
INVESTIGATION

A General Mechanistic Model for Admixture
Histories of Hybrid Populations

Paul Verdu1 and Noah A. Rosenberg
Department of Biology, Stanford University, Stanford, California 94305

ABSTRACT Admixed populations have been used for inferring migrations, detecting natural selection, and finding disease genes.
These applications often use a simple statistical model of admixture rather than a modeling perspective that incorporates a more
realistic history of the admixture process. Here, we develop a general model of admixture that mechanistically accounts for complex
historical admixture processes. We consider two source populations contributing to the ancestry of a hybrid population, potentially
with variable contributions across generations. For a random individual in the hybrid population at a given point in time, we study the
fraction of genetic admixture originating from a specific one of the source populations by computing its moments as functions of time
and of introgression parameters. We show that very different admixture processes can produce identical mean admixture proportions,
but that such processes produce different values for the variance of the admixture proportion. When introgression parameters from
each source population are constant over time, the long-term limit of the expectation of the admixture proportion depends only on the
ratio of the introgression parameters. The variance of admixture decreases quickly over time after the source populations stop
contributing to the hybrid population, but remains substantial when the contributions are ongoing. Our approach will facilitate the
understanding of admixture mechanisms, illustrating how the moments of the distribution of admixture proportions can be informative
about the historical admixture processes contributing to the genetic diversity of hybrid populations.

EXCHANGES of genes between two or more mutually iso-
lated populations can result in new admixed or hybrid

populations. For nearly 80 years, statistical models have been
used to estimate the proportions of the genetic ancestry of an
admixed population that are derived from the various paren-
tal source populations (Bernstein 1931; Roberts and Hiorns
1965; Long and Smouse 1983; Long 1991; Chakraborty et al.
1992; Bertorelle and Excoffier 1998; Pritchard et al. 2000;
Chikhi et al. 2001; Wang 2003; Tang et al. 2005) and, more
recently, to determine the probable ancestral origins of chro-
mosomal segments within individual genomes (Ungerer
et al. 1998; Falush et al. 2003; Hoggart et al. 2004; Patterson
et al. 2004; Baird 2006; Tang et al. 2006; Sankararaman
et al. 2008; Bercovici and Geiger 2009; Price et al. 2009).
Admixed human populations have been employed in assess-
ing patterns of migration and genetic structure (Parra et al.

2001; Seldin et al. 2007; Wang et al. 2008; Silva-Zolezzi
et al. 2009), detecting natural selection (Workman et al.
1963; Cavalli-Sforza and Bodmer 1971; Chakraborty and
Weiss 1988; Tang et al. 2007; Oleksyk et al. 2010; Lohmu-
eller et al. 2011), and identifying phenotypically important
genes through admixture-mapping strategies (McKeigue
1998, 2005; Halder and Shriver 2003; Reich and Patterson
2005; Smith and O’Brien 2005; Buerkle and Lexer 2008;
Seldin et al. 2011).

Many recent methods consider admixed populations as
statistical combinations of the source populations, treating
allele frequencies in a hybrid population as linear combina-
tions of allele frequencies in the source groups. While this
perspective is informative in diverse applications for de-
scribing the current structure of admixed populations, it
does not mechanistically account for the inherent complex-
ity of admixture processes. In the case of humans, through-
out history, previously isolated populations have come into
contact through colonization waves, forced displacements,
and population migrations. Moreover, admixture processes
have often been influenced by sociocultural rules on in-
termarriage in contexts of ethnic conflict or discrimination,
slavery, and clan or caste systems. Such complex histories of
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social behaviors have produced a variety of patterns of
genetic variation in different admixed groups (Parra et al.
1998, 2003; Bonilla et al. 2005; Bedoya et al. 2006; Chaix
et al. 2007; Wang et al. 2008; Halder et al. 2009; Tishkoff
et al. 2009; Verdu et al. 2009; Bryc et al. 2010).

Mechanistic perspectives that seek to describe the
history of admixture processes through time rather than
estimating admixture proportions from the source popu-
lations in descriptive statistical models have been part
of some recent studies of admixture (Briscoe et al. 1994;
Stephens et al. 1994; Pfaff et al. 2001), and they have been
used to make theoretical predictions of admixture propor-
tions as well as of Wright’s fixation index FST and statistics
measuring linkage disequilibrium (Chakraborty and Weiss
1988; Long 1991; Guo et al. 2005). Most of these
approaches have relied on models with a relatively simple
dynamic considering a single admixture event between
populations, rather than on models that investigate a more
complex history of admixture processes.

Ewens and Spielman (1995) proposed a mechanistic
admixture model that incorporated multiple admixture
events involving multiple source populations. This model
has been used primarily to evaluate the influence of pop-
ulation subdivision and admixture on the performance of
the transmission-disequilibrium test (Ewens and Spielman
1995) and to examine linkage disequilibrium statistics
(Guo et al. 2005). However, complex mechanistic models
have not been used to directly determine the influence of
admixture histories on the admixture patterns of hybrid
populations.

In this article, expanding on the models of Ewens and
Spielman (1995) and Guo et al. (2005), we develop a gen-
eral mechanistic model of a historical admixture process.
We first introduce the model, the most general form of
which considers m source populations that contribute to
the ancestry of a hybrid population. We treat the fraction
of genetic admixture in the hybrid population originating
from a specific source population as a random variable,
whose distribution we study over time in the m = 2 case.
We next examine the expectation, variance, and higher
moments of the admixture fraction as functions of time
and of the introgression parameters, and we consider in
detail a special case in which admixture is constant across
generations. Finally, we conclude with a discussion of
the implications of the work for empirical studies of
admixture.

The Model

We describe a version of our mechanistic admixture model
in which the number of source populations is two. The
generalization to m source populations is straightforward,
and we provide it in supporting information, File S1, Figure
S1, and Table S1.

Define population H (“hybrid”) as a population consist-
ing of immigrant individuals from two isolated source pop-

ulations, S1 and S2, and hybrid individuals who have
ancestors from both S1 and S2. The hybrid population can
be viewed as having a separate location or status from S1
and S2, so that individuals within H can interbreed with
each other and with new immigrants that come from the
source populations.

We let s1,g, s2,g, and hg be the fractional contributions of
populations S1, S2, and H to the hybrid population H at
generation g + 1. That is, for a randomly chosen individual
in H at generation g + 1, the probabilities that a randomly
chosen parent of the individual derives from populations
S1, S2, and H are s1,g, s2,g, and hg, respectively. These prob-
abilities can differ in different generations, but for all g $

0, the parameters s1,g, s2,g, and hg have values that are
$0 and #1, such that s1,g + s2,g + hg = 1. At generation
0, the hybrid population is not yet formed. Therefore, h0 =
0 and s1,0 + s2,0 = 1. Hence, considering the period
through generation g, in addition to g itself, this model
has 2g 2 1 independent parameters: one introgression pro-
portion in the first generation and two introgression pro-
portions in each of the next g 2 1 generations. A diagram
of the model appears in Figure 1.

Admixture fractions for a random individual
in the hybrid population

We focus on a key quantity in admixed populations, namely
the fraction of admixture from one of the source populations
for a random individual in H at a randomly chosen locus.
This fraction represents the proportion of the genome of
a randomly chosen individual in H that ultimately traces
to a specific source.

We indicate the possible sources for the (unordered)
parents of an individual in H by S1S1, S1S2, S1H, S2H, HH,

Figure 1 Diagram of a mechanistic model of admixture involving two
isolated source populations.
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and S2S2. An individual in generation g$ 1 has one of several
possible types of parents, each with some probability depen-
dent on the parameters s1,g21, s2,g21, and hg21 (Table 1). If
the parents have different ancestries, we do not distinguish
the order of the two parents, so that, for example, “S1H” does
not convey which specific parent is from population S1 and
which is from H.

Let Y be a random variable indicating the source popu-
lations of the parents of a random individual in H. Let H1,g

be the admixture fraction from source population S1 for
a random individual in population H at a random locus
at generation g. Because at generation 0, the hybrid pop-
ulation is not yet formed, h0 = 0, and H1,0 is not defined.
Using Table 1, we can write a recursion relation to calcu-
late H1,g for all g $ 1. For the first generation (g = 1),
we have

H1;1 ¼

(
1 if Y ¼ S1S1;with P½Y ¼ S1S1� ¼ s21;0
1

2
if Y ¼ S1S2;with P½Y ¼ S1S2� ¼ 2 s1;0s2;0

0 if Y ¼ S2S2;with P½Y ¼ S2S2� ¼ s22;0:

(1)

For all subsequent generations (g $ 2), we have

H1;g ¼

1 if Y ¼ S1S1;  with P½Y ¼ S1S1� ¼ s21;g21

H1;g21 þ 1
2

if Y ¼ S1H;  with P½Y¼ S1H� ¼ 2s1;g21hg21

1
2

if Y ¼ S1S2;  with P½Y ¼ S1S2� ¼ 2s1;g21s2;g21

Hð1Þ
1;g21 þ Hð2Þ

1;g21

2
if Y ¼ HH;  with P½Y ¼ HH� ¼ h2g21

H1;g21

2
if Y ¼ S2H;  with P½Y ¼ S2H� ¼ 2s2;g21hg21

0 if Y ¼ S2S2;with P½Y ¼ S2S2� ¼ s22;g21:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(2)

Here, Hð1Þ
1;g21 and Hð2Þ

1;g21 are fractions of ancestry from source
population S1 for the two parents of a hybrid individual at
generation g with Y = HH. We use the superscripts (1) and
(2) only to indicate that Hð1Þ

1;g21 and Hð2Þ
1;g21 are separate in-

dependent and identically distributed (IID) random varia-
bles, so that if an individual in population H at generation g
has two parents from H, the admixture fraction is distributed
as the mean of the admixture fractions for two IID random
individuals from H in the previous generation.

