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Abstract

6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers,
auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an
active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving
thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT
enzyme produces a significant variation in drug response among the patient population.
Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quan-
titative optimization of dose regimens for individual patients are limited. In addition, research
efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal.
In this work, we present a Bayesian population modeling approach to develop a pharmacologi-
cal model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a
global sensitivity analysis based model reduction approach is used to minimize the parameter
space. For accurate estimation of sensitive parameters, robust optimal experimental design
based on D-optimality criteria was exploited. With the patient-specific model, a model predic-
tive control algorithm is used to optimize the dose scheduling with the objective of maintaining
the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we
show how the incorporation of information from different levels of biological chain-of response
(i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining
the uncertainty in predicting therapeutic target. The model and the control approach can be uti-
lized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabo-
lize the drug instead of the traditional standard-dose-for-all approach.

Introduction

Cancer has been a perennial challenge to clinicians and researchers ever since its existence has
come to light. Despite the remarkable progress in healthcare in the past few decades, cancer
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remains the second leading cause of deaths, accounting for about 1 in 4 deaths in the US [1].
One of the primary reasons for the failure of cancer treatment can be attributed to high inter-
patient variability in response to such treatment. The existing treatment modalities are “effec-
tive” only in subsets of patient population due to a significant genetic and phenotypic variation
among patients. It is this intrinsic variation, even within the same genotypic group, which ren-
ders the clinical decision far from straightforward. The dose regimen determined during ran-
domized clinical trials involving a small number of patients may be appropriate at best for an
“average” patient because these studies are designed to define the best dose for the whole popu-
lation, and not for any specific patient. Thus, it produces severe toxicity in some patients and
insufficient treatment in others. Adverse drug reactions has been estimated to cause about 2
million hospitalizations and 100,000 deaths per year in the US [2], necessitating a dire need for
a rational approach to individualized treatment.

Challenges of 6-MP Treatment

6-MP is one of the important drugs in a series of purine analogues. In addition to many pediat-
ric cancers, 6-MP is a key drug in inflammatory bowel disease (IBD) and many autoimmune
diseases. Common acute side-effects during 6-MP treatment include myelosuppression, pan-
creatitis, gastrointestinal intolerance and hepatotoxicity. Besides acute side-effects, many clini-
cal studies reported several chronic effects related to 6-MP treatment. For instance, in patients
who have undergone 6-MP treatment for acute lymphoblastic leukemia (ALL), recurrent ALL,
secondary neoplasm and other multiple chronic medical conditions are prevalent [3,4]. Clinical
studies show that inadequate therapy leads to recurrent ALL whereas aggressive treatment
results in acute side-effects and secondary malignancies, thus calling for optimization and indi-
vidualization of 6-MP dosing [4-9].

6-MP undergoes extensive intracellular metabolism to yield 6-thioguanine nucleotide
(6-TGN) (active metabolite) and other methylated metabolites of mercaptopurine (MeMP)
[10]. 6-TGN and MeMP are catalyzed by enzymes hypoxanthine-guanine phosphoribosyl-
transferase (HGPRT) and thiopurine methyltransferase (TPMT) respectively. The relative
activities of HGPRT and TPMT are genetically transcribed and regulated for a given
patient. Among these, TPMT enzyme activity appears to be the rate limiting step and hence
dictates the net concentration of 6-TGN [11]. Much of the treatment variability during
6-MP treatment is cascaded down from the genetic polymorphism exhibited in the TPMT
gene [12]. For instance, in patients with high TPMT activity, the 6-TGN pathway is sup-
pressed, resulting in low 6-TGN concentration and hence treatment failure. On the other
hand, in patients with low TPMT activity, the 6-TGN metabolism is elevated which eventu-
ally results in life-threatening myelotoxicity. Thus, TPMT genetic polymorphism is highly
correlated with treatment outcome [5,13-15]. Hence, the utilization of the TPMT genotype
as a pharmacogenetic marker has been suggested to guide the treatment protocol for an
individual patient [16].

Genotyping vs. Phenotyping

Dosing decision for a specific patient can be made with any one of the following biological
markers associated with a drug-disease combination: i) DNA sequence, ii) gene expression
profile, iii) protein/enzyme concentration/activity, iv) metabolite/drug concentration and v)
cell/clinical response. We refer to this as biological chain-of-response. Pharmacogenomics,
at the crossroads of genetics and pharmacology, sheds light on the causative genetic variants
influencing treatment response under drug intervention. When introduced, pharmacogeno-
mics was believed to alleviate many of the issues arising in current medical sciences,
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especially personalized treatment [17,18]. However, it has produced limited success in some
of the drug-disease applications that were deemed to be classical cases for pharmacogeno-
mics based personalization [19,20]. Although pharmacogenomics provides some informa-
tion vital for predicting treatment outcome in the subgroups of patient population, its ability
to explain within-group variation may be in question. A detailed account this subject can be
found in [21].

Pharmacogenomics relies on a static snapshot of a specific DNA sequence or gene expres-
sion and assumes a deterministic evolution of biomolecular events resulting in a predictable
cellular response for a given gene variant. In addition, it considers each gene as an independent
causal factor for the observed response. However, human physiology is a complex dynamic sys-
tem and cellular response is a manifestation of interplay between many levels of physiological
processes and molecular entities. Furthermore, human physiology is complicated by homeo-
static feedback loops, molecular crosstalk and bypass mechanisms that can lead to unexpected
clinical outcomes. As a result, within a specific genotype, there is a distribution of phenotypes
across patient population. For example, in the case of 6-MP, although there are only a few vali-
dated TPMT genotypes, there are as many enzyme activity levels as there are patients. To make
things even more complex, within a specific enzyme activity range, there are as many active
drug concentrations (the ultimate manifestation of the genotype) as there are patients. Hence,
6-TGN concentration, which is responsible for the cytotoxicity, should be regarded as the ulti-
mate covariate for dose individualization.

