Both genomic DNA sequencing data and cfDNA sequencing data

were preprocessed using the same procedure. Raw sequencing data
(FASTQ files) were aligned to the hg19 reference genome by bwa
mem (18) and sorted by samtools (19). Then, duplicated reads from
PCR amplification were identified and removed by picard tools
MarkDuplicates (20). After this step, read group information was
added to the bamfile using picard tools AddOrReplaceReadGroups, and
reads were realigned around indels usingGATK RealignerTargetCrea-
tor and IndelRealigner (21, 22). After realignment, base quality scores
were recalibrated using GATK BaseRecalibrator and PrintReads. All
tools in the data preprocessing pipeline were used with their default
settings. After data preprocessing, the resulting bam files were used as
inputs for mutation detection and MRD detection.

Comprehensive and personalized cancer monitoring using
cfDNA

We present a new cancer monitoring method (Fig. 1A and B),
cfTrack, that analyzes both preexisting tumor mutations and newly
emergingmutations in posttreatment samples. Specifically, we collect a
plasma or solid tumor sample and a matched WBC sample from a
patient before the treatment to select markers that are specific to the
preexisting tumor. In the posttreatment plasma samples, cfTrack both
tracks preexisting tumor markers and detects new somatic mutations.

Because of the low tumor fraction in the plasma samples from
patients with MRD, we integrate all clonal tumor mutations from the
pretreatment samples [Fig. 1B (1)]. Tumor mutations evolve, so any
given somatic mutation observed in pretreatment samples may dis-
appear in posttreatment samples. We perform WES of the pretreat-
ment samples (solid tumor or plasma samples) and select clonal
somatic mutations that appear in all preexisting cancer cells and have
high variant allele frequencies (VAF; ref. 4). Compared with a pre-
defined, limited panel of known tumor mutations, these clonal muta-
tions, observed in WES, are more likely to appear in posttreatment
samples and are more informative for monitoring the preexisting
tumor (5). However, when the tumor fraction in cfDNA is very low,
WES at medium depth (100� or 200�) may contain few variant

supporting reads at a specific locus. Therefore, to provide a robust
mutation-based statistic index in cfDNA, we aggregate variant sup-
porting reads across all clonal somatic mutations (see Identification of
clonalmutations in pretreatment samples and Supplementary Fig. S1A
and S1B). We quantify the tumor fraction using the integrated VAF
(IVAF), which is the sum of variant supporting reads divided by the
sum of all reads at the clonal somatic mutations. Note that a recent
publication developed a similar integrative approach using the reads
fromWGS of cfDNA (11). Here we show thatWES of cfDNA can also
be used for ultrasensitive cancer detection, and given its cost-
effectiveness compared with WGS it is more feasible for clinical use.

To limit the accumulation of sequencing errors during integration,
we suppress sequencing errors at the read level with a random forest
model [Fig. 1B (2)]. When we integrate tumor reads across a large
number of mutation sites to amplify the tumor signal, sequencing
errors also accumulate. Therefore, we have developed a method to
suppress individual sequencing errors and enhance the signal-to-noise
ratio of cancer detection by differentiating the reads containing
sequencing errors from those containing true variants. Specifically,
this filter is based on a random forest model (see Machine learning
model for suppressing sequencing errors). Previous work has shown
that it is possible for machine learning to distinguish true cancer
mutations from sequencing artifacts at the read level, and such filters
have been used to predict mutations and detect cancer and
MRD (11, 13). Unlike these previous works, our method is specifically
designed for cfDNA WES data: it incorporates cfDNA fragmentation
patterns and read sequence contexts (e.g., nucleotide substitution
C>A). Both features are informative to distinguish tumor-derived
true mutations and sequencing errors: tumor-derived cfDNA frag-
ments are shorter than non–tumor-derived cfDNA fragments (23, 24);
sequencing error rates are associated with nucleotide substitution
types (25). By combining a wide variety of features (Supplementary
Table S1), our model automatically discovers feature co-occurrence
relationships that are associated with sequencing errors. The random
forest model classifies all supporting reads at clonal somatic mutation
loci as containing either a true variant or a sequencing error. Only
those reads classified as “true variants” are counted as variant support-
ing reads.

We predict recurrence or MRD using sample-specific background
noise distribution [Fig. 1B (3)]. To predict whether a patient has
recurrence or MRD, we need to compare the estimated tumor fraction
with a background noise distribution which represents the error allele
fraction in samples from individuals without a tumor. Previous studies
usually compared the posttreatment sample of a patient with a cohort
of samples from healthy individuals, because the interindividual and
interexperimental differences are difficult tomodel; however, this kind
of comparison can introduce prediction bias, and the resulting detec-
tion thresholds are difficult to generalize to other experimental pro-
tocols. To avoid this limitation, we build the background noise
distribution in the same sample. For a set of n clonal tumor mutations,
we calculate the IVAF repeatedly K times (K ¼ 100) from n random
genomic positions, excluding known mutations and positions associ-
ated with clonal hematopoiesis [see Identification of mutations and
Clonal Hematopoiesis of Indeterminate Potential (CHIP) positions].
Ideally, all read pairs with nonreference alleles at random positions are
from sequencing errors, so the observed frequency of these reads
represents the background noise level. Therefore, we approximate the
background noise distribution by theK IVAFs from randompositions,
which represent the actual error rates observed in this specific
sequencing experiment. Recurrence or MRD can then be detected
using the empirical P value of the tumor fraction calculated from the
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Figure 1.

