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Abstract: Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing
technologies for fabricating various biomimetic architectures of tissues and organs. In this context,
the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D
printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based
bioinks derived from natural tissues have garnered enormous attention from researchers due to
their unique and complex biochemical properties. This review initially presents the details of the
natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly
used decellularization treatment procedures and subsequent evaluations for the quality control of
the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D
bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering.
Finally, we present some of the challenges in this field and the prospects for future development.

Keywords: 3D bioprinting; bioink; decellularized extracellular matrix; tissue engineering

1. Introduction

Tissue engineering, a cutting-edge field of science, utilizes cells, scaffold materials,
and growth factors to construct biologically active tissues in vitro for organ replacements
using various biomanufacturing techniques, including electrostatic spinning [1–3], mi-
crofluidics [4–6], and 3D bioprinting [7–9], among others [10,11]. However, the fabrication
of scaffold materials as an extracellular matrix (ECM) has been a significant impediment
to their transition to clinics [12]. Furthermore, achieving a high degree of ECM mimicry
by using either synthetic materials (poly (ethylene glycol), Pluronic F127, etc.) or natural
materials and their derivatives (collagen, hyaluronic acid, gelatin, methacrylate gelatin,
etc.) remains a significant challenge [13,14]. The recent advancements in 3D bioprinting
decellularized extracellular matrix (dECM)-based bioinks and the relevant decellularization
strategies are reviewed in this article.

The ECM is a complex network of macromolecules, which provides a site for cell sur-
vival and activity, as well as the ability to regulate cell behavior [15]. In addition, the ECM,
to some extent, mimics the cellular microenvironment and provides a three-dimensional
space for cells [16–18]. As a result, in vitro reconstruction of the ECM is crucial for engineer-
ing tissues. Owing to these aspects, decellularization technology has garnered enormous
interest in regard to fabricating natural ECM. By removing the cellular components from
tissues and organs while preserving the composition, biological activity, and integrity of the
ECM, this approach dramatically enriches the content of tissue engineering scaffold materi-
als [19]. The resultant material after decellularization, in combination with the previously
mentioned polymer-based materials, can be used as a tissue engineering scaffold material.
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Compared with traditional tissue engineering methods, the emerging 3D bioprinting
technology has the advantages of controlled design of structures and high material utiliza-
tion, and offers unique advantages in the personalized processing of biomaterials. With the
advent of 3D bioprinting technology, it is now possible to create cell-laden 3D structures
with different geometries for personalized tissue repair and organ fabrication [20,21]. A
bioink, which is essentially a biological material used to wrap cells in 3D printing, primarily
mimics the ECM [22]. In recent years, 3D bioprinting of dECM-based bioinks has emerged
as a hot research topic, with many novel bioinks [23–25] and novel manufacturing meth-
ods [26,27]. This review critically emphasizes various aspects of the ECM, decellularization
methods, bioink preparation strategies, 3D bioprinting methods, and tissue engineering
applications of dECM-based bioinks. The overview diagram of the article is shown in
Figure 1.
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Figure 1. Schematic illustration highlighting the various decellularized extracellular matrix (dECM)
preparation methods, and the bioink preparation strategies and applications of 3D bioprinting
dECM-based bioinks in tissue engineering.

2. Extracellular Matrix (ECM)
2.1. Components

The ECM provides a suitable site for cell survival and activity, while it also influences
cell shape, metabolism, function, migration, proliferation, and differentiation through
signal transduction systems [15,16]. The ECM is made up of an intricate network of
different macromolecules, which can be broadly classified into four major groups: collagen,
glycoproteins (non-collagenous), glycans (aminoglycan and proteoglycan), and elastins
(Figure 2) [28]. The ECM is found in lower concentrations in epithelial tissues, muscle
tissues, and the brain and spinal cord, while in higher concentrations in the connective
tissues [29]. The components of the ECM and their assembly are often determined by the
cells from which they arise, and are tailored to the specific functional needs of the tissue.
The ECM of the cornea, for example, is a clear, soft lamella, whereas tendons are tough as a
rope. The ECM not only provides support, attachment, water retention, and protection to
the cells, but it also has a wide range of dynamic effects on it [16].
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Figure 2. Representative illustration of extracellular matrix (ECM) compositional layout indicating
cellular engagement with ECM biomolecules and primary components of general ECM space [28].