Importance of Individualized Treatment

The foregoing perspective is more clearly evident from a case-study on a TPMT deficient
patient who had undergone 6-MP treatment [22]. As soon as the treatment was initiated,
the patient’s vital cellular counts plummeted below the critical level. Following several
treatment interruptions and, blood/platelet transfusions due to severe myelotoxicity,
TPMT genotype and phenotype were assayed at week 20; 6-TGN concentration was also
measured. Even with this information, it took another 45 weeks to arrive at the optimal
dose through trial-and-error with additional treatment interruption and blood/platelet
transfusions. It is clear that the current practice of patient titration and qualitative use of
vital information is severely deficient. This trial-and-error process has a profound impact
on immediate and long-term patient health and hence on allocation of limited clinical
resources.

There is a growing body of literature that acknowledges this state of affairs and suggests the
need for tailoring the dose regimen based on a patient’s genetic and phenotypic make-up
[8,23-25]. Given the dynamic nature of physiological responses, it has to be an ongoing process
rather than a ‘study-and-adopt’ approach. In other words, following a detailed analysis and
accumulation of information during the study phase, a minimum of information must be
obtained from each new patient to adapt the approach to the patient before making predictions
and dose optimization. Given the significant limitation on continuous monitoring in the clini-
cal settings, a robust model-based i silico approach, adaptable to individual patients, is indis-
pensable. A recent report by the National Academy of Engineering and the Institute of
Medicine highlights the potential of such engineering approaches, consummated through a
partnership between healthcare professionals and engineers, in patient focused health care
delivery [25]. Hence, these factors form the thrust of this manuscript and are summarized in
Fig 1. In section 2, we describe the model and methodologies used and provide some important
results in section 3. Finally in section 4, we conclude with discussion on the impact, constraints
in clinical implementation and possible extension.
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Fig 1. A general framework for model-based individualized dosing of chemotherapeutic drugs. Pharmacokinetic and pharmacodynamic models are
formulated based on underlying physiology. With extensive data from a large cohort of patients, a population model is formulated based on the Bayesian
approach. A few measurements from a new patient, collected at optimal time points, enables the adaptation of the population model to an individual behavior.
Patient models are used to optimize the dose based on model predictive control to maintain the drug concentration within the therapeutic window. In this

work, only pharmacokinetic aspects of 6-MP are considered.

doi:10.1371/journal.pone.0133244.9001

Materials and Methods
Problem Statement

A generic dynamic model for any given drug and patient can be described by a system of ordi-
nary differential equations of the following form,

= X(x,(1),0,,u,(1)); x,(0) =c (1)
V() = Y(x(t), 0, u,(t))

where x;(t) € R": state variables, 8; € %*: model parameters, u;(f) € R drug input, ¢ € R": ini-
tial conditions, ¥,(t) € ' : predicted model output. Patient population is characterized by the
random parameter matrix @ € R x R" so that an individual patient, i, is represented by a vec-
tor 0;. Further, we assume that the model parameters 0, can be partitioned into highly sensitive
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parameters 6, € R and less sensitive parameters 8, € " = R’ such that,

0= 2)

Sensitive parameters are used to identify patient specific parameters whereas the rest are
fixed at population means. Let y;; denote the j measurement for the i”" patient, at time t;;. It is
not uncommon for these individual measurements y;; to be corrupted by measurement and
assay error, besides model misspecification. If we assume that the modeling and experimental
errors are additive in nature, then the observed concentration would be given by,

yzj(tij) :)717(0’ tzj)—'_gi(xzjauzjv ij)? i=1,...,N; j=1,....M (3)
For practical purposes, the errors can be assumed to be independent and normally distributed
ii» Wi lj)) (4)

where u = E[g;; (t;)] = 0 and aijz (x> wij, &) = Varle; (;))]. & represents error model parame-
ters. Unlike chemical systems and some biological systems, where the model parameters are
more or less constant once the experimental conditions are fixed, human physiology is subject
to high inter-subject variability. In other words, for a given disease and drug dosing, no two
patients will respond in exactly the same way. As such, although the model structure can be
assumed to be identical for individual patients, the model parameters vary significantly among

g; ~ N(u, o5 (x

patients. For the i patient, the model parameters are given as,
0,=0+m, (5)

where 0 is the typical value of model parameters (population mean) and n; € % are indepen-
dent vectors representing the deviation of the i patient’s parameters from the population
mean values. From Eq (5), it is clear that an individual patient is a part of the population
described by a multivariate probability distribution,

P(6;) = M,(0.X) (6)

In the above equation, M, (., .) represents p-dimensional multivariate distribution and X €
5P x R’ is an inter-patient variance-covariance matrix. Much of the challenge in population
modeling and dose individualization resides in robust estimation of P(0,) for a new patient
within physiological and clinical constraints. A brief description of various methods available
to determine P(8,) may be found in [24]. In this work, we are exploiting the Bayesian approach
which is elaborated in [24,26,27]. Under the Bayesian framework, several steps are included:
M p(é , 2) is evaluated off-line with the availability of drug dose and drug concentration data

from a large number of patients. Based on the variability in response propagated by Mp(ﬁ, %),

optimal sampling times that minimize the uncertainty in parameter estimation are estimated.
For each new patient, given a measurement at an optimal time, 7P(0,) and optimum dosing
profiles are determined on-line.