Equations 1 and 2 allow us to analyze the behavior of
the admixture fraction from a source population for
a random individual in the hybrid population, as a func-
tion of the time g and the parameters s1,i, s2,i, and hi for
i = 1, 2, . . . , g 2 1. Under our model, the set of possible
values of H1,g is Qg ¼ f0; 1=2g; . . . ;  ð2g21Þ=2g; 1g. Using
Equations 1 and 2, we can show that for a value q in the
set Qg, the probability P(H1,g = q) that a random individ-
ual in the hybrid population at generation g has admix-
ture fraction q can be computed using the following
recursion relation (Appendix). For the first generation
(g = 1), we have Q1 ¼ f0;  1=2;  1g and

P
�
H1;1 ¼ q

� ¼
s21;0 if q ¼ 1

2s1;0s2;0 if q ¼ 1

2
s22;0 if q ¼ 0:

8>><
>>: (3)

For all subsequent generations (g $ 2), for q in Qg,

P
�
H1;g ¼ q

� ¼ h2g21
P2g21

r¼0

�
P
�
H1;g21 ¼ r

2g21

�
P
�
H1;g21 ¼ 2gq2 r

2g21

��

þ    2s2;g21hg21P
�
H1;g21 ¼ 2q

�
þ    2s1;g21hg21P

�
H1;g21 ¼ 2q2 1

�þ IgðqÞ;

(4)

where the function Ig is defined for all values of q in Qg and
equals

IgðqÞ ¼

8>>>><
>>>>:

s21;g21 if q ¼ 1

2s1;g21s2;g21 if q ¼ 1

2
s22;g21 if q ¼ 0
0 otherwise:

(5)

P(H1,g = q) is zero when q is not in Qg.
We can use Equations 3–5 to examine the evolution of

the distribution of H1,g across generations. For five sce-
narios in which the admixture process is constant after
the founding of population H (s1,g = s1 and s2,g = s2 for all
g $ 1), Figure 2 plots the complete set of values of P(H1,g)
for the first six generations.

In Figure 2A, we consider a scenario in which the hybrid
population H is founded with equal contributions from
source populations S1 and S2 (s1,0 = s2,0 = 1

2), which do
not subsequently contribute to H (s1,g = s2,g = 0 for all
g $ 1). We can see that the probability P(H1,g)for a random
individual in H to exhibit a given fraction of admixture from
S1 is distributed symmetrically around 1

2 at each generation,
with a single mode at H1,g = 1

2 for each of the first six gen-
erations. This pattern arises from the fact that after a sym-
metric founding event, in the absence of immigration, no
new input enters the admixed population from either
source, and the distribution remains symmetric.

Figure 2B considers an admixture process with the same
starting conditions as in the previous case (s1,0 = s2,0 = 1

2),
in which the subsequent contributions from the source

Table 1 Possible pairs of parents for a random individual in the
hybrid population H at generation g, and their probabilities

Populations of origin of the parents of a
random individual in population
H at generation g $ 1 Probability

S1 and S1 s21;  g21
S1 and H (or H and S1) 2s1,g–1hg–1
S1 and S2 (or S2 and S1) 2s1,g–1s2,g–1
H and H h2g21
S2 and H (or H and S2) 2s2,g–1hg–1
S2 and S2 s22;g21

Note that at generation 0, h0 ¼ 0 because the hybrid population is not yet formed.

A Model for Admixture Histories 1415



Figure 2 Probability distribution of the admixture fraction from source population S1 [P(H1,g), Equations 3–5] for a random individual in the hybrid
population at each of several points in time. Rows correspond to distributions of P(H1,g) in five scenarios for each of a series of values of g. Columns
correspond to five constant admixture processes (s1,g ¼ s1 and s2,g ¼ s2 for all g$ 1). (A) Population H is founded at generation 0 with equal proportions
from source populations S1 and S2 (s1,0 ¼ s2,0 ¼ 0.5). Subsequently, both source populations do not contribute to H (s1 ¼ s2 ¼ 0). (B) Population H is
founded with equal proportions from S1 and S2 (s1,0 ¼ s2,0 ¼ 0.5). Subsequently, the source populations contribute equally to H (s1 ¼ s2 ¼ 0.2). (C)
Population H is founded with equal proportions from S1 and S2 (s1,0 ¼ s2,0 ¼ 0.5). Subsequently, the source populations contribute unequally to H, with
S2 contributing more than S1 (s1 ¼ 0.0001, s2 ¼ 0.2). (D) Population H is founded at generation 0 with a greater contribution from S1 than S2 (s1,0 ¼ 0.8,
s2,0 ¼ 0.2). Subsequently, the source populations contribute unequally to population H, with S2 contributing more than S1 (s1 ¼ 0.0001, s2 ¼ 0.2). (E)
Population H is founded at generation 0 with a greater contribution from S1 than S2 (s1,0 ¼ 0.8, s2,0 ¼ 0.2). Subsequently, the source populations
contribute unequally to population H, with S1 contributing more than S2 (s1 ¼ 0.2, s2 ¼ 0.0001).
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populations S1 and S2 to the hybrid population H are sym-
metric and constant across generations as before, but nonzero
(s1,g = s2,g 6¼ 0 for all g $ 1). In this case, because at each
generation, the two source populations make equal contribu-
tions, the distribution of H1,g continues to be symmetric
around 1

2. Instead of being unimodal as in the previous case,
however, it is now multimodal. This multimodality arises
from the fact that in a scenario with continuing gene flow
from the sources, new modes arise as the new immigrants
mate with individuals whose admixture fractions lie near pre-
existing modes.

In Figure 2C, we consider an admixture process with a
symmetric founding of population H as before (s1,0 = s2,0 = 1

2),
in which the subsequent contributions from the source pop-
ulations S1 and S2 are nonzero and constant across gener-
ations, but with S2 contributing more than S1 at each
generation (0 6¼ s1,g ,, s2,g for all g $ 1). In this case, the
distribution of H1,g is no longer symmetric around 1

2. Instead,
it is shifted toward smaller values after the founding of the
hybrid population H. This pattern arises from the fact that in
a scenario with continuing gene flow in which at each gen-
eration, many more individuals immigrate into H from S2
than from S1, matings between new immigrants and admixed
individuals are more likely to occur with immigrants from
S2 than with immigrants from S1. Thus, after the symmetric
founding of population H, the probability of randomly
drawing an individual in H with a high fraction of admix-
ture from population S1 is lower than the probability of
drawing an individual with a low fraction of admixture
from S1.

Figure 2D considers an admixture process in which pop-
ulation S1 contributes more than population S2 to the found-
ing of population H (s1,0 . s2,0 6¼ 0), but with the same
subsequent constant admixture process as in Figure 2C
(0 6¼ s1,g ,, s2,g for all g $ 1). In this case, the distribution
of H1,g is no longer symmetric around 1

2 at generation 1, but
is shifted toward higher values of the admixture fraction
from source population S1. Nevertheless, as in Figure 2C,
the distribution of H1,g shifts toward zero in the subsequent
generations. As in Figure 2C, in each generation, admixed
individuals in population H are more likely to mate with
new immigrants from S2 than with new immigrants from S1.

Finally, in Figure 2E, we consider a process in which the
source population S1 contributes more than population S2 to
the hybrid population not only in the founding of population
H (s1,0 . s2,0 6¼ 0) but also in each subsequent generation
(0 6¼ s1,g .. s2,g for all g $ 1). In this case, the distribution
of H1,g is shifted toward high values of the admixture frac-
tion from population S1. Unlike in Figure 2, C and D, in
Figure 2E, an individual in population H is more likely to
mate with a new immigrant from S1 than with a new immi-
grant from S2 at each generation following the founding of
population H. Thus, unlike in Figure 2, C and D, generation
after generation, the probability of randomly drawing an
individual in population H with a high fraction of admixture

from S1 is higher than that of drawing an individual with
a low fraction of admixture from S1.

This collection of scenarios illustrates three main points.
First, if contributions to the admixed population occur only
in the first generation, then the long-term level of admixture
continues to reflect the initial conditions. Second, the same
starting conditions can lead to quite different long-term
patterns, depending on the subsequent contributions to the
hybrid population. Third, with constant contributions at
each generation, the starting conditions influence the speed
with which the distribution of admixture tends toward its
long-term distribution, but do not predict the qualitative
form of this distribution.

Moments of the admixture fraction for a random
individual in the hybrid population

Analysis of the moments of the distribution of admixture as
a function of time g can provide a way of understanding
features of the distribution and its determinants in the his-
torical admixture process itself. We can utilize the recursion
in Equations 1 and 2 to obtain recursions for the expecta-
tion, variance, and higher moments of H1,g as functions of g
and s1,i, s2,i, and hi, for i = 1, 2, . . . , g 2 1. We first obtain
a recursion for the expectation E[H1,g]. Next, we generalize
the method used for finding the expectation, and we obtain
a recursion for the kth moment, E½Hk

1;g�. Using the case of
k = 2, we obtain a recursion for the variance V[H1,g].