Cancer monitoring in plasma samples by tracking preexisting tumor mutations and newly emerging tumor mutations. A, Illustration of the sample collection for
cfDNA-based cancer monitoring. Prior to surgery or therapy, a plasma or tumor sample and a WBC sample are collected to generate the preexisting tumor profile.
Serial blood samples are collected to detect MRD/recurrence and monitor tumor evolution after treatment. B, Illustration of the method workflow. In the
pretreatment samples, clonal tumor mutations are identified for tumor tracking in the posttreatment samples. Given a posttreatment plasma sample, the tumor
fraction is calculated from the preexisting clonal tumor mutations and compared with a sample-specific background distribution. The empirical P value of the tumor
fraction is used topredictMRD/recurrence. Furthermore,denovo somaticmutations aredetectedusing cfSNVbetween theposttreatmentplasmaandWBCsamples.
A second primary cancer is predicted by a logistic regression model that accounts for both the amount of de novomutations and the corresponding tumor fraction.
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preexisting clonal mutations with respect to the sample-specific
background noise distribution. If the empirical P value is ≤ 0.05, the
patient is regarded as having MRD/recurrence.

We monitor tumor evolution and newly emerging tumors by
identifying newly emerging tumor mutations de novo [Fig. 1B (4)].
Previously described methods for cancer monitoring focus on a
predefined mutation panel, which makes it difficult to detect tumor
evolution or second primary cancers. Taking advantage of the WES
data with broad genome coverage, cfTrack performs de novomutation
identification to accomplish both. For this, we utilize cfSNV (12), a
method we recently developed for the sensitive and accurate calling of
somatic mutations in plasma samples. cfSNV specifically accommo-
dates key cfDNA-specific properties, including the low tumor fraction,
short and nonrandomly fragmented DNA, and heterogeneous tumor
content. It addresses the low tumor fraction and tumor heterogeneity
in cfDNA by iterative and hierarchical mutation profiling and ensures
a low false-positive rate bymultilayer error suppression. On the basis of
the mutation calling results from cfSNV, tumor evolution and newly
emerging tumors are tracked by a logistic regression model, whose
features are the tumor fraction and the number of detected mutations.
The model is trained using a cohort of cancer and healthy plasma
samples. A sample is predicted with evolved tumors or newly emerging
tumors if its prediction score is larger than the 95th percentile of the
prediction scores from the healthy samples in the training data.

Identification of clonal mutations in pretreatment samples
Tumor-derived somatic mutations are detected using cfSNV (12)

from the pretreatment plasma sample; if only the pretreatment tumor
sample is available, tumor-derived mutations are the common muta-
tions detected by Strelka2 (26) somatic and MuTect (27) from the
pretreatment tumor sample. The detected mutations are removed if
there is at least one variant supporting read in the matched WBC
sample. A mutation is considered clonal, and hence retained in the
final marker list, if its VAF is > 25% of the average of the five highest
VAFs in the sample (28). We require a minimum of 30 markers
from the pretreatment plasma sample to obtain a robust prediction.
If there are fewer than 30 clonal mutations, subclonal mutations with
the highest VAFs will be included.

Identification of mutations and CHIP positions
We identify germline mutations in the pretreatment plasma sample

and the matched WBC sample from the same patient using GATK
HaplotypeCaller and Strelka2 Germline with the default settings.
GATK HaplotypeCaller is applied to the plasma sample and the WBC
sample individually; Strelka2 Germline is applied to the plasma-WBC
sample pair. Somatic mutations are detected in the plasma sample and
the matched WBC sample using cfSNV under default settings. The
CHIP positions are identified from pileup files generated using sam-
tools mpileup. If a nonmutated position has ≥ 3 variant supporting
reads or a VAF > 1% in the matched WBC sample, it is regarded as a
CHIP position. The selection of these parameters has little impact on
the performance (Supplementary Fig. S2A and S2B). All the identified
germline mutations, somatic mutations, and CHIP positions are
excluded in the step of building the background noise distribution.

Machine learning model for suppressing sequencing errors
Althoughweak tumor signals in plasma samples can be amplified by

integrating the variant supporting reads across a large genomic region,
sequencing errors can also accumulate and possibly confound the
tumor signal.Moreover, because of the low fraction of tumorDNA, the
variant supporting reads at a single mutation are not sufficient to

provide a robust and accurate estimation of site-level statistics (e.g.,
strand bias and average base quality) for error removal. Therefore, we
developed amachine learning filter to eliminate reads with sequencing
errors (Supplementary Fig. S3). Specifically, for a group of genomic
positions (tumor mutations or random positions), we classify the
variant supporting reads with a random forest model to distinguish
sequencing errors from true variants. Because all data in this study
were generated from paired-end sequencing, in the following section,
we detail the model for paired-end reads, but the principle can also be
applied to single-end reads. With paired-end sequencing data, there
are two types of read pairs with regards to a specific mutation site: one
(nonoverlapping read pair) covers the mutation site by one of its read
mates, the other (overlapping read pair) covers the mutation site by
both of its readmates (Supplementary Fig. S3A). The overlapping read
pair can provide two readouts of the mutation site on the DNA
fragment in the sequencing library, but the nonoverlapping read pair
can only provide one readout. This means that the overlapping read
pair naturally contains more information about the mutation site than
the nonoverlapping read pair, and the two readouts can serve as
validation for each other. Therefore, we trained two independent
random forest models to fully utilize the information in the nonover-
lapping read pair and the overlapping read pair. Please note that the
random forest models in cfTrack classify sequencing errors and true
variants in every read pair, that is, read-level error suppression. It is
different from the empirical variant score model in Strelka2 and the
variant quality score model inGATK, which rely on site-level statistics
(such as averaged base quality in all reads) to classify sequencing errors
and true variants.