Experimental Data

The data for characterizing 6-MP metabolism and cellular 6-TGN concentration were obtained
from three separate clinical studies reported in the literature. In the first study (D1I), the 6-TGN
concentration was measured in a group of 23 patients undergoing 6-MP treatment [28]. Up to
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four data points were collected per patients over a period of eight weeks. The second set of data
(D2) for 6-TGN concentration was collected from patients undergoing 6-MP treatment under
“per protocol” group in [29,30]. 6-TGN concentration was measured from eight patients over
20 weeks. A third set of data (D3) was collected from a clinical study on ALL patients in which
102 measurements of TPMT enzyme activity and corresponding 6-TGN concentrations were
collected [31]. This data set is primarily used to determine the dosing profile at the beginning
of the treatment when 6-TGN measurement is not available and hence the dosing decision has
to be made with TPMT enzyme activity measured at ¢ = 0. D3 is also extensively used for evalu-
ating uncertainty in phenotype prediction with various data along the chain-of-response. The
data sets that showed a clear indication of treatment discontinuation or significant dose reduc-
tion were eliminated.

Modeling 6-MP Metabolism

Although the TPMT pharmacogenomics and the metabolism of 6-MP is one of the extensively
studied systems in clinical pharmacology literature, utilization of quantitative dose optimiza-
tion strategies are limited. Hawwa et al. [32] performed a population pharmacokinetics study
of 6-MP in pediatric patients considering TPMT genotype as one of the main covariates to
characterize inter-patient variability. Phenotypic variations and/or dose optimization strategies
were not considered in their work. A simplified schematic of the 6-MP intracellular metabo-
lism accounting for 6-TGN production is shown in Fig 2. Following oral intake to the gut,
6-MP is absorbed at the rate of k,;, into the plasma where it undergoes extensive hepatic clear-
ance at the rate of k.;. From the plasma, 6-MP is transported into the intracellular space where
it undergoes metabolic conversion. Since negligible intracellular concentration of 6-MP has
been reported [33], we assume that 6-MP is metabolized as soon as it enters the intracellular
space. The desired pathway leading to 6-TGN is initially catalyzed by HGPRT, followed by a
series of other metabolic conversions at a lumped rate of k,,,. 6-TGN is eliminated from the

u(t)
S P
kab
Plasma
\k;,
Intracellular

Fig 2. Schematic representation of 6-MP metabolism. The model equations for 6-MP metabolism based
on mass-action kinetics are shown in Eq (7).

doi:10.1371/journal.pone.0133244.9002
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cells at a constant rate of k,,,,..

dx,

E kabxg + d(t)

dxc krmxc

dt kab‘xg kelxc - K + x,: (7)
d‘xm vcmkcmxc

The state variables are defined as follows: x,, amount of 6-MP in the gut (picomole (pmol));
X, amount of 6-MP in the plasma (pmol); x,,,, concentration of metabolite 6-TGN in peripheral
RBCs (pmol/8x108 RBCs). In the above model, x,,, is the observed variable. Conversion of
6-MP into 6-TGN follows Michaelis—Menten kinetics with reaction rate k.,,, and Michaelis—
Menten constant K. Patient specific TPMT activity is represented as a quantity relative to its
maximum level. Thus,

e, =— (8)

rel
max

where e denotes TPMT enzyme activity. It is observed in clinical studies that the production of
6-TGN is negatively correlated with TPMT activity [31]. Hence, it is assumed that a fraction of

6-MP, proportional to (1 — e,), is converted to 6-TGN. Consequently, the reaction rate is

modeled as,

kcm = kcm,mux(]' -

€et) ©)

The description and units of all the state variables and parameters are listed in Table 1.

Bayesian Parameter Estimation: Off-line

Estimation of Individual Patients’ Parameter Distribution. The key step in the use of

Bayesian population modeling for patient treatment individualization is the estimation of

Bayesian posteriors for each patient using patient-specific data and a suitable prior. To

Table 1. Glossary of state variables and parameters for 6-MP model.

Model Description

variables

Xg Amount of 6-MP in gut

Xc Amount of 6-MP in plasma

X Concentration of 6-TGN in RBCs

Parameter Description

Kap Rate of absorption of 6-MP

Ko Rate of elimination of 6-MP

Kem Rate of conversion of 6-MP to 6-TGN

K Michaelis—Menten constant

s Rate of elimination of 6-TGN

e Actual TPMT activity

i Maximum TPMT activity

Vern Stoichiometric coefficient for 6-TGN
conversion

doi:10.1371/journal.pone.0133244.t1001

Units

pmol

pmol

pmol/8x10® RBCs
Units

per day

per day

pmol 6-MP converted/day
pmol

per day

Units per ml RBC
Units per ml RBC

pmol 6-TGN produced per pmol 6-MP/8x108
RBCs
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accomplish this, first, parameter statistics are estimated to formulate a meaningful prior distri-
bution for Bayesian calculations. The incorporation of prior knowledge is a key and unique
aspect of the Bayesian framework. With large amount of data and well-defined parameters, the
prior distribution may have a little impact on the posterior inference. However, when the data
is far from adequate, such as in clinical settings, the prior distribution can play an important
role, and hence it is expedient to devote considerable effort to obtain an informative prior. The
model parameters for each of the individual patients who are part of the clinical study can be
estimated using the maximum likelihood approach.

max L(D,|0) (10)

where L(D,|0, &) is the likelihood function. With the assumption of experimental errors &
being independent and normally distributed, the likelihood function is given by,

Lo)e.9) = [ l V;_mexP<_%>] y o

je{l..m}

where D, is the data set obtained from the i patient.