Expectation of H1,g: Using the law of total expectation, we
can obtain an expression for the expectation E[H1,g] as
a function of conditional expectations for different possi-
ble pairs of parents Y for a random individual in popula-
tion H at generation g:

E
�
H1;g

	 ¼ EY
�
E
�
H1;g



Y		 ¼X

y2

8>>>>>><
>>>>>>:

S1S1
S1H
S1S2
HH
S2H
S2S2

9>>>>>>=
>>>>>>;

PðY ¼ yÞE�H1;g


Y ¼ y

	
: (6)

For the first generation, because parents cannot derive from
population H, we have

E
�
H1;1

	 ¼ PðY ¼ S1S1ÞE
�
H1;1 j Y ¼ S1S1

	
þ   PðY ¼ S1S2ÞE

�
H1;1 j Y ¼ S1S2

	
þ   PðY ¼ S2S2ÞE

�
H1;1 j Y ¼ S2S2

	
:

(7)

Using Equations 1 and 2,

E
�
H1;1

	 ¼ s21;0E½1�
þ   2s1;0s2;0E

�
1
2

�
þ    s22;0E½0�;

(8)
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and for all subsequent generations (g $ 2),

E
�
H1;g

	 ¼ s21;g21E½1�
þ    2s1;g21hg21E

�
H1;g21 þ 1

2

�

þ    2s1;g21s2;g21E
�
1
2

�

þ    h2g21E

2
4Hð1Þ

1;g21 þ Hð2Þ
1;g21

2

3
5

þ    2s2;g21hg21E
�
H1;g21

2

�

þ    s22;g21E½0�:

(9)

Recalling that for all g $ 0, s1,g + s2,g + hg = 1, h0 = 0,
and for all g$  2;  Hð1Þ

1;g21 and Hð2Þ
1;g21 are IID random variables,

we can simplify the recursion expression. For g = 1,

E
�
H1;1

	 ¼ s1;0; (10)

and for all subsequent generations (g $ 2), we have

E
�
H1;g

	 ¼ s1;g21 þ hg21E
�
H1;g21

	
: (11)

This result demonstrates that for a random individual in
the hybrid population H, the expectation of the admixture
fraction from population S1 in one generation is a linear
function of the corresponding expectation in the previous
generation.

Moments of H1,g: Using a similar computation to that em-
ployed in obtaining the recursion for the expected admix-
ture, we can write recursions for higher moments of the
admixture fraction ðE½Hk

1;g�;  for each k$1Þ. For the first
generation (g = 1), we have for k $ 1,

Hk
1;1 ¼

8<
:

1k if Y ¼ S1S1; with P½Y ¼ S1S1� ¼ s21;0
ð12Þk   if Y ¼ S1S2; with P½Y ¼ S1S2� ¼ 2s1;0s2;0

0k    if Y ¼ S2S2; with P½Y ¼ S2S2� ¼ s22;0:

(12)

For all g $ 2, we have

Hk
1;g ¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

1k if Y ¼ S1S1;  with P½Y ¼ S1S1� ¼ s21;g21�
H1;g21 þ 1

2

�k

if Y ¼ S1H;  with P½Y ¼ S1H� ¼ 2s1;g21hg21�
1
2

�k

if Y ¼ S1S2;  with P½Y ¼ S1S2� ¼ 2s1;g21s2;g210
@Hð1Þ

1;g21 þ Hð2Þ
1;g21

2

1
Ak

if Y ¼ HH;  with P½Y ¼ HH� ¼ h2g21

�
H1;g21

2

�k

if Y ¼ S2H;  with P½Y ¼ S2H� ¼ 2s2;g21hg21

0k if Y ¼ S2S2;  with P½Y ¼ S2S2� ¼ s22;g21;

(13)

where Hð1Þ
1;g21 and Hð2Þ

1;g21 represent IID random variables for
the fractions of ancestry from source population S1 for two
hybrid individuals in generation g 2 1.

Using the law of total expectation, for k $ 1, we have for
the first generation (g = 1)

E
h
Hk
1;1

i
¼ s21;0E

�
1k
	

þ    2s1;0s2;0E

"�
1
2

�k
#

þ    s22;0E
�
0k
	
:

(14)

For g $ 2, we have

E
h
Hk
1;g

i
¼ s21;g21E

�
1k
	

þ    2s1;g21hg21E

"�
H1;g21 þ 1

2

�k
#

þ    2s1;g21s2;g21E

"�
1
2

�k
#

þ    h2g21E

2
4
0
@Hð1Þ

1;g21 þ Hð2Þ
1;g21

2

1
Ak35

þ    2s2;g21hg21E

"�
H1;g21

2

�k
#

þ    s22;g21E
�
0k
	
:

(15)

Recalling that for all g $ 0, s1,g + s2,g + hg = 1, h0 = 0, and
for all g $ 2, Hð1Þ

1;g21 and Hð2Þ
1;g21 are IID random variables, we

can use the binomial theorem to obtain a simplified recur-
sion for the moments of H1,g. For the first generation, we
have

E
h
Hk
1;1

i
¼ s21;0 þ

s1;0s2;0
2k21 : (16)

For g $ 2,

E
h
Hk
1;g

i
¼ s21;g21 þ

s1;g21hg21

2k21

 Xk
i¼0

ðki ÞE
h
Hi
1;g21

i!
þ s1;g21s2;g21

2k21

þ  
h2g21

2k

 Xk
i¼0

�
k
i

�
E
h
Hi
1;g21

i
E
h
Hk2i
1;g21

i!
þ s2;g21hg21

2k21 E
h
Hk
1;g21

i
:

(17)

Note that by simplifying Equation 16 with k = 1, we
obtain for the first generation

E
�
H1;1

	 ¼ s1;0
�
s1;0 þ s2;0

� ¼ s1;0; (18)

which matches Equation 10. Simplifying Equation 17 with
k = 1 using the fact that s1,g + s2,g + hg = 1 for all g $ 0, for
all subsequent generations (g $ 2), we obtain

E
�
H1;g

	 ¼ s1;g21 þ hg21E
�
H1;g21

	
; (19)

which matches Equation 11.
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Variance of H1,g: When k = 2, Equations 16 and 17 provide
a recursion relation for the second moment of H1,g. For the
first generation, because s1,0 + s2,0 = 1, we have

E
�
H2
1;1

�
¼ s21;0 þ

s1;0s2;0
2

¼ s1;0
�
s1;0 þ 1

�
2

: (20)

For subsequent generations (g $ 2), because s1,g + s2,g +
hg = 1 for all g $ 0, we obtain

E
h
H2
1;g

i
¼ s21;g21 þ

s1;g21s2;g21

2
þ s1;g21hg21

2

�
1þ 2E

�
H1;g21

	þ E
h
H2
1;g21

i�

þ  
h2g21

2

�
E
h
H2
1;g21

i
þ �E½H1;g21�

�2� þ s2;g21hg21

2
E
h
H2
1;g21

i

¼ s1;g21
�
s1;g21 þ 1

�
2

þ hg21

�
s1;g21 þ

hg21

2
E
�
H1;g21

	�
E
�
H1;g21

	
þ  

hg21

2
E
h
H2
1;g21

i
:

(21)

With the relationship V½H1;g� ¼ E½H2
1;g�2ðE½H1;g�Þ2, and

using Equations 10, 11, 20, and 21, we obtain a recursion
for the variance of H1,g. For the first generation (g = 1), we
have

V
�
H1;1

	 ¼ s1;0
�
12 s1;0

�
2

; (22)

and for g $ 2,

V
�
H1;g

	 ¼ s1;g21
�
12 s1;g21

�
2

2 s1;g21hg21E
�
H1;g21

	
þ  

hg21
�
12 hg21

�
2

�
E½H1;g21�

�2þ hg21

2
V
�
H1;g21

	
:

(23)

This recursion for the variance of the admixture fraction
utilizes the variance in the previous generation, along with
the expectation in the previous generation and its square.

Special Case: Constant Admixture after the Founding
of the Hybrid Population

Using our recursions for the moments of the admixture
fraction H1,g, we can examine particular cases in which s1,g,
s2,g, and hg are specified. Here we consider a special case
that reflects a constant process in which admixture occurs in
the same way from one generation to the next after the
founding of the hybrid population. In this section, we specify
that for all g $ 1, all introgression parameters are constant in
time after the founding of population H (s1,g = s1, s2,g = s2,
and hg = h for all g$ 1). We first consider a case in which no
admixture from source populations S1 and S2 occurs after the
founding of the hybrid population.

A single admixture event

Suppose that source populations S1 and S2 do not contrib-
ute to the hybrid population after its founding (s1 = s2 = 0,

and h = 1). As before, because at generation 0 the hybrid
population is not yet formed, we specify that h0 = 0 and
s1,0 + s2,0 = 1, with s1,0 and s2,0 both taking values in
(0, 1).

Expectation of H1,g: Under this scenario, we can simplify
Equations 10 and 11 for the expected admixture from
population S1. Because s1 = s2 = 0 and h = 1, for all g $ 1,
we have

E
�
H1;g

	 ¼ s1;0: (24)

When admixture occurs only in the initial generation, the ex-
pected admixture fraction for a random individual in the
hybrid population at any generation depends only on the
initial contribution from source population S1.

Variance of H1,g: Using Equations 22 and 23, V[H1,g] fol-
lows the recursion relation of a geometric sequence with
ratio 1/2 and initial value V[H1,1] = s1,0(1 2 s1,0)/2. There-
fore, for g $ 1,

V
�
H1;g

	 ¼ s1;0
�
12 s1;0

�
2g

: (25)

The variance decreases monotonically as a function of g and
is smaller when the initial contribution s1,0 from source pop-
ulation S1 is farther away from 1

2.
The scenario in Figure 2A, in which s1,0 = s2,0 = 1

2 and
s1,g = s2,g = 0 for all g $ 1, provides an example of the
setting considered here. In Figure 2A, the distribution of
the admixture fraction for a random individual in H becomes
increasingly concentrated near 1

2 as time progresses. As pre-
dicted by Equation 24, the mean admixture is constant over
time with a value of 1

2. As predicted by Equation 25, the
variance decreases over time; it eventually approaches zero,
so that the admixture fraction for a random individual
approaches the mean. This phenomenon can be attributed
to the fact that except during the founding event, each mat-
ing in the population involves two individuals from the hy-
brid population itself; no new source of admixture draws the
admixture fraction toward extreme values of 0 or 1. Thus,
with admixture values equal to the mean of those of their
parents, offspring individuals are likely to have intermediate
admixture within the unit interval.