To train the random forest model, we used WES data from 18
patients: 12 withmetastatic breast cancer (MBC) and 6 withmetastatic
prostate cancer [castrate-resistant prostate cancer (CRPC); ref. 13;
Supplementary Fig. S3B]. Each patient had four samples sequenced:
two plasma samples (collected at two different timepoints), a WBC
sample, and a tumor biopsy sample. We use the supporting cfDNA
read pairs at known mutation (error) sites as the training data. The
known mutation sites include both germline and somatic mutation
sites, where germline mutations are required to be detected in all four
samples using Strelka2 germline, and somatic mutations are required
to be detected from both the cfDNA-WBCpairs (cfDNAdata vs.WBC
data) and the tumor-WBC pair (tumor data vs. WBC data) using
Strelka2 somatic and MuTect. Error sites are defined as sufficiently
covered sites (>150�) with atmost twohigh-quality nonreference read
(base quality ≥ 20 and mapping quality ≥ 40) in only one of the four
datasets. All high-quality labeled read pairs (base quality ≥ 30 and
mapping quality ≥ 40) were extracted from raw cfDNA data using
picard tools FilterSamReads. Multiple read pairs may be extracted
covering the same mutation site, but these read pairs are similar and
might cause redundancy in the training and testing data. Therefore, we
solved the redundancy problem by retaining only one read pair per
mutation/error site (Supplementary Table S2). Different features were
extracted from the overlapping read pairs and the nonoverlapping read
pairs (Supplementary Table S1). All categorical features were expand-
ed using the one-hot encoding method. The hyperparameters of the
random forest model were as follows: (i) the number of decision trees
was 100, (ii) the maximum tree depth was 50, (iii) imbalanced classes
were addressed by setting the class weights to “balanced,” and (iv)
other parameters were left at their default values. Two separate random
forest classifiers (one for overlapping read pairs and one for nonover-
lapping read pairs) were trained on the extracted read pairs.

We validated the performance of the random forest model by cross-
validation. For each patient, the labeled read pairs from the 17 other
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patients were used to train the model, while the patient’s own data
were used to test the model (results shown in Supplementary
Fig. S4). The training data of the random forest model in all the
simulation (MRD/recurrence and second primary cancers) also
exclude the patient used for generating the simulation data to avoid
data leakage. Therefore, the evaluation of cfTrack is independent of
the training data. As an independent validation set, we used a group
of patients with NSCLC (8 patients each with three samples) with
sequential plasma cfDNA samples. The read pairs in these cfDNA
samples were labeled in the same manner as described above. Then,
these labeled read pairs were used as independent testing data for
the random forest model trained by the data generated from the
12 patients with MBC and 6 patients with CRPC (results shown in
Supplementary Fig. S5). On all cross-validation datasets, the ran-
dom forest model can accurately distinguish sequencing errors from
true variants (average AUC ¼ 0.95, 95% confidence interval ¼
0.9496–0.9503).

Simulation of recurrence and MRD detection by tracking clonal
somatic mutations in pretreatment samples

To evaluate the performance of our method, we generated simu-
lation data to mimic patients with MRD/recurrence and patients with
complete remission. The patients with MRD/recurrence have tumor
content in the posttreatment plasma sample and will show the
detection sensitivity; the patients with complete remission have no
tumor content in the posttreatment plasma sample and will show the
detection specificity. The simulation data were generated from two
datasets independently: (i) validation dataset, 27 patients with MBC
and 14 patients with CRPC and (ii) independent dataset, 8 patients
with NSCLC.

In the validation dataset, only 12 patients with MBC and 6 patients
with CRPC have two plasma cfDNA samples, so only these patients
were used to generate the posttreatment cfDNA samples from the
patients with MRD/recurrence. Note that these data were also used to
generate the training data for the read-level error suppression model.
Therefore, to avoid data leakage in the performance evaluation, the
MRD/recurrence detection on the validation dataset was performed in
a “leave-one-patient-out cross-validation”manner. In other words, for
a simulated sample (generated fromWES data from a specific patient)
in the validation dataset, the random forest models used in the error
suppression step were trained on the other 17 patients. In the inde-
pendent dataset, the 8 patients with NSCLC have three plasma cfDNA
samples. Only the first two timepoints of the plasma cfDNA samples
were used in the simulation. These data were untouched and inde-
pendent of the training of the read-level error suppression model, so
the error suppression model used on the independent dataset was
trained by all training data extracted from the 12 patients with MBC
and 6 patients with CRPC.