Next, with the prior distribution formulated using this statistics, the posterior distribution
can be calculated using Bayes theorem. According to Bayes theorem, the posterior distribution
of the model parameters p,(0, &|D,) is given by Eq (12).

pi(8,€[D,) = %

where p(0, §) is the prior distribution. The denominator, p(D,), is the normalization factor
equal to the expected value of the data irrespective of the parameters. The most common
method for Bayesian inference is the Markov chain Monte Carlo (MCMC) sampling. However,
MCMC can be very computationally intensive for large and complex models. An alternative
methodology to MCMC sampling is the variational Bayes approximation. Variational Bayes
translates the Bayesian inference into an optimization problem by approximating the posterior
distribution using a known distribution form (e.g., a family of Gaussian distributions). The
idea behind this methodology is that the logarithm of p(D,) can be separated into two elements
as shown in Eq (13) to (15).

(12)

In p(D,) = L(q) + KL(qllp) (13)

/ / .80 ;5o e o )| 0% (1)

KL(qlp) = / / .5j0) 1| I 19

Here, q(0, &|¢) is the parametric probability distribution that approximates the posterior
distribution p(0, &|D,). ¢ is the set of parameters characterizing q (e.g., mean and covariance
for a Gaussian distribution). If g(0, &|) is free to be any probability function, then the maxi-
mum lower bound is obtained when the Kullback-Leibler (KL) divergence is zero. This occurs
when ¢(0, &|¢) exactly matches the posterior distribution [34]. Then, minimizing the KL diver-
gence is equivalent to maximizing the lower bound of L. Therefore, the set of parameters © is
determined as the one that maximizes L. Lainez et al. [35] developed a decomposition strategy
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to deal with the variational inference of models that are described by a set of DAE which will
be followed for the variational Bayes approximation of the model for 6MP metabolism. Follow-
ing this approach, the solution of the variational Bayes problem is decomposed into three
steps: a maximum a posteriori optimization which is facilitated by using an orthogonal colloca-
tion approach, a preprocessing step which is based on the estimation of the eigenvectors of the
posterior covariance matrix, and an expected propagation optimization problem [34]. The
decomposition strategy has been implemented using the R [36] and GAMS [37] software pack-
ages. GAMS has been used for the optimization problems in the first and last steps.

Population Prior Distribution. One of the advantages of using the Bayesian approach is
the systematic and prospective accumulation of information from each participating subject.
Initially, patient-specific information from the retrospective clinical studies is accumulated to
capture the population characteristics. This information is not only used for characterizing the
new incoming patients but also constantly updated through the incorporation of new patients
as part of the information. The individual posterior joint distributions obtained in the previous
section are utilized to formulate an informative population prior distribution. A specific num-
ber of parameters (based on some weighting factor) from the converged posterior distribution
are sampled to formulate the population prior distribution [24].

M(0,8) = wp,(6,€[D,) (16)

i=1

The weighting factor w; is usually chosen based on the quality and quantity of data used to
obtain these posterior distributions. Since the original data contained varied number of mea-
surements, w; is taken as a function of the number of data points for each patient.

Global Sensitivity Analysis

The model parameters for a new patient cannot be estimated accurately unless measurements
are made on that patient. Although the availability of an informative prior helps to reduce the
number of measurements required, its impact can be considerably reduced when there are a
number of model parameters to be estimated. However, if we can systematically identify and
reduce the number of parameters which must be estimated a priori, it will aid in the efficient
estimation of parameters online, when measurements are limited. In addition, it will signifi-
cantly reduce the computation time which is also an essential part of timely decision making
for a new patient in the clinical setting. The basis for reducing the number of parameters to be
estimated stems from the observation of uncertainty in the dynamical systems. Uncertainty in
the model output is primarily propagated from the uncertainty in the model input (i.e. parame-
ters). Although it is true that the uncertainties in model parameters will have some effect on
the model output, not all parameters have the same level of influence [38]. Consequently, it can
be expected that the uncertainty in the estimation of the highly sensitive parameters will have
the most significant impact on the model prediction. Thus, it becomes critical to estimate the
most sensitive parameters as accurately as possible with the limited data available. Although
less sensitive parameters have little effect on the measured variable, they impart indirect effect
through other auxiliary variables and hence are fixed at a nominal value, instead of being elimi-
nated or neglected. The error involved in such an approximation can be estimated as follows
[39].

Let ¥,, represent ¥, with 0, = 0, 61._0 ], where 6 .o denotes the insensitive parameters fixed

at nominal value. For any parameter @V, v=1,2,...,r,if§; <<, then the error of
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approximating §, with ¥, (0, ,), by fixing 0, at a nominal value év,ﬂ can be estimated by
~ 1
P{é(()w) < (1 + E) Sg} >1-—¢ 0<e<l1 (17)

where S, is the total sensitivity of the model output corresponding to parameter 0,. For an

arbitrarily small value of € = 0.05, the probability of getting 6(0,,) < 21S§V is more than 0.95.

Since physiological model parameters vary over a wide range, we used global sensitivity analy-
sis (GSA) for estimating S . The Sobol method was used in this work to estimate the total sen-

sitivity indices [39].