It is noteworthy that if admixture occurs in a single event,
then Equations 24 and 25 provide a basis for estimating the
time of the event from the observed mean and variance of
admixture. Given mean M and variance V (with V 6¼ 0),
Equations 24 and 25 yield

g ¼ ln ½Mð12MÞ�2 ln V
ln 2

: (26)

It can be seen from Equation 26 that for a fixed mean,
a smaller variance indicates a larger value of g and therefore
a longer time since admixture, and for a fixed variance,
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a smaller value of M(1 2 M) indicates a shorter time since
admixture.

Nonzero combined contribution from the source
populations at each generation

In this section, we consider values of s1 and s2 in [0, 1] and
values of h in (0, 1). As before, because at generation 0 the
hybrid population is not yet formed, h0 = 0 and s1,0 + s2,0 =
1. This set of assumptions corresponds to a process with
a nonzero combined contribution of populations S1 and S2
to H in each generation (s1 + s2 6¼ 0 because h 6¼ 1), al-
though we do allow one or the other contribution to be zero
(s1 = 0 and s2 6¼ 0 or s1 6¼ 0 and s2 = 0). The contribution of
population H to itself in each generation is nonzero (h 6¼ 0).

Expectation of H1,g: Applying Equations 10 and 11, the
recursion relation for E[H1,g] can be simplified. For the first
generation (g = 1), we have

E
�
H1;1

	 ¼ s1;0: (27)

For all subsequent generations (g $ 2),

E
�
H1;g

	 ¼ s1 þ hE
�
H1;g21

	
: (28)

This equation is a nonhomogeneous first-order recurrence of
the form

E
�
H1;g

	 ¼ cðgÞ þ lE
�
H1;g21

	
; (29)

with initial condition E[H1,1] = s1,0, where c(g) = s1 and
l = h. Because we consider an admixture process that is
constant from one generation to the next and we assume
h 6¼ 0 and h 6¼ 1, we can apply Theorem 3.1.2 of Cull et al.
(2005) to Equation 29 to obtain the unique solution for
E[H1,g]:

E
�
H1;g

	 ¼
8<
:

s1;0; g ¼ 1

s1;0hg21 þ s1
12 hg21

12 h
; g$ 2:

(30)

Figures 3 and 4 illustrate the expected admixture fraction
as a function of g under constant admixture, as determined
in Equation 30. In Figure 3, we can see that in three admix-
ture scenarios with different parameter values for the found-
ing of the hybrid population H, but with identical
introgression parameters constant in the subsequent gener-
ations, the expected admixture fraction from the source pop-
ulation S1 approaches the same long-term limit. Moreover,
in Figure 4, considering three scenarios with identical
founding parameter values (s1,0 and s2,0), but different val-
ues for the introgression parameters s1 and s2 in the sub-
sequent generations with identical ratios, s1/s2, the expected
admixture fraction also approaches the same long-term
limit.

Figure 3 Founding effect: expectation of the admixture fraction from
source population S1 (E[H1,g], Equation 30) for a random individual in
the hybrid population H, when the admixture process is constant over
time. Three scenarios are shown: population H founded exclusively by
source population S1, population H founded by both source populations
S1 and S2 in equal proportions, and population H founded exclusively by
source population S2. The subsequent admixture process is identical
among three scenarios with different starting conditions and is constant
over time after the founding of population H at the first generation: s1 ¼
0.04 and s2 ¼ 0.08. For all three scenarios, using Equation 31, the long-
term limit of the admixture proportion from population S1 is 1/3.

Figure 4 Ratio effect: expectation of the admixture fraction from source
population S1 (E[H1,g], Equation 30) for a random individual in the hybrid
population H, when the admixture process is constant over time. Three
scenarios are shown with the same initial founding event for population
H (s1,0 ¼ 1, s2,0 ¼ 0). After this founding event, the three scenarios have
different proportions of descent from source populations S1 and S2 in
H (constant at each generation), but with the same ratio s1/s2 ¼ 2/3. For
all three scenarios, using Equation 31, the long-term limit of the admix-
ture proportion from population S1 is 2/5.
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Using Equation 30 and the relation s1 + s2 + h = 1 with
h 2 (0, 1), we can compute the long-term limit of E[H1,g] as
g / N:

lim
g/N

E
�
H1;g

	 ¼ s1
12 h

¼ s1
s1 þ s2

: (31)

Equation 31 demonstrates that the starting conditions (s1,0
and s2,0) for the founding of the hybrid population H do not
influence the long-term limiting expectation, as observed in
Figure 3. The limiting expected admixture in Equation 31
can be rewritten as 1 2 1/(1 + s1/s2), showing that the
limiting expectation is determined only by the ratio of the
constant contributions from populations S1 and S2, as ob-
served in Figure 4.

Using Equation 31, we can plot the long-term limit of the
expected admixture fraction from source population S1 as
a function of the introgression parameters s1 and s2 (Figure
5). When the admixture process is constant over time, for
a given value of s2, the long-term expectation of the admix-
ture fraction from the source population S1 increases mono-
tonically with s1. Because the long-term limit depends only
on the ratio s1/s2, different introgression proportions as well
as different founding scenarios for population H can lead, in
the long-term, to the same expected admixture fractions
in H.

Variance of H1,g: When the admixture process is constant
across generations, we can employ the same methods used
for obtaining the expectation of H1,g to obtain a solution for
E½H2

1;g�. In this case, for the first generation (g= 1), Equation
20 gives

E
h
H2
1;1

i
¼ s1;0

�
s1;0 þ 1

�
2

: (32)

For g $ 2, Equation 21 gives

E
h
H2
1;g

i
¼ s1ðs1 þ 1Þ

2
þ s1hE

�
H1;g21

	þ h2

2
E
�
H1;g21

	2
þ  

h
2
E
h
H2
1;g21

i
:

(33)

As was true in the case of Equation 28, this equation is
a nonhomogeneous first-order recurrence with the form

E
h
H2
1;g

i
¼ cðgÞ þ lE

h
H2
1;g21

i
: (34)

Here, the initial condition is E½H2
1;1� ¼ s1;0ðs1;0 þ 1Þ=2, l= h/2,

and for all g $ 2,

cðgÞ ¼ s1ðs1 þ 1Þ
2

þ s1hE
�
H1;g21

	þ h2

2
E
�
H1;g21

	2
: (35)

Using Equation 30, we can simplify Equation 35 for all g $ 2,
to obtain

cðgÞ ¼ s1ðs1 þ 1Þ
2

þ s1h

 
s1;0hg22 þ s1

12 hg22

12 h

!

þ  
h2

2

 
s1;0hg22 þ s1

12hg22

12h

!2

:

(36)

Because h 6¼ 0 and h 6¼ 1, Theorem 3.1.2 of Cull et al. (2005)
applies in the same way as in the computation of E[H1,g],
producing a unique solution for E½H2

1;g�:

E
h
H2
1;g

i
¼

8>>>>>>>>>>><
>>>>>>>>>>>:

s1;0
�
s1;0 þ 1

�
2

; g ¼ 1

s1;0
�
s1;0 þ 1

�
2

�
h
2

�g21

þ 
Pg
i¼2

 
s1ðs1 þ 1Þ

2
þ s1h

 
s1;0hi22 þ s1

12 hi22

12 h

!

þ  
h2

2

 
s1;0hi22 þ s1

12hi22

12h

!2!�
h
2

�g2i

; g$ 2:

(37)

Decomposing the summation and summing separate geo-
metric series, we obtain

E
h
H2
1;g

i
¼

8>><
>>:

s1;0
�
s1;0 þ 1

�
2

; g ¼ 1

A1 þ A2hg21 þ
 
A3 þ A4

Pg2 1

i¼1
ð2hÞi

!�
h
2

�g21

; g$ 2;
(38)

where

A1¼
s1
�
ð12hÞ2þs1

�
ð22 hÞð12hÞ2 ; (39)

A2¼ 2s1
�
s1;02

s1
12 h

�� 1
12 h

�
; (40)

Figure 5 Long-term limit of the expectation of the admixture fraction
from source population S1 (limg/NE[H1,g], Equation 31) as a function of
the introgression parameters s1 and s2 when the admixture process is
constant over time.
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A3 ¼
2s1
�
s12 s1;0h

�
12 h

þ s21h

ð12hÞ2 þ
s1;0
�
s1;0 þ 1

�
2

2
s1ðs1 þ 1Þ
22 h

2  2s1s1;0;
(41)

A4 ¼ 1
2

�
s21;0þ

s1
12 h

� s1
12 h

2 2s1;0
��

: (42)

With the relationship V½H1;g� ¼ E½H2
1;g�2ðE½H1;g�Þ2, and

using Equations 30 and 38, we obtain the variance of H1,g:

V
�
H1;g

	 ¼

8>>>>>>><
>>>>>>>:

s1;0
�
12 s1;0

�
2

; g ¼ 1

A1 þ A2hg21 þ A3

�
h
2

�g21

þA4

�
h
2

�g21 Pg2 1

i¼1
ð2hÞi 2

 
s1;0hg21 þ s1

12hg21

12h

!2

; g$ 2:

(43)

We can simplify Equation 43 to obtain expressions for
V[H1,g] without the summation

Pg21
i¼1 ð2hÞi. For all values

of h in (0, 1) with h 6¼ 1
2, by summing the geometric series

from Equation 43,

V
�
H1;g

	 ¼

8>>>>>><
>>>>>>:

s1;0
�
12 s1;0

�
2

; g ¼ 1

A1 þ
�
A2 2A5hg21

�
hg21 þ ðA3 þ A5Þ

�
h
2

�g21

2  

 
s1;0hg21 þ s1

12hg21

12h

!2

; g$ 2;

(44)

where A5 = 2hA4/(1 2 2h). For h = 1
2, Equation 43 gives

V
�
H1;g

	 ¼

8>>>>>>>>><
>>>>>>>>>:

s1;0
�
12 s1;0

�
2

; g ¼ 1

2s1ð12 2s1Þ
3

þ
 
2s1ð2s1 2 1Þ

3
þ s1;0

�
12 s1;0

�
2

þ  

 
s21;0
2

þ 2s1
�
s1 2 s1;0

�!