To demonstrate the sensitivity of detection for preexisting cancer,
we generated in silico dilution series to simulate patients with MRD/
recurrence by mixing the plasma sample collected at the second
timepoint and the matched WBC sample at varying concentrations
of cfDNA reads (0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 3%, 5%,
and 8%) using samtools view and samtools merge. Five independent
mixtures were generated at every concentration, at theoretical depths
of 200�, 100�, or 50� on the WES targeted regions. Because read
sampling is random, it is possible that there is no variant supporting
read at a given marker, even across all markers. Thus, we removed
samples with no variant supporting reads at all personalized markers
(checked by samtools mpileup). In this simulation, the original
matched WBC samples and the original plasma samples at the first

timepoint were used as theWBC samples and the pretreatment plasma
samples, respectively (Fig. 2). The in silico dilution series represents
posttreatment plasma samples from patients with MRD/recurrence.
For the validation dataset, we generated the data for each of the 12
patients with MBC and 6 patients with CRPC. The theoretical tumor
fraction in each sample is calculated as the product of the original
tumor fraction in the cfDNA sample and the dilution. The theoretical
tumor fraction ranges from 0.001% to 6.114%, with a median of
0.270%. For the independent dataset, we generated the data for each
of the 8 patients with NSCLC. The theoretical tumor fraction ranges
from 0.001% to 1.867%, with a median of 0.103%. The different ranges
of the theoretical tumor fractions in the two datasets are caused by
differences in the tumor content levels in the original plasma samples.
Note that the theoretical tumor fraction usually overestimates the true
tumor fraction because of random sampling and the imperfect on-
target rate.

To evaluate the specificity of the MRD detection pipeline, we
generated the patients with complete remission by subsampling from
the original WBC samples. Therefore, these subsamples are expected
to have no tumor DNA. For aWBC sample from a patient with cancer,
five subsamples were generated for each of 200�, 100�, and 50�
theoretical depth of the targeted regions. These subsamples represent
posttreatment plasma samples from patients without MRD. The
original plasma samples at the first timepoint were used as the
pretreatment plasma samples. Note that only one WBC sample was
available for each patient. If the only originalWBC sample was directly
used as the pretreatment WBC sample, all data in the posttreatment
plasma samples (i.e., subsamples) would have been observed in the
pretreatment WBC sample (i.e., the full original sample), which is
impossible in reality. Therefore, we used another subsample of the
original WBC samples as the pretreatment data at a sampling rate of
95% (Fig. 2). In this simulation, we preserved some randomness
between the WBC samples and the posttreatment plasma samples,
which reflects real cases. For the validation dataset, we generated the
remission samples for each of the 27 patients withMBCand 14 patients
with CRPC. For the independent dataset, we generated the remission
samples for each of the 8 patients with NSCLC.

To avoid potential bias from independently sampling replicates
from the same patients, we randomly selected one replicate at every
dilution (including 0% for remission samples) for every patient to
calculate the performance (AUC, sensitivity, and specificity). After the
selection, the performance metrics (AUC, sensitivity, and specificity)
were evaluated on theMRD/recurrence samples grouped by the tumor
fraction with a 0.01% step size and the remission samples (samples
with WBC reads only). To provide a robust estimate, we randomly
selected samples and calculated the performance 50 times. For the
validation dataset, in each random selection, there are 41 simulated
remission samples at each depth. At 200�, there are 143 simulated
MRD/recurrence samples; at 100�, there are 142 simulated MRD/
recurrence samples; at 50�, there are 128 simulated MRD/recurrence
samples. For the independent dataset, in each random selection, there
are eight simulated remission samples at each depth. At 200�, there
are 68 simulated MRD/recurrence samples; at 100�, there are 65
simulated MRD/recurrence samples; at 50�, there are 56 simulated
MRD/recurrence samples.

Simulation of second primary cancer detection
Similar to the simulation of recurrence and MRD detection, to

evaluate the sensitivity of the method for second primary cancer
detection, we generated an in silico dilution series by mixing the
plasma samples at the second timepoint and the matched WBC
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samples from the 12 patients with MBC and 6 patients with CRPC at
varying concentrations of cfDNA reads (from 1% to 10%: 1%, 3%, 5%,
8%, and 10%) using samtools view and samtools merge. Because no
training and testing of new models is performed in the detection of
second primary cancers, this is an independent testing dataset with
respect to the detectionmethod. Each spike-in sample contained a total
number of randomly sampled reads theoretically equivalent to 200�
depth of the targeted regions. Five independent mixtures were gen-
erated at every concentration. The tumor fraction in these spike-in
samples was quantified by the variant supporting reads at the clonal
somatic mutations identified in the original plasma sample. In this
simulation, the original matchedWBC samples were used as theWBC
samples. To demonstrate the specificity of the method, we reused the
complete remission samples at 200� generated in the simulation of
recurrence and MRD detection. To avoid potential bias from inde-
pendently sampling replicates from the same patients, we randomly
selected one replicate at every dilution for every patient to calculate the
performance (AUC, sensitivity, and specificity). To provide a robust
estimate, we randomly selected samples and calculated the perfor-
mance 10 times. In each random selection, there were 90 simulated
samples from patients with second primary disease and 41 simulated
samples from patients with complete remission. To evaluate the
performance, after removing the replicates, the simulation data were
randomly split into the training set (50%, n ¼ 66) and the testing set
(50%, n ¼ 65) 10 times. A logistic regression model is trained on the
training set and used to predict the presence of a second primary
cancer in the testing set. The performance metrics (AUC, sensitivity,
and specificity) are evaluated in the testing set on the second primary

cancer samples grouped by tumor fraction with a 0.1% step size, but
always using the complete set of remission samples.