Optimal Experimental Design

Clinical data, especially for new patients, are constrained due to economical and logistical rea-
sons. Hence, we are interested in characterizing patients by measuring drug concentration with
a minimum number of samples. By collecting samples at optimal time points, dictated by the
design of experiment principles (DoE), one can estimate the model parameters accurately.
Obviously, these optimal sampling points should be determined for the whole population with
a detailed study on a class of patients with full set of data. Here, the population characteristics
are enriched in M (0, &) and will be used for sampling time determination. The average drug
profile among patients studied is given by

EWO:/MW@YM&&MM (18)

Suppose we have a way to characterize the best choice of time at which these measurements
are to be made, given the parameter vector 0. Denote this instant by 7 (0). The average of this
time is given by

ET:/M@@T@@ (19)

Similarly, one could also consider 7 (EB) as a potential choice for the optimal time. To eval-
uate these measures, more generally, we may propose 0* such that the variance below is mini-
mized.

min. [ (T(6) = T(0) M(0,2)d0 (20)
The solution of the foregoing minimization problem will yield * and hence the best time
for the measurement by evaluating 7 (8"). Eq (20) may be written further as
n%in [T°(0") — 27T (0")ET + VT + (ET)’] = n%m [(T(07) — ET)’ + VT] (21)
Clearly, Eq (21) is minimum when 7 (0*) = E7 . With this conclusion at hand, 7 (0) is
found using D-optimal criteria which attempts to minimize the volume of the hyper-ellipsoid

spanned by the joint parameter space. This is achieved by maximizing the determinant of the
Fisher information matrix as in Eq (22)

max  E {|[1(6,,¢)[} (22)

TeT 0cO

In Eq 22, ¢ represents design parameters. The robust formulation is ensured by integrating
the determinant over a representative population parameter space and weighted by the
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corresponding likelihood function.

H?lax egnax Hll‘ﬂilx
Brol 108} = [+ [ [10.80)L0.8D)a0d0, o,
gmin - giin gmin (23)

1 1
10,8,9)=> Y /S8,
i j

i

where S; is the sensitivity matrix defined as

Dl
o0, | 20, |
Si _ (24)
9, -0y
90, | a0,

Dose Optimization

With the availability of a patient-specific model, the final step in model-based individualized
dosing is dose optimization to fulfill certain physiological objectives. The nature of the
objective function selected is entirely dependent on the drug-disease-side effect combination.
For 6-MP, the therapeutically effective range is defined in terms of 6-TGN concentration

in peripheral RBCs. Moreover, the dosing strategy employed can depend on the degree to
which the patient response can change over time. In some cases, the optimal dosing once
determined can be repeated for a number of dosing cycles, unchanged [40]. In other situa-
tions, model mismatch and changes in patient response over time require repeated dose
adjustments as patient response is tracked. This is the case in this work, thus, we utilize
robust model predictive control (MPC) to optimize the dose due to its intrinsic capability

to implement prediction and optimization under uncertainty [41-43]. In general, the MPC
problem is formulated as solving the on-line finite-horizon, closed-loop optimal control
problem subject to an underlying model and constraints involving state, input, and output.
Based on the measurement obtained at time 7, the controller predicts the future moves of the
system over a prediction horizon T and estimates the input that optimizes the predetermined
open-loop performance objective function. To compensate for disturbances, model-patient
mismatch and the finite nature of the optimization problem, only the first control action is
implemented. The remaining samples are discarded and a new optimization problem is
solved based on Y., at the next sampling step (7 + 1). The foregoing concept of MPC is anal-
ogous to the decision making process of a physician. When the patient arrives at the clinic
for treatment, the physician diagnoses the patient, assesses the existing state of the disease,
considers available treatment options, predicts the prognosis and administers the best avail-
able treatment to the patient but only until the next visit. When the patient returns for the
next clinical visit, the physician repeats the same steps. Technically, MPC performs a similar
task to what the physician does, perhaps in an optimal way, provided the model predictions
are reasonable. While the traditional MPC algorithm is built with nominal dynamics of the
model, we exploited the whole posterior distribution (with appropriate number of samples)
of the individual patient parameters to account for the uncertainty.
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Consider the equality constraint to maintain the drug concentration in the therapeutic level
TL

¥i(u(r),x,(1),0,¢) € {TL}, ©=0,...,T (25)
subject to the inequality constraints
g(u(0),%,(1)) <0, T=0,...,T (26)

where T is the prediction horizon. g represent physiological constraints other than the clinical
objective. For the case of regulating the system to the target concentration C, the quadratic cost
function is defined as follows.

109 =Y [ [(©-50.8.u.020,8/0)d0d (27)
=/

where U = [uy,. . ., ur_] is the optimization vector consisting of all the control inputs for 7 =
0,. .., T-1. The constrained finite time optimal control problem can be formulated as follows,

min J(U,§) (28)
subject to
umin S u(k) S umax
(29)
Aumin S u(k) - H(k - 1) S Aumax

where u,,;, and u,,,, are minimum and maximum 6-MP doses allowed respectively. Au,,;, and
Au,,,qy signifies minimum and maximum allowed slew rate of 6-MP dose.

Results
Off-Line Population Model Building

With the data sets DI and D2, model parameters were estimated using the maximum likeli-
hood approach as explained in Section 2.4.1. Feasible ranges of parameters were chosen based
on experimental and clinical studies from literature. The statistics of the estimated parameters
are given in Table 2. We assumed that the priors, p(0, ), are log-normally distributed with this
statistics. Using this prior distribution and individual patients’ 6-TGN data D,, the posterior
joint distribution of model and error parameters were estimated for each patient through the
variational-Bayes approach outlined earlier. The posterior distributions for selected patients
were verified with MCMC approach as this is a standard approach for performing Bayesian
estimations. MCMC was done using Metropolis-Hastings algorithm implemented through R

Table 2. Parameter statistics for prior distribution in Bayesian calculations.