·  ðg2 1Þ
!�

1
4

�g21

; g$ 2:

(45)

Figures 6 and 7 illustrate the variance of the admixture
fraction under the special case of constant admixture, com-
puting Equation 43 for different sets of values of the intro-
gression parameters. Figure 6 shows that in three scenarios
with different founding parameter values (s1,0 and s2,0), be-
cause the admixture process is constant over time and iden-
tical among the scenarios, the variance of the admixture
fraction from one of the source populations approaches the
same long-term limit. In Figure 7, considering two admixture

Figure 7 Opposite admixture processes: variance of the admixture frac-
tion from source population S1 (V[H1,g], Equation 43) for a random in-
dividual in the hybrid population H, when the admixture process is
constant over time. Two scenarios are shown with the same initial found-
ing event (s1,0 ¼ 1, s2,0 ¼ 0). After this founding event, the scenarios have
opposite proportions of descent from source populations S1 and S2 in H,
constant at each generation. For both scenarios, using Equation 47,
the long-term limit of the admixture proportion from population S1 is
60/5523 � 0.011.

Figure 6 Founding effect: variance of the admixture fraction from source
population S1 (V[H1,g], Equation 43) for a random individual in the hybrid
population H, when the admixture process is constant over time. Three
scenarios are shown: population H founded exclusively by source popu-
lation S1, population H founded by both source populations S1 and S2 in
unequal proportions, with population S1 contributing more than popula-
tion S2 (s1,0 ¼ 0.8, s2,0 ¼ 0.2), and population H founded exclusively by
source population S2. The subsequent admixture process is identical
among three scenarios with different starting conditions and is constant
over time after the founding of population H at the first generation: s1 ¼
0.01 and s2 ¼ 0.05. For all three scenarios, using Equation 47, the long-
term limit of the variance of the admixture proportion from population S1
is 5/636 � 0.008.
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scenarios with identical founding events but opposite constant
admixture processes, the variance of the admixture fraction
also approaches the same limit.

In Figures 6 and 7, we can see that for some sets of values
of s1,0, s1, and s2, the variance of the admixture fraction from
one of the source populations increases monotonically from
the beginning of the admixture process until it reaches
a maximal value and then decreases monotonically to its
long-term limit. In these cases, at the beginning of the ad-
mixture process, the source populations introduce consider-
able variance to the distribution of the admixture fraction
for a random individual in H. After a certain amount of time,
the proportion of matings that involve members of the hy-
brid population H with similar admixture fractions
increases, reducing the proportion of matings that generate
offspring admixture fractions at opposite extremes. Addi-
tional matings then occur among individuals with similar
admixture, ultimately decreasing the variance of the ad-
mixture fraction until V[H1,g] approaches its long-term
limit.

Because h 6¼ 0 and h 6¼ 1, we can compute the long-term
limit of V[H1,g] as g/N using Equation 43. We obtain, for
all values of h in (0, 1),

lim
g/N

V
�
H1;g

	 ¼ ðs1=ð12hÞÞ2þs1
22 h

2
� s1
12h

�2
¼ s1

22 h

�
12

s1
12 h

�
:

(46)

The starting conditions do not influence the long-term limit,
as observed in Figure 6.

Recalling that s1 + s2 + h = 1, an alternative represen-
tation for Equation 46 is

lim
g/N

V
�
H1;g

	 ¼ � s1
s1 þ s2

��
s2

s1 þ s2

��
s1 þ s2

1þ s1 þ s2

�
: (47)

It is possible to see from Equation 47 that if s1 + s2 is fixed,
then the limiting variance is greater when both source pop-
ulations contribute similarly to the hybrid population (s1 � s2)

than when one source population contributes more than the
other (s1 .. s2 or s2 .. s1). Additionally, for a fixed ratio s1/
s2, the variance is greater when the combined contribution
from both source populations, s1 + s2, is greater. This result is
sensible, as continuing contributions from the source popula-
tions generate individuals with admixture fractions at oppo-
site extremes, thereby increasing the variance of admixture
fractions.

Using Equation 47, we can plot the long-term limit of
the variance of admixture proportions as a function of
s1 and s2 (Figure 8). Figure 8 illustrates that the long-term
limit of V[H1,g] is greater when s1 = s2 and s1 + s2 � 1 (and
thus h � 0). This scenario corresponds to an admixture
process in which the admixed individuals in population
H contribute little to the next generation, and the pop-
ulation H is largely founded anew at each generation
from the source populations S1 and S2, with identical
proportions.

When s1 + s2 / 0, with s1/s2 held constant, h / 1 and
Equation 47 gives

lim
s1þs2/0

limg/NV
�
H1;g

	 ¼ 0: (48)

This scenario corresponds to an admixture process in
which populations S1 and S2 found the hybrid population
H at the first generation and contribute little in subse-
quent generations. It tends toward the special case in
which the source populations do not further contribute
to the hybrid population after the founding event. The
result in Equation 48 is consistent with the corresponding
limit of Equation 25 for the case of no continuing
admixture.

Considering our results on the expectation and vari-
ance of the admixture fraction together, although differ-
ent admixture proportions that are constant and nonzero
across generations can lead in the long-term to the same
expected fraction of admixture, such parameter values
can produce different variances. The long-term limiting
expectation and variance do not depend on the conditions
of the founding event of the hybrid population H; they
depend only on the subsequent constant admixture
process.

Discussion

Our study provides a theoretical framework for analyzing
complex admixture processes that involve dynamic con-
tributions of mutually isolated source populations to the
ancestry of a hybrid population. Using our mechanistic
approach, we have analytically derived recursions for the
expectation, variance, and higher moments of the ad-
mixture fractions in a hybrid population. In the special
case of constant admixture, we have solved the recur-
sions and analyzed the behavior of the expectation and
variance.

Figure 8 Long-term limit of the variance of the admixture fraction from
source population S1 (limg/NV[H1,g], Equation 47) as a function of the
introgression parameters s1 and s2 when the admixture process is con-
stant over time.
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An important observable quantity that can be estimated
in modern admixed populations and used for understanding
historical aspects of the admixture process is the mean
admixture fraction from a source population. For a hybrid
population, this quantity provides a simple summary of its
overall level of admixture. However, when a hybrid pop-
ulation is founded in a single admixture event, we have
found that the mean admixture fraction is constant across
generations and is therefore uninformative about the time
since the founding of the hybrid population. When the
source populations contribute in a constant manner to the
hybrid population after the founding event, very different
admixture processes can produce identical expected admix-
ture fractions in the long-term.

The behavior of the variance of the admixture fraction is
more complex than that of the expectation. First, the
variance is not constant in time, and therefore it does
contain information about the time since the founding
event. Second, the limiting variance can differ quite sub-
stantially for processes with the same limiting expectation,
with the limit depending on the magnitude of the ongoing
contributions from the source populations. Third, a low
variance is characteristic of an admixture process that
occurred as a single event, whereas higher variance occurs
when admixture is ongoing. These results suggest that in
addition to the mean admixture, other easily measured
quantities such as the variance and higher moments of the
admixture fraction are likely to be informative, together
with the mean, in statistical procedures for estimating the
parameters of the historical admixture model that gives rise
to a hybrid population.

Numerous statistical methods have been developed to
estimate the admixture proportions from given source pop-
ulations in hybrid populations using, for instance, maximum
likelihood (Wang 2003; Tang et al. 2005; Alexander et al.
2009), least squares (Roberts and Hiorns 1965; Long and
Smouse 1983), coalescence times (Bertorelle and Excoffier
1998), Bayesian approaches (Pritchard et al. 2000; Corander
et al. 2003; Patterson et al. 2004), and principal components
analysis (Paschou et al. 2007; McVean 2009; Bryc et al.
2010). Although many of these methods do estimate a com-
posite parameter representing the time since initial admix-
ture, they generally do not use a full mechanistic approach
and have largely not tried to reconstruct the history of the
admixture process.

Our model incorporates a general variation over time in
the relative contributions of the source populations to the
hybrid population. Owing to the potentially large number of
parameters in a general case with arbitrary changes in
admixture with time, it is unclear when the full history of
admixture will be identifiable from genetic data. Indeed, as
we have focused on the mean and variance of admixture in
special cases of constant admixture processes, it is also
uncertain how much information will be available for
estimation from higher moments in a complex case with
more parameters. However, our model is flexible enough to

accommodate reductions in the number of parameters
through assumptions of constant admixture over periods of
many generations or over the entire history of the model. It
is thus likely that identifiability can be achieved at least in
some cases.