Code availability statement
cfTrack is implemented in Python and is freely available for

academic and research usage through https://zhoulab.dgsom.ucla.
edu/pages/cfTrack.

Data availability statement
The data generated in this study are publicly available in

the European Genome-Phenome Archive under the accession
EGAD00001008454. The public data analyzed in this study were
obtained from dbGaP under accession code phs001417.v1.p1 and
from Sequence Read Archive under NCBI BioProject accession
codes PRJNA679359, PRJNA641696, and PRJNA554329.

Results
Analytic performance of detecting cancer recurrence and MRD

To evaluate the performance of cfTrack on cancer MRD or recur-
rence, we use the in silico method of preparing spike-in simulation
data. If a patient with cancer has cancer recurrence or MRD, the
posttreatment plasma of the patient will contain DNA corresponding
to the preexisting tumor. To simulate the posttreatment plasma
samples from the patients with cancer recurrence or MRD, we
computationally mix a plasma sample from a patient with cancer with
a WBC sample from the same patient. The data, with known dilution
ratios, can provide a sensitivity/specificity assessment of cfTrack.

Figure 2.

Settings to generate in silico spike-in simulation data. The simulation data are generated usingWESdata taken from (i) 12 patientswithMBC and6patientswith CRPC
and (ii) 8 patients with NSCLC. Each patient has an early plasma sample (Blood T1), a WBC sample (WBC), and a late plasma sample (Blood T2). The three WES
datasets from a patient are used directly ormixed to generate the simulation samples. To simulate the scenario ofmonitoring a patient for MRD or cancer recurrence,
each case contains three simulation samples: a pretreatment plasma sample, a pretreatment WBC sample, and a posttreatment plasma sample. The raw data from
Blood T1 are used directly as the pretreatment plasma sample for all cases. WBC and Blood T2 are mixed at specified dilutions to simulate the posttreatment plasma
sample. To simulate remission cases, we generate two independent random samplings from the raw WBC data to use as the pretreatment WBC sample and the
posttreatment plasma sample. To simulate the emergence of second primary cancers, each case contains two simulation samples: a pretreatmentWBC sample and a
posttreatment plasma sample. The generation of simulation samples for second primary cancer monitoring is the same as for MRD/recurrence monitoring, except
that the pretreatment plasma sample (Blood T1) is not used.
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We generated two sets of in silico spike-in simulation data: (i)
validation dataset, using the WES data from 12 patients with MBC
and 6 patients with CRPC (13) and (ii) independent dataset, using the
WES data from 8 patients with NSCLC. For both datasets, each patient
has sequencing data from two plasma samples (collected at two
different timepoints T1 and T2, with 14–138 days in between for
patients with MBC and CRPC, 42 days in between for patients with
NSCLC), and the matched WBC sample. These patients underwent
treatment between T1 and T2, so we consider the first plasma
samples (at T1) the “pretreatment” samples, and the second plasma
samples (at T2) the “posttreatment” samples. Tens to hundreds of
clonal somatic mutations (for patients with MBC and CRPC,
ranging from 49 to 674 with median 94; for patients with NSCLC,
ranging from 30 to 1,239 with median 63) are found in the
pretreatment samples when compared with their matched WBC
samples. We then generated an in silico dilution series for each
patient by mixing their posttreatment plasma sample with the
matched WBC sample at varying fractions (the theoretical tumor
fraction ranges from 0.001% to 6.114% with median 0.270% for the
validation dataset, from 0.001% to 1.867% with median 0.103% for
the independent dataset; see Material and Methods and Fig. 2). In
addition, we simulated patients who achieved complete remission

by subsampling the original WBC samples (the tumor fraction is
0%, see Material and Methods and Fig. 2). The simulation data were
generated at three different depths, 50�, 100�, and 200�.

When applying cfTrack to the simulated datasets, we observed
slightly increased detection performance with increasing sequencing
depth (Fig. 3A–D; Supplementary Fig. S6A–S6D). This trend is
expected because the higher the sequencing depth, the more tumor
DNA fragments can be captured. Specifically, on the validation dataset,
we achieved an average AUC of 99% (SD ¼ 1%) when the tumor
fraction was ≥ 0.05% at 200� depth (Fig. 3A; Supplementary
Fig. S6A), with 100% average sensitivity (SD ¼ 0%) and 96% average
specificity (SD ¼ 1%; Fig. 3B; Supplementary Fig. S6B). On the
independent dataset, we achieved an average AUC of 100% (SD ¼
0%) when the tumor fraction was ≥ 0.05% at 200� depth (Fig. 3C;
Supplementary Fig. S6C), with 89%average sensitivity (SD¼ 13%) and
100% average specificity (SD¼ 0%; Fig. 3D; Supplementary Fig. S6D).
Considering the difference in the sample size and the higher specificity
in the independent dataset, the performance on the two simulation
datasets is comparable. This indicates that our method can achieve
sensitive monitoring using only 200� WES data, offering a cost-
effective solution for MRD detection. The detection limit can be
further enhanced by increasing the sequencing depth.