Parameters
kab
kel

ka
K
kme

doi:10.1371/journal.pone.0133244.t002

Mean Covariance Matrix
42 kab ke/ kcm K kme
o k, 4.1
39.4
k, 043 44
15.11
0.08 k., 167 212 382
K 0.67 —-0.74 13.21 11.8
K, 0.003 0 0.059 0.42 0.3
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package ‘mcmcepack’ [44,45]. The posterior parameter distribution is essentially an updated
form of the prior distribution in light of new information i.e. individual patient’s 6-TGN con-
centration. Fig 3 shows marginal distribution of model and error parameters for a representa-
tive patient. Correlation coefficients for all parameters are acceptable except between k,,,, and
k- To examine the adequacy of the model in representing drug concentration data for various
patients, we employed the global lack-of-fit test described by Blau et al. [26]. This test compares
the occurrence of the experimental points within the highest probability density (HPD) regions
for concentration predicted by the model. By definition, HPD is the region in which there is a
100(1 — @)% probability that the true value falls within the area under p(¥ (¢)) which satisfies
p(F(t)) > p(y(t)). This confidence region (CR) is the smallest interval region among all credi-
ble intervals and hence is termed as the highest probability density region [46]. In our simula-
tion, 259 out of 263 experimental points remained within the 95% HPD concentration
confidence region, resulting in a confidence level for the lack-of-fit of 0.019. Since this value is
less than 0.05, the selected model is adequate as measured by the global lack-of-fit test.
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Fig 3. Marginal parameter distribution with correlation matrix estimated through Bayesian approach. The diagonal cells show the marginal
distribution for individual parameters. The off-diagonal cells show the pairwise joint distribution of parameters and their corresponding correlation coefficient.

doi:10.1371/journal.pone.0133244.9003
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Fig 4. Population prior distribution for model and error parameters. Blue solid line indicates the actual distribution formulated by sampling individual
patient distribution. The red dashed lines show the approximation by multivariate normal distribution.

doi:10.1371/journal.pone.0133244.9004

Once the Bayesian parameter distribution is determined for all patients in the study, the
population parameter distribution is formulated as explained in section 2.4.2. From each
patient’s posterior parameter distribution, a specified number (10000*number of data points
available for the corresponding patient) of samples are drawn. The final distribution for each
parameter is approximated by a multivariate normal distribution. This approximate distribu-
tion is used as an informative population prior for all incoming new patients. In addition,
every time a patient visits the clinic, this population prior is updated to include the new infor-
mation. Fig 4 shows the population prior for model and error parameters. It is evident from
the figure that most of the variability is explained by the reaction kinetic parameter k., and, to
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doi:10.1371/journal.pone.0133244.g005

some extent by the elimination rate of 6-TGN k,,,,. Fig 5 shows the comparison of 95% concen-
tration confidence region estimated with a non-informative prior (i.e. formulated with MLE)
and informative prior. The red region shows the 95% HPD when parameters are estimated
with non-informative prior. As expected the confidence region obtained from informative
prior (gray region) is narrower. This exemplifies the advantage of the Bayesian approach where
accumulation of information results in improved accuracy of prediction.

Model Reduction and Sampling Time Determination

Global sensitivity analysis was performed using the Sobol technique with 1000 set of para-
meters. Parameters were sampled through sparse grid sampling using statistics from the
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population prior distribution. Reaction and elimination rates of 6-TGN are the two parameters
that emerged as highly sensitive ones. These two parameters have also displayed multimodal
distributions in population priors (Fig 4). Similar observations were made in other population
studies in literature [32]. Since the sensitivity indices varied with time, a camulative error was
calculated by assuming six representative time points across the treatment period. Accordingly,
Eq (17) was modified as shown in Eq (30) with € = 0.05.

p{a(@m) < i(l + 0;) s;;;f} > 0.95 (30)

Table 3 shows the error associated with all the parameters. Any parameter with less than 2%
of the error associated with the most sensitive parameter will be regarded as less sensitive and
hence fixed at the population mean for all individual patients. The most sensitive parameter
and hence the highest error involved was found to be k_,,,. Taking this as the reference error,
the error involved was less than 2% for all parameters, except k... However, as mentioned
before, the correlation between k.,,, and k,,,. is 0.96. Bayesian estimation with only k,,,, and k,,,,
as estimable parameters (other parameters were fixed at population mean) confirmed this
trend and is shown in Fig 6. As a result, it suffices to estimate only k,,,, and fix all other parame-
ters at the population mean for new patients. Consequently, the experimental design was for-
mulated with the objective of improving the precision of parameter estimation for k,,. Fig 7
shows the evolution of Fisher’s information as a function of time and parameter sets. From the
figure, the maximum information is made available towards the steady state of the model. Con-
centration densities simulated with population prior also pointed that the maximum variation
in the concentration distribution resulted when the drug concentrations are higher. However,
it is not prudent to wait until the steady state to gather the data and identify the new patient.
Hence, by compromising about 5% of the maximum information, 35" day was determined as
the optimal time to collect blood sample to measure the 6-TGN concentration.