Fibrous proteins (collagen and elastin): Collagen is the most abundant protein in
animals, accounting for nearly 30% or more of total body protein [30]. It is a framework
structure in the ECM that can be synthesized and secreted extracellularly by fibroblasts,
chondrocytes, osteoblasts, and specific epithelial cells. Collagen is found throughout the
body in various organs and tissues. Elastin is a critical protein found in the ECM, primarily
acting to keep the tissues and organs physiologically functioning as they stretch and
flex [31]. Elastin is composed of two types of short peptides alternately arranged: a short
hydrophobic peptide that gives the molecule its elasticity, and an alpha helix with alanine-
and lysine-rich residues that form cross-links between adjacent molecules. Elasticity is the
most important physicochemical property of elastin.

Adhesion proteins (fibronectin and laminin): Fibronectin (FN) is a large glycoprotein
found in all vertebrates, with a molecular sugar content ranging from 4.5% to 9.5% and
a glycan chain structure that varies depending on one tissue cell origin and differentia-
tion status [32]. In the ECM and on the cell surface, FN exists in an insoluble form, and
intermolecular cross-linking via disulfide bonds allows the attachment of cells to the ECM
and the subsequent assembly into fibers. FN, unlike collagen, does not spontaneously
form fibers; instead, it is guided by cell surface receptors and is only found on the surface
of specific cells (e.g., fibroblasts) [33]. Laminin (LN) is a large glycoprotein that, like the
basement membrane with type IV collagen, forms the basement membrane. Notably, it is
the earliest component of the ECM to appear in embryonic development. Meanwhile, LN
is a glycoprotein with a high sugar content (15–28%), with approximately 50 N-linked gly-
coconjugates, and is the most complex glycoprotein with the most complex glycoconjugate
structure known to date [34]. Moreover, the multiple receptors of LN are recognized and
bound to its glycoconjugate structure.

Glycoproteins (glycosaminoglycan and proteoglycan): Glycosaminoglycan (GAG)
is a polysaccharide with an unbranched long chain made up of repeated disaccharide
units. Based on the constituent glycosyl groups, the connection method, the degree of
sulfation, and the location, amino glycans are classified into six types: hyaluronic acid
(HA), chondroitin sulfate, dermatan sulfate, acetyl heparin sulfate, heparin, and keratan
sulfate [35]. Except for HA and heparin, several other amino glycans are covalently bound
to core proteins to form proteoglycans. These proteoglycans are covalently linked to
amino glycans (other than HA) with core protein. Several polymorphs of proteoglycan
can have molecular weights of 108 KD or higher and can exceed the size of bacteria [36].
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For example, aggrecan, a cartilage component, contains a GAG composed primarily of
chondroitin sulfate (CS) and keratan sulfate (KS).

Matrix receptors: Integrins are the most common cell surface receptors that mediate
cell adhesion to the ECM. Integrins are made up of two chains, α and β, in which the α chain
comprises 1420 amino acids, while the β chain consists of 840 amino acids [37]. Integrins
are an important class of ECM protein receptors that, on one hand, can bind to the ECM or
other cell surface ligands and mediate cell–cell and cell–ECM interactions; while on the
other hand, can bind to cytoskeletal proteins or intracellular signaling molecules through
their intracellular regions. In summary, integrins are involved in cellular messaging, cell
cycle regulation, cell shape, and cell motility, in addition to their mechanical effects across
membranes [38,39].

2.2. Biological Roles

The ECM not only serves physical functionalities, such as connectivity, support, water
retention, stress resistance, and protection, but also assists in a variety of biological functions
in the basic life activities of cells [16].

The ECM influences cell survival, growth, and death: Apart from mature blood cells,
most normal eukaryotic cells must adhere to a specific ECM to inhibit apoptosis and
survive [40]. Notably, the epithelial and endothelial cells detached from the ECM often
undergo programmed death [41]. Cell proliferation is affected differently by altered extra-
cellular matrices. For instance, fibroblasts, on one hand, proliferate faster on fibronectin
substrates and slower on laminin substrates compared with epithelial cells, which respond
to fibronectin and laminin proliferation in contrary ways [42]. Tumor cells, on the other
hand, lose their reliance on fixation dependence and proliferate in a semi-suspended state.