Figure 3.

Performance of cancer recurrence and MRD detection using the simulation data. The area under the ROC curve (AUC) of the MRD/recurrence detection on the
validation dataset (A) and the independent dataset (C) with different tumor fractions and sequencing depths. The sensitivity and specificity with different tumor
fractions and sequencing depth on the validation dataset (B) and the independent dataset (D). Supplementary Figure S6A–S6D is the zoom-in of A–D at low tumor
fraction ranging from 0% to 0.2%. E, AUCs of MRD/recurrence detection with and without error suppression (ES) on the validation dataset at 200� depth with
different tumor fractions. F, The sensitivity and specificity of MRD/recurrence detection with and without error suppression on the validation dataset at 200� depth
with different tumor fractions. In A, C, and E, the dots indicate the average AUC, and the vertical bars indicate average� SD of the AUC (see Material and Methods).
In B, D, and F, the dots show the average sensitivity using a cut-off P value ¼ 0.05 for the background noise distribution; the vertical bars indicate average � SD
of the sensitivity; the specificity is shown in the legend in the format of [average specificity, (average � SD, average þ SD)]. The solid lines show the smoothed
performance fitted with logit functions.
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Our method can achieve high detection power thanks to three key
features: the exome-wide integration of tumor signals, the sample-
specific decision threshold, and the read-level error suppression. Read-
level error suppression greatly improves the detection power, espe-
cially in samples with a low tumor fraction. For example, based on our
in silico samples with a 0.05% tumor fraction, employing read-level
error suppression improved the AUC by 35% on the validation dataset
(see Fig. 3E and F) and improved the AUC by 40% on the independent
dataset (see Supplementary Figs. S6E and S2F).

Analytic performance of detecting second primary cancers
Sensitive monitoring of tumor evolution and newly emerging

tumors requires the de novo detection of mutations from previously
unobserved tumors. Pretreatment plasma samples and tumor biopsy
samples cannot provide sufficient tumor markers for this purpose. In
contrast with previous cancer monitoring methods, we can detect de
novo tumor-derived single-nucleotide variants in the posttreatment
plasma samples, which allow us to identify mutations that come from
new tumors. In this section, we specifically evaluate cfTrack for the
detection of second primary cancers, which depends solely on the
detection of emerging tumors.

Detecting a second primary cancer is equivalent to detecting a new
tumorwithout prior knowledge. To simulate this scenario, we generate
an in silico dilution series from the 12 patients withMBCand 6 patients
with CRPC by mixing their posttreatment plasma samples with the
matched WBC samples (13). The mixed samples are prepared at
varying fractions (the theoretical tumor fraction ranges from
0.111% to 7.680%, with amedian of 2.984%; seeMaterial andMethods
and Fig. 2). For each dilution level, simulation data are generated with
a depth of 200�. The samples simulating complete remission are the
same as those used for MRD/recurrence detection (in the previous
section). Because the detection of a second primary cancer involves no
training or testing of new models, this simulation dataset is an
independent dataset with respect to the detection method. In this
simulation, we do not use the pretreatment plasma samples, repre-
senting the scenario where no preexisting tumor profile has been
observed.

For each pair of simulated plasma and simulated WBC samples, we
use cfSNV to identify somatic mutations. Then cfSNV estimates a
tumor fraction from these mutations. We predict a second primary
cancer by a logistic regressionmodel using both the tumor fraction and
the number of detected mutations as features. We randomly split the
samples into a training set (50%) and a testing set (50%). A patient is
predicted to have a second primary cancer if they have a large
prediction score (≥95th percentile of prediction scores from the

remission samples in the training set). The AUC is calculated on the
basis of the prediction results in the testing sets for all complete
remission samples and for the subset of simulation samples with a
specific tumor fraction (see Material and Methods). We achieve an
average AUC of 88% (SD¼ 10%) when tumor fraction ≥ 0.2% at 200�
depth (Fig. 4A), with an average sensitivity of 76% (SD¼ 23%) and an
average specificity of 93% (SD ¼ 5%; Fig. 4B). The sensitivity of the
methodology is lower for detecting second primary cancers than for
detecting recurrence and MRD, because no preexisting tumor infor-
mation is available and all novel somatic mutations need to be
confirmed. The detection of a novel somatic mutation requires more
variant supporting reads than just observing a weak signal at a known
locus. Nevertheless, cfTrack still achieves high performance in detect-
ing a new tumor. Therefore, cfTrack can be used for monitoring tumor
evolution and detecting second primary cancers and cancer
progression.

Monitoring tumors in patients with cancer on treatments
through cfDNA

Developments in immunotherapy and targeted therapy have
improved the outcomes of patients with cancer in recent
years (29, 30, 31). For example, immunotherapy, which activates a
patient’s own immune system to fight cancer, has remarkably
improved clinical outcomes in a subset of patients with NSCLC (32).
Despite these results, the majority of patients eventually develop
resistance and fail to respond to treatment (33–35). Therefore, it is
essential to closely monitor the response of patients and quickly
recognize when the need for alternative treatment arises. However,
because the development of resistance may be associated with tumor
evolution (36), this type of monitoring cannot only rely on markers
derived from the preexisting tumor, but requires constant reevaluation
of the tumor profile during treatment. OurWES-basedmethod, which
detects mutations from both pretreatment and treated samples, can
comprehensively track a patient’s response.