The initial theoretical framework that we have developed
can be expanded to account for additional aspects of the
admixture process for hybrid populations. For instance, in
File S1, we extend the approach to consider m potential
source populations, deriving general expressions for the
moments of the random fraction of admixture originating
from any specific one of the m source populations. However,
we have not modeled sex-specific contributions from the
source populations or assortative mating between hybrid
individuals on the basis of their admixture fractions (Risch
et al. 2009). Further, while we have considered the distribu-
tion of the admixture fraction across individuals in a hybrid
population, we have studied admixture only pointwise in
the genome, and we have not investigated variation in ad-
mixture across the genome of a random individual. The
distribution of the length of chromosomal segments ulti-
mately tracing to a particular source population, and other
variables that could potentially be examined in a recombina-
tion-based model, could provide a useful additional set of
quantities to consider beyond those available in our current
formulation.

Finally, we have not accounted for genetic drift in the
founding populations over the course of the admixture
process, a phenomenon that can confound the accurate
estimation of admixture proportions (Long 1991). In the
future, all of these factors can be incorporated by extending
our initial mechanistic admixture model. The various exten-
sions will make it possible to draw more information from
genetic data to shed light on the complex mechanisms un-
derlying observed genetic variation in hybrid individuals
and populations.
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Appendix

Here, we obtain the recursion relation for the distribution
of the admixture fraction from source population S1 in the
hybrid population H at generation g (Equations 3–5). Using
the definitions of random variables Y and H1,g, we can ob-
tain an expression for P(H1,g = q), where q lies in
Qg ¼ f0;  1=2g; . . . ;  ð2g21Þ=2g;  1g, conditional on the dif-
ferent possible pairs of parents Y for a random individual in
population H at generation g:

P
�
H1;g ¼ q

� ¼ X

y2

8>>>>>><
>>>>>>:

S1S1
S1H
S1S2
HH
S2H
S2S2

9>>>>>>=
>>>>>>;

PðY ¼ yÞP�H1;g ¼ qjY ¼ y
�
: (A1)

Using Equations 1 and 2, we can evaluate the conditional
probabilities P(H1,g = q | Y = y) in Equation A1 in terms of
the unconditional probabilities P(H1,g21) in the previous
generation, where for all g $ 1, P(H1,g = q) = 0 when q is
not in Qg. For q in Qg, we have

P
�
H1;g ¼ q  j  Y ¼ S1S1

�¼ 
 1
0

if q¼ 1
otherwise;

(A2)

P
�
H1;g ¼ q  j  Y ¼ S1H

� ¼ P
�
H1;g21 ¼ 2q2 1

�
; (A3)

P
�
H1;g ¼ q  j  Y ¼ S1S2

�¼
(

1
0

if q¼ 1
2

otherwise;
(A4)

P
�
H1;g ¼ q  j  Y ¼ HH

� ¼X2g21

r¼0

P
�
Hð1Þ
1;g21 ¼ r

2g21 \ Hð2Þ
1;g21 ¼ 2gq2 r

2g21

�
;

(A5)

P
�
H1;g ¼ q  j  Y ¼ S2H

� ¼ P
�
H1;g21 ¼ 2q

�
; (A6)

P
�
H1;g ¼ q  j  Y ¼ S2S2

�¼ 
 1
0

if q¼ 0
otherwise:

(A7)

By inserting Equations A2–A7 into Equation A1, we obtain
the following recursion relation for P(H1, g = q). For the first
generation (g = 1), we have Q1 ¼ f0;  12;  1g and

P
�
H1;1¼ q

� ¼
8><
>:

PðY ¼ S1S1Þ
PðY ¼ S1S2Þ
PðY ¼ S2S2Þ

if q¼ 1

if q¼ 1
2

if q¼ 0:

(A8)

For all subsequent generations (g $ 2),

P
�
H1;g ¼ q

� ¼ PðY ¼ S1S1ÞP
�
H1;g ¼ q  j  Y ¼ S1S1

�
þ  PðY ¼ S1HÞP

�
H1;g21 ¼ 2q2 1

�
þ  PðY ¼ S1S2ÞP

�
H1;g ¼ q  j  Y ¼ S1S2

�
þ  PðY ¼ HHÞ
·  
P2g21

r¼0
P
�
Hð1Þ
1;g21 ¼ r

2g21 \ Hð2Þ
1;g21 ¼ 2gq2 r

2g21

�
þ  PðY ¼ S2HÞP

�
H1;g21 ¼ 2q

�
þ  PðY ¼ S2S2ÞP

�
H1;g ¼ q  j  Y ¼ S2S2

�
:

(A9)

For any value of q in Qg where g $ 1, we can use Table 1 to
evaluate Equations A8 and A9 in terms of parameters s1,g21,
s2,g21, and hg21. Simplifying Equations A8 and A9 we obtain
Equations 3–5.
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In	 this	 supplement,	 we	 generalize	 the	 two‐source‐population	 admixture	 model	
considered	in	the	main	text	to	allow	m	source	populations.	For	a	random	individual	in	the	
hybrid	 population	 H,	 we	 obtain	 recursion	 relations	 for	 the	 moments	 of	 the	 admixture	
fraction	 from	 any	 specific	 one	 of	 the	 source	 populations.	 The	 derivations	 are	 almost	
completely	analogous	to	those	for	the	mൌ2	case,	and	we	show	that	the	results	for	arbitrary	
m	agree	with	corresponding	results	in	the	main	text	for	mൌ2.		

	
The	General	Model	Considering	m	Potential	Source	Populations	

Define	population	H	ሺ“hybrid”ሻ	as	a	population	consisting	of	immigrant	individuals	
from	m	mutually	 isolated	 source	 populations,	 ଵܵ,	 ܵଶ,	 …,	 ܵ௠,	 and	 hybrid	 individuals	 who	
have	ancestors	that	trace	ultimately	to	 ଵܵ,	ܵଶ,	…,	ܵ௠.	

We	let	ݏଵ,g	,	 	populations	of	contributions	fractional	the	be		݄g	and	,	௠,gݏ	,... ଵܵ,	…,	ܵ௠,	

and	 H	 to	 the	 hybrid	 population	 at	 generation	 g ൅ 1.	 That	 is,	 for	 a	 randomly	 chosen	
individual	in	ܪ	at	generation	g ൅ 1,	the	probabilities	that	a	randomly	chosen	parent	of	the	
individual	derives	from	population	 ଵܵ,	…,	ܵ௠,	and	ܪ	are	ݏଵ,g	,	...,	ݏ௠,g	,	and	݄g	respectively.	For	

all	g ൒ 0,	the	parameters	݄g	and	ݏ௜,g		with	݅ ∈ ሼ1,… ,݉ሽ	have	values	that	are	greater	than	or	

equal	 to	0	and	 less	 than	or	equal	 to	1,	 such	 that	 	݄g ൅෍ ௜,gݏ
௠

௜ୀଵ
ൌ 1.	At	generation	0,	 the	

hybrid	 population	 is	 not	 yet	 formed.	 Therefore,	 ݄଴ ൌ 0	 and	෌ ௜,଴ݏ
௠

௜ୀଵ
ൌ 1.	 Hence,	

considering	the	period	through	generation	g,	in	addition	to	g	itself,	this	model	has	mg െ 1	
independent	parameters:	m െ 1	introgression	proportions	in	the	first	generation	and	one	
introgression	proportion	 from	each	of	 the	m	source	populations	 in	each	of	 the	next	g െ 1	
generations.	A	diagram	of	the	model	appears	in	Figure	S1.	
	
Admixture	fractions	for	a	random	individual	in	the	hybrid	population		

As	 in	 the	 mൌ2	 case,	 we	 focus	 on	 the	 fraction	 of	 ancestry	 from	 a	 specific	 source	
population	 for	 a	 random	 individual	 in	ܪ	 at	 a	 random	 locus.	 This	 fraction	 represents	 the	
proportion	of	the	genome	of	a	randomly	chosen	individual	in	ܪ	that	ultimately	traces	to	the	
specified	source.		
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We	indicate	the	possible	sources	for	the	ሺunorderedሻ	parents	of	an	individual	in	ܪ	
by	 ௜ܵ ௝ܵ	 and	 ௜ܵܪ,	with	 ݅, ݆ ∈ ሼ1,… ,݉ሽ,	 and	ܪܪ.	An	 individual	 in	ܪ	at	 generation	g ൒ 1	has	

one	 of	 several	 possible	 types	 of	 parents,	 each	 with	 some	 probability	 dependent	 on	 the	
parameters	ݏ௜,g	ିଵ	with	݅ ∈ ሼ1,… ,݉ሽ,	as	described	in	Table	S1.	If	the	parents	have	different	

ancestries,	we	do	not	distinguish	the	order	of	the	two	parents,	so	that,	 for	example,	“ ௜ܵܪ”	
does	not	convey	which	specific	parent	is	from	population	 ௜ܵ	and	which	is	from	ܪ.		