Shape determination: The shape of the cell is determined by the extracellular matrix
to which it adheres. The same cell types could take on completely different shapes when
adhering to different extracellular matrices. To this end, epithelial cells adhere to the
basement membrane to demonstrate their polarity. The role of the ECM in determining
cell shape is accomplished through its receptors influencing the cytoskeleton assembly [43].
Different cells with different extracellular matrices mediate different cytoskeletal assemblies,
resulting in various shapes.

Control cell differentiation: Often, cells differentiate by interacting with specific ECM
components [44]. For example, myogenic cells proliferate and remain undifferentiated in
fibronectin; whereas in the presence of laminin, they stop proliferating, differentiate, and
fuse into myotubes [45].

The ECM contributes to cell migration: The ECM regulates cell migration speed and
direction, serving as a scaffold for cell migration [46]. For example, fibronectin promotes
fibroblasts and corneal epithelial cell migration, while laminin promotes the migration
of many tumor cells [47]. Moreover, chemotaxis and chemotactic migration rely on the
ECM, implying embryonic development and wound healing. Notably, cell adhesion and
cytoskeleton assembly are required for cell migration, in which the cell adhering to a
specific ECM causes the formation of adhesion patches, which are the rivets connecting the
ECM to the cytoskeleton.

The ECM influences all life phenomena, such as cell shape, structure, function, survival,
proliferation, differentiation, and migration. Therefore, it is important in all physiological
activities, including morphogenesis and organ formation during embryonic development,
and in maintaining the structural and functional perfection of the adult body (including
immune response and trauma repair) [16].

3. Decellularization Methods and Evaluation
3.1. Decellularization Methods

The goal of decellularization is to remove all the cellular components from a tissue or
organ while preserving the composition and integrity of the natural ECM [19]. In this con-
text, various factors, such as cell type, tissue density, thickness, and lipid content, determine
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the effectiveness of a tissue decellularization method. Broadly speaking, various decellular-
ization methods are classified into physical, chemical, or biological approaches based on
the type of processing and the application of precursor materials. Although classified into
different types, a combination of physical, chemical, and biological enzymes is frequently
used to improve the efficiency of decellularization. In this section, we present details of all
these decellularization strategies, highlighting the factors affecting their decellularization
behaviors, along with their pros and cons in comparison with other methods.

3.1.1. Physical Methods

Physical decellularization works on the basic principle of mechanically disrupting the
cell membrane structure of cells in tissues. The changes in the cell membrane structure
cause undesirable biochemical reactions, and continued treatment results in cell death and
the subsequent decellularization of tissues via solution washing, nucleic acid, and lipid
removal [48]. Although physical methods alone have been successful in removing cells
from a small percentage of tissues, they are often used in conjunction with chemical and
biological methods (described in later subsections) to remove genetic material residues
from scaffolds more effectively. Several common physical methods include the freeze–thaw
method, the mechanical stirring method, and supercritical fluid (SCF) extraction [48].

Freeze–thaw: Rapid freezing often results in cytoplasmic crystals forming intracellu-
larly, disrupting the cell membrane and causing cell lysis. Notably, this procedure usually
requires multiple cycles of freezing and thawing to achieve better results. Although physi-
cal methods can effectively preserve the ultrastructure of the ECM, temperature control
can significantly affect the integrity of the ECM. In addition, cyclic freeze–thawing alone
does not completely elute the cellular components, and further processing in combination
with chemical or biological methods is required [49,50].

Mechanical stirring: Mechanical stirring is one of the most commonly used decellular-
ization methods. Typically, the desired tissue for decellularization is immersed in chemical
reagents, decontaminants, or enzymes, and then subjected to mechanical agitation, thereby
destroying the cell structure to release cellular material for decellularization purposes [51].
In fact, the choice of reagents, the order of use, the concentration of reagents, and the time,
speed, and strength of agitation need to be adjusted according to the characteristics of
the tissue or organ of different origin. However, it is worth noting that the application of
the mechanical stirring method requires reasonable control of the stirring conditions to
achieve adequate protection of the structural integrity and mechanical properties of the
extracellular matrix.