To test our method in this clinical scenario, we not only collected
samples from our cancer patients but also exhaustively surveyed
available datasets from public databases. Specifically, we applied our
cancer monitoring method to plasma/serum samples (n ¼ 76, eight
serum samples for 4 patients with ovarian cancer and 68 plasma
samples for other patients) from a cohort of patients with cancer
(n ¼ 35) who received various treatments. This cohort contains 18
patients with prostate cancer (14, 15), 8 patients with lung cancer, 4
patients with ovarian cancer, 3 patients with glioma, 1 patient with
bladder cancer (14), and 1 patient with germ cell cancer (14). All
plasma/serum samples were collected when the patients did not have

Figure 4.

Performance of second primary cancer detection with
the simulation data. A, AUC of the in silico spike-in
samples with different tumor fractions at 200� sequenc-
ing depth. The dots indicate the average AUC, and the
vertical bars indicate average � SD of the AUC (see
Material and Methods). B, The sensitivity and specificity
in the in silico spike-in samples with different tumor
fractions at 200� sequencing depth. The dots show the
average sensitivity using a cutoff of the 95th percentile of
prediction scores from the remission samples in the
training data; the vertical bars indicate average � SD of
the sensitivity; the specificity is shown in the text in the
format of [average specificity, (average� SD, averageþ
SD)]. The solid lines show the smoothed performance
fitted with a logit function.
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complete remission or had recurrence, so tumor content was expected
in all samples. After applying our method, tumor-derived DNA was
detected in all cfDNA samples except three plasma samples from
patients with glioma (Supplementary Fig. S7). Because the detection of
tumor-derived cfDNA is only possible in a very small fraction of
patients with glioma due to the blood–brain barrier (37), our results
were reasonable and consistent with the literature.

Among the 35 patients, 8 patients with NSCLC, 4 patients with
ovarian cancer, and 12 patients with prostate cancer have at least two
plasma/serum samples collected at different timepoints, between
which the patients received treatments. Tomonitor the tumor changes
in these patients, two tumor fractions are calculated separately for the
preexisting tumor mutations (preexisting tumor fraction) and for the
de novo tumor mutations (de novo tumor fraction) from cfTrack. The
two tumor fractions allow us to track possible tumormutations during
treatment.

The 8 patients with NSCLC received anti-PD-1 immunotherapy
and their plasma samples were collected from each patient at 0
(baseline), 6, and 12 weeks, measured from the start of treatment.
Among these patients, 4 are “durable responders” whose progression-
free survival (PFS) is longer than 18 months; the other 4 patients
are “early progressors” whose PFS is shorter than 6 months (see
Supplementary Table S3). In general, we observed a decreasing or
low tumor fraction in the durable responders and an elevated tumor
fraction in the early progressors (Fig. 5A). An unusual example in the
sample is early progressor LC-2, whose preexisting tumor fraction
remained at a low level during immunotherapy treatment, while de
novo tumor fraction increased. This implies a potential clonality
change during treatment. In other words, the responding clone might
have shrunk while the other clones grew. Existing cancer monitoring
methods, which do not consider newly emerging mutations, could not
have recognized this tumor growth and would have misled further
treatments.

The 4 patients with ovarian cancer received chemotherapy (OV1,
OV2, and OV3) or chemotherapy and surgery (OV4) between the
collection of two serum samples (SupplementaryTable S4). At the time
of the second collection, patients OV1, OV2, and OV3 underwent
surgery. Surgical and pathologic findings demonstrated a moderate
treatment effect from chemotherapy. We observed a decrease in both
tumor fractions using cfTrack (Fig. 5B), which indicated a decline in
tumor burden. Patient OV4 had a recurrence after chemotherapy and
surgery at the time of the second serum collection. Consistently, we
observed an increase in both tumor fractions (Fig. 5B). Therefore, our
results are consistent with the clinical outcomes of these patients.

We also tracked the tumor changes in the 12 patients with prostate
cancer who received various treatment types during the time between
the two plasma collections. During treatment, 9 patients (P8, P9, P10,
P14, P15, P16, P18, P19, and P20) had clonal expansion and 3 patients
(P6, P17, and P21) had persistent clones (15). The clonality change
can be reflected by the discordance of the two estimated tumor
fractions. In general, we observed discordance between the two tumor
fractions in the majority of the patients with clonal expansion
(Fig. 5C). There are no or only minor differences between the two
tumor fractions in the patients with relatively stable clones (Fig. 5C).
These observations are consistent with those from the patients with
NSCLC.

From the analysis of this heterogeneous cohort of patients with
cancer with different cancer types and various treatments, we showed
that our method can not only closely track the change in tumor
fraction, but also detect changes in mutation clonality. The latter is
essential for the detection of resistance clones to promptly guide

subsequent treatments, but it cannot be achieved by existing cancer
monitoring methods.