Online Implementation

To this stage, we accumulated the information available in the literature by formulating a pop-
ulation prior distribution and showed the strategy for estimating the parameter for a new
patient with a minimum number of samples. Since the optimal sampling time falls on the 35t
day from the beginning of treatment, it puts the patient in the dark for this period as there is no
patient-specific model available for dose optimization. To overcome this drawback, we
employed TPMT activity as an additional piece of information available up in the biological
chain-of-response. For this purpose, data D3, consisting of TPMT measurement and corre-
sponding 6-TGN concentration, are utilized to predict the optimum dose during the first 35

Table 3. List of parameters identified for deriving patient-specific model (bold face) together with
other fixed parameters (regular face). Cumulative error, calculated at 1, 10, 20, 50, 75 and 100 days
according to Eq 30, is given in column 2. % error is given in column 3.

6-MP Model (Variable for GSA: x,,,)

Parameters P{5(6,5)<(.)}>0.95 % error(actual/maximum)
Kem 88.57 100

e 47.84 54.01

K 1.34 1.51

Kol 0.025 0.028

Kab 8.7x10™ 9.8x10™

doi:10.1371/journal.pone.0133244.t003
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Fig 6. Marginal distribution of parameters showing correlation between k.,,, and k.. Only k., and k. are estimated, with all other parameters fixed at
population mean, to reveal the correlation between them.

doi:10.1371/journal.pone.0133244.9006

days. TPMT activity in these patients ranged from 7- to 30 U/ml/hr. With an activity window
of 2 U/ml/hr. (i.e. Group 1:7.01-9.00 U/ml/hr., Group 2: 9.01-11.00 U/ml/hr. etc.), 11 patient
groups are formed based on their TPMT enzyme activity. Using the population prior distribu-
tion generated in section 3.1, a new set of parameter distributions were obtained for k,, for all
patients in D3. With these distributions, group prior distributions were formulated as follows,

N?
Mq(0,8) = wp,(0,ED) VG, G=1,2,...,11 (31)
i=1

where M (0, ) is the prior distribution for the group defined by the TPMT enzyme activity
and N, is the number of patients in each activity group that ranged from 3-27. Eq. 31 is equiva-
lent to Eq 16 in that Eq 31 considers the subset of patients having similar gene expression pat-
tern as the population instead of the whole population. In summary, when a patient arrives at
the clinic (at time ¢ = 0), TPMT enzyme activity is measured and the patient will be placed in
one of the 11 groups. Dosing decisions until ¢ = 35 days are made with the assumption that the
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patient behaves as an ‘average’ of this enzyme activity group and hence dose optimization is
performed with M (0, &) relevant for this patient. Once 6-TGN concentration is measured on
the 35™ day, M, (0, &) is updated for this patient and the dose optimization is performed with
the patient-specific model.

Evaluation of Uncertainty

Another important objective of this work is to evaluate the impact of measuring various entities
in biological chain-of-response on the uncertainty in predicting variables used for therapeutic
drug monitoring and optimization. Despite the attractiveness of the DNA sequencing and gene
expression profiling in characterizing patients, the more downstream variables, such as enzyme
activity and active metabolite concentration, provide a much more robust indication of under-
lying response and thus helping to minimize the uncertainty. For this purpose, the individual
parameter distributions are sampled to represent various measurements viz. whole population,
groups based on TPMT genotype, groups based on TPMT enzyme activity and individual
patient 6-TGN concentration measured at a single time point. Two TPMT genotype groups
were formed based on enzyme activity. A TPMT enzyme activity of less than 10 U/ml/hr. is
deemed as TPMT"/TPMT" (heterozygous) and an activity of more than 10 U/ml/hr. is deemed
as TPMT?/TPMT? (homozygous-High) [31]. There are no TPM T /TPMT" (homozygous-
Low) patients found in this study. As Fig 8 shows, the black region is the 95% CR of concentra-
tion for the whole population included in this study. Without any attempt to collect genetic/
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Fig 8. Comparison of 95% CR predicted using different information on biological chain-of-response
for two representative patients. The black region represents the population. The gray region shows the
prediction when only TPMT enzyme activity is measured. The red region shows the 95% CR predicted when
just one measurement of 6-TGN is available (the solid dot).

doi:10.1371/journal.pone.0133244.9008

phenotypic measurements from a patient, the most that can be aspired for is that the concen-
tration will fall in the range of 50-650 pmol/8x10°® RBCs. This is indeed a reflection of the cur-
rent status of clinical practice. Obviously, such uncertainties would preclude the possibility of
dose individualization. The confidence regions for both the TPMT genotype groups were no
different from this population CR. The gray region shows the 95% CR for the group having a
TPMT activity of 15-17 U/ml/hr. With the measurement of a slightly downstream marker, the
CR is narrower compared to the CR predicted for the population. However, when the 6-TGN
concentration is measured and the model is adapted subsequently, the 95% CR is much nar-
rower with notably lower uncertainty. With this patient-specific model, making accurate

PLOS ONE | DOI:10.1371/journal.pone.0133244  July 30, 2015 19/24



@’PLOS ‘ ONE

Individualized Dosing of Chemotherapeutics

prediction of drug concentration at hand, one can venture into dose optimization strategies to
direct the drug concentration into a desired region that maximizes the efficacy and minimizes
the side-effects.