Let	 ܻ	 be	 a	 random	 variable	 indicating	 the	 source	 populations	 of	 the	 parents	 of	 a	
random	 individual	 in	 	.ܪ Let	 	௜,gܪ be	 the	 admixture	 fraction	 from	 source	 population	 ௜ܵ	

with	݅ ∈ ሼ1,… ,݉ሽ,	for	a	random	individual	in	population	ܪ	at	a	random	locus	at	generation	
g.	Because	at	generation	0,	the	hybrid	population	is	not	yet	formed,	݄଴ ൌ 0,	and		ܪ௜,଴	is	not	
defined.	Using	Table	S1,	we	can	write	a	recursion	relation	to	calculate	ܪ௜,g	for	any	one	of	the	

source	populations	 ௜ܵ , ݅ ∈ ሼ1, … ,݉ሽ,	and	 for	all	g ൒ 1.	For	 the	 first	generation	ሺg ൌ 1ሻ,	 for	
any	mutually	distinct	values	of	݅,	݆,	and	݈	between	1	and	m,	we	have	

௜,ଵܪ	 ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
1 if	ܻ ൌ ௜ܵ ௜ܵ, with ܲሾܻ ൌ ௜ܵ ௜ܵሿ ൌ ௜,଴ݏ

ଶ

1
2

if	ܻ ൌ ௜ܵ ௝ܵ, with	ܲൣܻ ൌ ௜ܵ ௝ܵ൧ ൌ ௝,଴ݏ௜,଴ݏ2

0 if	ܻ ൌ ௝ܵ ௝ܵ, with	ܲൣܻ ൌ ௝ܵ ௝ܵ൧ ൌ ௝,଴ݏ
ଶ

0 if	ܻ ൌ ௝ܵ ௟ܵ, with ܲൣܻ ൌ ௝ܵ ௟ܵ൧ ൌ .௟,଴ݏ௝,଴ݏ2

	 ሺS1ሻ	

For	all	subsequent	generations	ሺg ൒ 2ሻ,	we	have		

௜,gܪ ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ

1 if ܻ ൌ ௜ܵ ௜ܵ, with ܲሾܻ ൌ ௜ܵ ௜ܵሿ ൌ ିଵ	௜,gݏ
ଶ

ିଵ	௜,gܪ ൅ 1

2
if	ܻ ൌ ௜ܵܪ,with	ܲሾܻ ൌ ௜ܵܪሿ ൌ ିଵ	ିଵ݄g	௜,gݏ2

1
2

if	ܻ ൌ ௜ܵ ௝ܵ, with	ܲൣܻ ൌ ௜ܵ ௝ܵ൧ ൌ ିଵ	௝,gݏିଵ	௜,gݏ2

ିଵ	௜,gܪ
ሺଵሻ ൅ ିଵ	௜,gܪ

ሺଶሻ

2
if	ܻ ൌ ܲሾܻ	with,ܪܪ ൌ ሿܪܪ ൌ ݄g	ିଵ

ଶ

ିଵ	௜,gܪ
2

if	ܻ ൌ ௝ܵܪ,with	ܲൣܻ ൌ ௝ܵܪ൧ ൌ ିଵ	ିଵ݄g	௝,gݏ2

0 if	ܻ ൌ ௝ܵ ௝ܵ, with	ܲൣܻ ൌ ௝ܵ ௝ܵ൧ ൌ ିଵ	௝,gݏ
ଶ

0 if ܻ ൌ ௝ܵ ௟ܵ, with ܲൣܻ ൌ ௝ܵ ௟ܵ൧ ൌ .ିଵ	௟,gݏିଵ	௝,gݏ2

	 ሺS2ሻ	
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Here,	 ିଵ	௜,gܪ
ሺଵሻ 	 and	 ିଵ	௜,gܪ

ሺଶሻ 	 are	 fractions	 of	 ancestry	 from	 source	 population	 ௜ܵ	 for	 the	 two	

parents	of	a	hybrid	 individual	at	generation	g		with	ܻ ൌ 	use	We	.ܪܪ the	superscripts	ሺ1ሻ	

and	 ሺ2ሻ	 only	 to	 indicate	 that	ܪ௜,g	ିଵ
ሺଵሻ 	 and	ܪ௜,g	ିଵ

ሺଶሻ 	 are	 separate	 independent	 and	 identically	

distributed	ሺIIDሻ	random	variables,	so	that	if	an	individual	in	population	ܪ	at	generation	g	
has	two	parents	from	ܪ,	the	admixture	fraction	is	distributed	as	the	mean	of	the	admixture	
fractions	for	two	IID	random	individuals	from	ܪ	in	the	previous	generation.	
	
Moments	of	the	admixture	fraction	for	a	random	individual	in	the	hybrid	population	

Similarly	to	the	mൌ2	case,	we	can	utilize	the	recursion	relation	in	Equations	S1	and	
S2	 to	 obtain	 recursions	 for	 the	 expectation,	 variance,	 and	 higher	 moments	 of	 	,	௜,gܪ

݅ ∈ ሼ1, … ,݉ሽ,	 as	 functions	 of	 g	 and	 the	 proportions	 of	 descent	 in	 the	 hybrid	 population	
ݐ	for	݄௧,	and	௠,௧ݏ	,...	,	ଵ,௧ݏ	:ܪ ൌ 1, 2, … ,	g	 െ 1.	We	first	obtain	a	recursion	for	the	expectation	

݅	,൧	௜,gܪൣܧ ∈ ሼ1, … ,݉ሽ.	Next,	we	generalize	the	method	used	for	finding	the	expectation,	and	

we	 obtain	 a	 recursion	 relation	 for	 the	 kth	moment,	 	௜,gܪൣܧ
௞ ൧.	 Using	 the	 case	 of	 ݇ ൌ 2,	we	

obtain	a	recursion	for	the	variance	ܸൣܪ௜,g	൧,	݅ ∈ ሼ1, … ,݉ሽ.	

	
Expectation	 of	 	,	g,࢏ࡴ ࢏ ∈ ሼ૚,… 	:ሽ࢓, Using	 the	 law	 of	 total	 expectation,	 we	 can	 obtain	 an	

expression	 for	 the	 expectation	 	,൧	௜,gܪൣܧ ݅ ∈ ሼ1, … ,݉ሽ,	 as	 a	 function	 of	 conditional	

expectations	for	different	possible	pairs	of	parents	Y	for	a	random	individual	in	population	
	:	g	generation	at	ܪ

൧	௜,gܪൣܧ ൌ ௒ܧ	 ቂܪൣܧ௜,g	|ܻ൧ቃ ൌ ෍ ܲሺܻ ൌ |	௜,gܪൣܧሻݕ ܻ ൌ ൧ݕ
௬∈஺

.	 ሺS3ሻ

The	 sum	 proceeds	 over	 the	 set	 A	 of	 all	 possible	 parental	 types	 for	 an	 individual	 in	
population	ܪ.	For,	 the	 first	generation,	because	parents	cannot	derive	 from	population	ܪ	
itself,	we	have	for	any	value	of	݅	from	1	to	m,		
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௜,ଵ൧ܪൣܧ ൌ ܲሺܻ ൌ ௜ܵ ௜ܵሻܪൣܧ௜,ଵ|ܻ ൌ ௜ܵ ௜ܵ൧

൅෍ܲ൫ܻ ൌ ௜ܵ ௝ܵ൯ܪൣܧ௜,ଵหܻ ൌ ௜ܵ ௝ܵ൧

௠

௝ୀଵ
௝ஷ௜

൅෍ܲ൫ܻ ൌ ௝ܵ ௝ܵ൯ܪൣܧ௜,ଵหܻ ൌ ௝ܵ ௝ܵ൧

௠

௝ୀଵ
௝ஷ௜

൅෍෍ܲ൫ܻ ൌ ௝ܵ ௟ܵ൯ܪൣܧ௜,ଵหܻ ൌ ௝ܵ ௟ܵ൧

௠

௟ୀଵ
௟ஷ௜
௟ஷ௝

௠

௝ୀଵ
௝ஷ௜

.

ሺS4ሻ	

As	in	the	mൌ2	case,	we	use	Equations	S1	and	S2	and	recall	that	for	all	g ൒ 0, 	݄g ൅

෍ ௜,gݏ
௠

௜ୀଵ
ൌ 1,	 ݄଴ ൌ 0,	 and	 for	 all	 g ൒ 2,	 ିଵ	ଵ,gܪ

ሺଵሻ 	 and	ܪଵ,g	ିଵ
ሺଶሻ 	 are	 IID	 random	 variables.	We	

then	 obtain	 a	 recursion	 for	 the	 expectation	 of	 the	 admixture	 fraction.	 For	 g ൌ 1,	 for	 any	
value	of	݅	from	1	to	m,	

௜,ଵ൧ܪൣܧ ൌ ௜,଴ݏ
ଶ ൅෍ݏ௜,଴ݏ௝,଴

௠

௝ୀଵ
௝ஷ௜

ൌ ௜,଴ݏ ቌݏ௜,଴ ൅෍ݏ௝,଴

௠

௝ୀଵ
௝ஷ௜

ቍ ൌ 	.௜,଴ݏ ሺS5ሻ

For	all	g ൒ 2,	

൧ൌ	௜,gܪൣܧ ିଵ	୧,gݏ ቌݏ௜,g	ିଵ ൅ ݄g	ିଵ ൅෍ݏ௝,g	ିଵ

௠

௝ୀଵ
௝ஷ௜

ቍ ൅ ݄g	ିଵ ቌݏ௜,g	ିଵ ൅ ݄g	ିଵ ൅෍ݏ୨,୥ିଵ

௠

௝ୀଵ
௝ஷ௜

ቍܪൣܧ௜,g	ିଵ൧

ൌ ିଵ	௜,gݏ ൅ ݄g	ିଵܪൣܧ௜,g	ିଵ൧.

ሺS6ሻ

Setting	݅ ൌ 1,	Equations	S5	and	S6	match	Equations	10	and	11	from	the	m	ൌ	2	case.	