Discussion
Cancer monitoring is essential to assess the effectiveness of treat-

ment and improve the life quality of patients with cancer. Unlike
traditional tumor biopsies, cfDNA can provide noninvasive and
continuousmonitoring of patients with cancer, but the very low tumor
content of cfDNA remains a major challenge. Most current cfDNA-
based methods rely on deeply sequencing a small gene panel to detect
the weak tumor signal, but this approach cannot comprehensively
cover the patient population or detect evolving tumors. Therefore, we
have developed a new cfDNA-based cancer monitoring method that
can effectively and sensitively track changes in tumors, detect cancer
MRD/recurrence, and identify the presence of a second primary
cancer. We present a new computational method for cancer moni-
toring using cfDNAWES data to overcome the limitations of previous
methods. Taking advantage of the wide genome coverage ofWES data,
cfTrack (i) enhances the tumor signal by integrating a large number of
clonal tumor mutations identified in pretreatment samples; (ii) sup-
presses sequencing errors at the read level with an accurate random
forest model; (iii) builds sample-specific background noise distribu-
tions to predict MRD/recurrence, avoiding biases due to interindi-
vidual and interexperimental variations; and (iv) detects tumor evo-
lution and second primary cancers by de novo identifying emerging
tumor mutations.

Combining these techniques, cfTrack achieves sensitive and specific
detection of recurrence, MRD, and second primary cancers. In detect-
ing recurrence in samples with a 0.05% tumor fraction, cfTrack
achieved an AUC of 99% (100% sensitivity and 96% specificity) on
the validation dataset and an AUC of 100% (89% sensitivity and 100%
specificity) on the independent dataset. In detecting second primary
cancers in sampleswith a 0.2% tumor fraction, cfTrack yielded anAUC
of 88% (76% sensitivity and 93% specificity). Because the performance
of themethod increases with the sequencing depth, these results can be
further improved in practice. To evaluate cfTrack in clinical scenarios,
we not only collected samples directly from our patients with cancer,
but also exhaustively surveyed and utilized available datasets in public
databases. On these data, we show that cfTrack achieved accurate and
comprehensive monitoring of the changes in tumors for patients with
different cancer types and undergoing various treatments, which
cannot be accomplished by methods focusing only on a small panel
of mutations from pretreatment tumor samples.

This study has its limitations. First, cfTrack has only been validated
and evaluated using in silico spike-in simulation data and on a limited
number of patients with cancer. To address this limitation, we
generated simulation data that mimic real scenarios, including tumor
evolution during treatment. For example, simulated plasma samples
with varying tumor contents are generated by subsampling the original
plasma sample from the second timepoint, which already contains a
different tumor profile compared with the sample at baseline. Nev-
ertheless, we acknowledge that real cases of MRD, recurrence, and
second primary cancers could be more complicated. Applying cfTrack
to larger datasets would enable a more comprehensive evaluation and
possible optimization of parameters. Second, tumor fraction is calcu-
lated as an average across all reads for a predefined list of tumor
markers. Tumor evolution and tumor heterogeneity could bias the
selection of markers, resulting in the absence of important variant
supporting reads in the posttreatment cfDNA samples and causing the
model to infer a lower tumor fraction. Third, given the medium depth
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Figure 5.

Longitudinal cfDNA monitoring in patients with cancer who received treatments. The lines show the tumor fraction in cfDNA during treatment. A, Tumor fraction in
plasma samples of 8 patients with NSCLC who received anti-PD-1 immunotherapy. B, Tumor fraction in serum samples of 4 patients with ovarian cancer. C, Tumor
fraction in plasma samples of 12 patients with prostate cancer.
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ofWES data and the low tumor fraction in the cfDNA samples, cfTrack
focuses on tracking the overall tumor changes rather than specific
clones/subclones. For the same reason, cfTrack can detect de novo
mutations to monitor newly emerging tumors, but it does not guar-
antee the detection of specific variants directly related to treatment
targets.

In this study, for some patients, we use plasma samples to detect
the preexisting tumor mutations, with no need for solid tumor
biopsy samples. This is possible as long as the tumor content in
plasma samples is sufficient for mutation detection. For patients who
receive surgical tumor removal or for patients whose tumor biopsy
samples are available, our method can also use a solid tumor sample
to identify the preexisting tumor mutations. However, it is worth
noting that a plasma sample may still offer a more comprehensive
mutation profile than a biopsy sample (38). In practice, given a
pretreatment blood sample or a solid tumor sample of a patient, we
envision cfTrack being used on this patient’s posttreatment blood
sample to predict MRD/recurrence and the second primary cancers.
To predict MRD/recurrence, cfTrack uses a within-sample error
distribution, which does not rely on any baseline samples. To predict
the second primary cancers, our classification model has only two
variables, therefore only a limited number of training samples are
needed to achieve a good performance.

Currently, cfTrack utilizes tumor somatic mutations to detect
cancer. In a future version, more cancer-specific features in cfDNA
can be incorporated. Recent studies have discovered that copy-number
variations, fragment length, and jagged ends of cfDNA are all asso-
ciated with tumor-derived cfDNA. In our random forest model, we
incorporated the fragment length of the DNA fragments to discrim-
inate true variants from sequencing errors. By integrating other
features, we may further empower cancer monitoring to provide
actionable information and treatment guidance for patients.
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