Dose Optimization

Dose optimization is performed using the robust MPC strategy to achieve a therapeutically
effective 6-TGN concentration. All dosing calculations are based on 15 days sampling horizon
with 75 days treatment window as patients visit the clinic every two weeks. 50 parameter sets
are sampled either from the group prior or patient-specific distribution. The combined error
for all the parameters, weighted by their corresponding likelihood, was minimized within the
MPC optimization. Clinical studies recommend a therapeutic 6-TGN concentration of 235-
400 pmol/8x10® RBCs for an effective management of both efficacy and toxicity [47,48].
Hence, we optimized 6-MP input with a target 6-TGN concentration of 300 pmol/8x10® RBCs.
Fig 9 shows the optimal 6-MP input together with resultant 6-TGN concentration for patients
who had different response in relation to their respective groups. As mentioned earlier, without
the patient-specific model until day 35, the dose is optimized based on the enzyme activity.
The red region shows the 95% CR of concentration optimized for an enzyme activity group.
When the patient-specific model is obtained with a measurement on the 35" day, the opti-
mized region shifts based on the drug concentration measured and reaches the target with nar-
row CR (shown in black). The CR in green shows the back calculation with the same dose as
that of group optimum but with patient-specific model. The patient in subplot A had a lower
reaction rate in relation to the group to which he/she belonged and hence when the actual mea-
surement becomes available the dose had to be increased to push the 6-TGN concentration
higher. The opposite is true for the patient in subplot B. Dose inputs for different patients sug-
gest that the dosage varied as much as 200% and as low as 25% of the standard dose, which is
not uncommon in the clinical practice. Although there are obvious and significant differences
between the standard and optimized 6-MP usage, the merit of dose optimization should be
viewed from the maximization of therapeutic benefits rather than the reduction of drug input
as the cost of drug is only a fraction of the overall healthcare spending.

Discussion

Individualized treatment strategies are increasingly favored and extensively recommended for
many drugs, especially for deadly diseases like cancer. Availability of modern analytical facili-
ties and computing power for in-silico approaches support recommendations to further such
efforts. Implementation of these advances in clinics faces several challenges. Among these, the
most important issues are the technical ones which are mainly concerned with robust determi-
nation of optimal dosing for an individual patient.

In this work, we have engineered a strategy for a model-based individualized treatment for
an important chemotherapeutic drug. We have devised a Bayesian approach to describe the
population characteristics and subsequently utilized it for robust estimation of patient-specific
parameters in light of sparse clinical data. The Bayesian approach is inherently suitable to con-
solidate the information from various sources in various formats into a prior distribution.
Highly informative priors play a significant role in dealing with situations where real-time deci-
sions have to be made with partial information i.e. sparse data. The use of distributions of
parameters arising from the Bayesian approach, instead of parameter point estimates, enabled
us to perform a robust estimation of sampling times, to optimize the dose and to quantify the
associated uncertainty. More importantly, we have shown the advantage of measuring the
downstream biomolecular phenotypic indicators, rather than an upstream genotypic marker,
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in minimizing the uncertainty in predicting clinical variables of our interest. While the latest
DNA microarray technologies have made genotyping an inexpensive way to characterize the
patients, its utility in individualized dosing comes at the price of significant uncertainty.
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Fig 9. Optimal 6-MP dosing and corresponding optimal 6-TGN concentration profile for two
representative patients. The red region is the 95% CR of concentration optimized for the group. Green
region is 95% CR back calculated until the 6-TGN measurement is taken. Black region is the optimized profile
with patient-specific model after 6-TGN measurement on the 35" day. Blue and pink stems represent 6-MP
doses before and after 6-TGN measurement respectively. The blue dashed line designates the concentration
target. See text for details.

doi:10.1371/journal.pone.0133244.g009
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In section 1.3, we described how important it is to measure the downstream clinical vari-
ables for accurate prediction of dose response. Although 6-TGN concentration itself was
shown to be a valuable indicator of clinical efficacy and toxicity and proven useful in certain
clinical conditions where efficacy/toxicity measures are categorical and highly subjective,
extension to include cellular response will certainly add value to the approach. Additional vari-
ations while the active drug imparts cytotoxicity on various cell populations may play a role
and impose another level of uncertainty. Hence, an interesting and important extension to this
work would be to connect this model to relevant pharmacodynamic variables (cellular
response). With regard to 6-MP treatment, these cellular responses primarily involve the bone
marrow cell population. Works are in progress to consider these extensions.

Besides the issue of ‘technical know-how’, clinical implementation is also constrained by
physiological, logistical, economic and social factors. Physiological issues are concerned with
whether the technical solutions are realizable within the physiological constraints. For example,
if the approach demands several additional blood samples, it will be prohibitive to implement
in pediatric patients, no matter how beneficial it is. Certain types of measurements, such as
those from the bone marrow are highly restricted. Logistical issues surface mainly during the
translational phase. They arise due to incompatible resources at the healthcare facilities. For
example, if the algorithm requires a measurement 6 hours post-dose, managing patients arriv-
ing at different times in the clinics (inpatient or outpatient) would be an issue. In addition,
timely analysis of samples and reporting the results would be important consideration. The
economic issues are obviously concerned with the additional cost involved for procedures
necessitated by the individualized approach. Individualized treatment means clinically identi-
tying or characterizing an individual patient through genotyping and/or phenotyping that
invariably requires additional testing/ lab assays. Basically, one has to show the potential bene-
fits, both short- and long-term, weighed over the cost, to convince third party payers to cover
the tests. The final and important social issues encompass communication, information shar-
ing, education to healthcare providers and patients on the new approach, patient compliance,
policy, ethical and privacy issues. It has been our aim in this work to address some of the tech-
nical issues within the physiological constraints. We believe that by comprehensively address-
ing the foregoing two issues and corroborating the potential incentives will pave way for
overcoming the rest. This will ensure that the patients are treated with the suitable dose, dic-
tated by their own genetic/phenotypic background, ultimately resulting in improved quality-
of-life.
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