	
Moments	of	࢏ࡴ,g	,	࢏ ∈ ሼ૚, … 	obtaining	in	employed	that	to	computation	similar	a	Using	ሽ:࢓,

the	recursion	for	the	expected	admixture,	we	can	write	recursions	for	higher	moments	of	
the	admixture	fraction	from	population	 ௜ܵ	,	with	݅ ∈ ሼ1,… ,݉ሽ	൫ܪൣܧ௜,g	

௞ ൧,	for	each	݇ ൒ 1൯.	For	

the	first	generation	ሺg ൌ 1ሻ,	we	have	for	k ൒ 1	and	for	any	mutually	distinct	values	of	݅,	݆,	
and	݈	from	1	to	m,	
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	௜,1ܪ
௞ ൌ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
1௞ if	ܻ ൌ ௜ܵ ௜ܵ, with ܲሾܻ ൌ ௜ܵ ௜ܵሿ ൌ ௜,଴ݏ

ଶ

൬
1
2
൰
௞

if	ܻ ൌ ௜ܵ ௝ܵ, with	ܲൣܻ ൌ ௜ܵ ௝ܵ൧ ൌ ௝,଴ݏ௜,଴ݏ2

0௞ if	ܻ ൌ ௝ܵ ௝ܵ, with	ܲൣܻ ൌ ௝ܵ ௝ܵ൧ ൌ ௝,଴ݏ
ଶ

0௞ if	ܻ ൌ ௝ܵ ௟ܵ, with ܲൣܻ ൌ ௝ܵ ௟ܵ൧ ൌ .௟,଴ݏ௝,଴ݏ2

	 ሺS7ሻ

For	all	g ൒ 2,	we	have		

	௜,gܪ
௞ ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ

1௞ if ܻ ൌ ௜ܵ ௜ܵ, with ܲሾܻ ൌ ௜ܵ ௜ܵሿ ൌ ௜,gݏ ିଵ
ଶ

൬
ିଵ	௜,gܪ ൅ 1

2
൰
௞

if	ܻ ൌ ௜ܵܪ,with	ܲሾܻ ൌ ௜ܵܪሿ ൌ ିଵ	ିଵ݄g	௜,gݏ2

൬
1
2
൰
௞

if	ܻ ൌ ௜ܵ ௝ܵ, with	ܲൣܻ ൌ ௜ܵ ௝ܵ൧ ൌ ିଵ	௝,gݏିଵ	௜,gݏ2

ቆܪ௜,g	ିଵ
ሺଵሻ ൅ ିଵ	௜,gܪ

ሺଶሻ

2
ቇ
௞

if	ܻ ൌ ܲሾܻ	with,ܪܪ ൌ ሿܪܪ ൌ ݄g	ିଵ
ଶ

൬
ିଵ	௜,gܪ
2

൰
௞

if	ܻ ൌ ௝ܵܪ,with	ܲൣܻ ൌ ௝ܵܪ൧ ൌ ିଵ	ିଵ݄g	௝,gݏ2

0௞ if	ܻ ൌ ௝ܵ ௝ܵ, with	ܲൣܻ ൌ ௝ܵ ௝ܵ൧ ൌ ିଵ	௝,gݏ
ଶ

0௞ if ܻ ൌ ௝ܵ ௟ܵ, with ܲൣܻ ൌ ௝ܵ ௟ܵ൧ ൌ ,	ିଵ	௟,gݏିଵ	௝,gݏ2

	 ሺS8ሻ	

where	ܪ௜,g	ିଵ
ሺଵሻ 	and	ܪ௜,g	ିଵ

ሺଶሻ 	represent	IID	random	variables	for	the	fractions	of	ancestry	from	

source	population	 ௜ܵ	for	two	hybrid	individuals	in	generation	g െ 1.	 	
Using	 Equations	 S7	 and	 S8	 with	 the	 approach	 used	 previously	 to	 obtain	 the	

expectation	 of	 the	 admixture	 fraction	 from	 source	 population	 ௜ܵ,	 and	 using	 the	 binomial	
theorem,	we	obtain	a	recursion	for	݇ ൒ 1.	For	g ൌ 1,	we	have	for	݇ ൒ 1	and	any	݅	from	1	to	
m,	

௜,ଵܪൣܧ
௞ ൧ ൌ ௜,଴ݏ

ଶ ൅
௜,଴ݏ
2௞ିଵ

෍ݏ௝,଴

௠

௝ୀଵ
௝ஷ௜

. ሺS9ሻ

For	g ൒ 2,		
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	௜,gܪൣܧ
௞ ൧ ൌ ିଵ	௜,gݏ

ଶ ൅
ିଵ	ିଵ݄g	௜,gݏ
2௞ିଵ

൭෍൬
݇
ݎ
൰ܪൣܧ௜,g	ିଵ

௥ ൧

௞

௥ୀ଴

൱ ൅
௜,gݏ ିଵ
2௞ିଵ

෍ݏ௝,g	ିଵ

௠

௝ୀଵ
௝ஷ௜

൅
݄g	ିଵ
ଶ

2௞
൭෍ቀ݇

ݎ
ቁ

௞

௥ୀ଴

ିଵ	௜,gܪൣܧ
௥ ൧ܪൣܧ௜,g	ିଵ

௞ି௥ ൧൱ ൅ ቌ
݄g	ିଵ
2௞ିଵ

෍ݏ௝,g	ିଵ

௠

௝ୀଵ
௝ஷ௜

ቍܪൣܧ௜,g	ିଵ
௞ ൧.

	

ሺS10ሻ	

Recalling	 that	 for	 all	g ൒ 0, 	݄g ൅෍ ௜,gݏ
௠

௜ୀଵ
ൌ 1,	 and	 that	 ݄଴ ൌ 0,	 Equations	 S9	 and	 S10	

reduce	to	Equations	S5	and	S6	by	setting	k	ൌ	1.	Moreover,	by	setting	 ݅ ൌ 1,	Equations	S9	
and	S10	match	Equations	16	and	17	from	the	m	ൌ	2	case.	
	
Variance	 of	 ,	g,࢏ࡴ ࢏ ∈ ሼ૚,… 	:ሽ࢓, When	 ݇ ൌ 2,	 Equations	 S9	 and	 S10	 provide	 a	 recursion	

relation	 for	 the	 second	 moment	 of	 	,	௜,gܪ ݅ ∈ ሼ1, … ,݉ሽ.	 For	 the	 first	 generation,	 because	

෌ ௜,଴ݏ
௠

௜ୀଵ
ൌ 1,	we	have	for	any	value	of	݅	from	1	to	m,	

௜,ଵܪൣܧ
ଶ ൧ ൌ

௜,଴ݏ௜,଴൫ݏ ൅ 1൯
2

. ሺS11ሻ

For	subsequent	generations	ሺg ൒ 2ሻ,	because		݄g ൅෍ 	௜,gݏ
௠

௜ୀଵ
ൌ 1,	for	g ൒ 0,	we	obtain	

	௜,gܪൣܧ
ଶ ൧ ൌ

ିଵ	௜,gݏିଵ൫	௜,gݏ ൅ 1൯

2
൅ ݄g	ିଵ ቆݏ௜,g	ିଵ ൅

݄g	ିଵ
2

ିଵ൧ቇ	௜,gܪൣܧ ିଵ൧	௜,gܪൣܧ ൅
݄g	ିଵ
2

ିଵ	௜,gܪൣܧ
ଶ ൧. ሺS12ሻ

Setting	݅ ൌ 1,	Equations	S11	and	S12	agree	with	Equations	20	and	21	from	the	m	ൌ	2	case.	

With	 the	 relationship	 ൧	௜,gܪൣܸ ൌ 	௜,gܪൣܧ
ଶ ൧ െ	൫ܪൣܧ௜,g	൧൯

ଶ
,	 ݅ ∈ ሼ1, … ,݉ሽ,	 and	 using	

Equations	S5,	S6,	S11,	and	S12,	we	obtain	a	recursion	for	the	variance	of	ܪ௜,g	.	For	the	first	

generation	ሺg	 ൌ 1ሻ,	we	have	for	any	݅	from	1	to	m,	

௜,ଵ൧ܪൣܸ ൌ
௜,଴൫1ݏ െ ௜,଴൯ݏ

2
, ሺS13ሻ

and	for	g ൒ 2,		

൧	௜,gܪൣܸ ൌ
ିଵ൫1	௜,gݏ െ ିଵ൯	௜,gݏ

2
െ ିଵ൧	௜,gܪൣܧିଵ	ିଵ݄g	௜,gݏ

൅
݄g	ିଵ൫1 െ ݄g	ିଵ൯

2
൫ܪൣܧ௜,g	ିଵ൧൯

ଶ
൅
݄g	ିଵ
2

.ିଵ൧	௜,gܪൣܸ

	

ሺS14ሻ	

Setting	݅ ൌ 1,	Equations	S13	and	S14	agree	with	Equations	22	and	23	from	the	m	ൌ	2	case.	
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Table	S1		Possible	pairs	of	parents	for	a	random	individual	in	the	hybrid	population	H	at	generation	g,	

and	their	probabilities.		

	

Populations	of	origin	of	the	parents	of	a	
random	individual	in	population	ܪ
at	generation	g ൒ 1	

Probability	

௜ܵ	and	 ௜ܵ	 ିଵ	௜,gݏ
ଶ 	

௜ܵ 	and	ܪ	ሺor	ܪ	and	 ௜ܵሻ	 ିଵ݄g	௜,gݏ2 ିଵ

௜ܵ	and	 ௝ܵ	ሺor	 ௝ܵ	and	 ௜ܵሻ	 ௝,gݏିଵ	௜,gݏ2 ିଵ

	ܪ	and	ܪ ݄g	ିଵ
ଶ 	

௝ܵ	and	ܪ	ሺor	ܪ	and	 ௝ܵሻ	 ିଵ݄g	௝,gݏ2 ିଵ

௝ܵ	and	 ௝ܵ	 ିଵ	௝,gݏ
ଶ 	

Note	that	at	generation	0,	݄଴ ൌ 0	because	the	hybrid	population	is	not	yet	formed.	The	indices	݅	and	݆	represent	distinct	populations.	
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Figure	S1		Diagram	of	a	mechanistic	model	of	admixture	involving	m	isolated	source	populations.	

	