Supercritical CO2-based extraction: When the phase state of gases changes above
a critical temperature and pressure point, it transforms into a new type of fluid known
as a supercritical fluid. The most widely used supercritical fluid is supercritical carbon
dioxide, whose safe, optimal critical conditions and eco-friendly, non-toxic processing are
easy to achieve. Several reports utilizing this innovative technology have demonstrated the
feasibility of decellularization in fabricating dECM [52–54].

3.1.2. Chemical Methods

Chemical-based decellularization, the most commonly used method, is achieved by
dissolving cell membranes and degrading DNA using chemical reagents (acids, bases,
surfactants). Some of the main chemical treatment methods and reagents are described
as follows.

Acids and bases: In general, the acidic solutions separate DNA from ECM by dissolv-
ing cytoplasmic components and degrading nucleic acids. In addition, acids denature ECM
proteins, including GAGs, collagens, and growth factors. Some common examples of acid
reagents used for decellularization include acetic acid, peroxyacetic acid (PAA), acetic acid,
hydrochloric acid, sulfuric acid, and deoxycholic acid [55,56]. To this end, alkaline solutions
denature chromosomes and plasmid DNA. Moreover, alkaline solutions can disrupt the
cross-linking of collagen fibers and weaken the mechanical properties of decellularized
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ECM. Various commonly used alkaline reagents include sodium hydroxide, ammonium
hydroxide, sodium sulfide, and calcium hydroxide [57,58].

A descaling agent is another commonly used chemical decellularization method. It
can be classified as ionic, non-ionic, or amphoteric, with the latter primarily introducing
ionic and non-ionic types. Various descaling agents can effectively dissolve cell mem-
branes and decellularize by destroying proteins in the ECM, which inevitably influences
the ultrastructure of the ECM [59]. Ionic detergents act effectively on cell membranes,
cytoplasm, and the nucleus, dissolving cell membranes, lipids, and DNA, and disrupting
protein–protein linkages. Among various descaling agents, sodium dodecyl sulfate (SDS) is
the most commonly reported ionic detergent for chemical-based decellularization [60]. To
this end, the non-ionic descaling agents disrupt inter-lipid and inter-lipid–protein linkages
while preserving protein–protein linkage integrity, making them more suitable for thinner
tissues. Although Triton X-100 [61] is a typical example of this class, utilizing a non-ionic
descaling agent is often ineffective during decellularization.

3.1.3. Enzymatic Methods

Biological enzymes selectively cleave cell adhesion proteins, and separate and lyse
cells from the surrounding matrix. Unfortunately, prolonged enzyme treatment degrades
matrix components, such as collagen, elastin, and glycosaminoglycans. Moreover, the
residual enzymes in the dECM may result in potential adverse reactions [58]. Therefore,
the complete elution of various chemical and biological reagents is essential after the
decellularization process. We summarized the decellularization approaches of various
tissues and organs, as shown in Table 1.

Table 1. Overview of decellularized methods.

Tissue or Organ
Sources Decellularized Method Mode of Digestion Ref.

Porcine lateral and
medial menisci

Frozen for 5 min and thawed at
21 ◦C for 10 min 6 times; 0.25%
trypsin for 8 h; 3% SDS for 72 h;
50 U/mL DNAse in PBS for 48

h

0.1% peracetic acid [62]

Porcine cartilage
tissue

Freeze–thaw cycles 3 times; 1%
Triton X-100 for 1 d; immersed
in 1% SDS for 24 h; 200 U/mL

DNase I for 12 h

0.5 M acetic acid with
30 mg of pepsin for 48 h [63]

Goat articular
cartilage tissue

0.1% EDTA and 3.5% PMSF for
24 h; 1% Triton X-100 in

Tris-HCl (pH = 7.5) with a
protease inhibitor cocktail for
24 h; 50 U/mL DNAse and 1

U/mL RNAse for 12 h

1 mL of 0.1 M HCl
containing 1 mg of

pepsin for 48 h
[64]

Human auricular
cartilage

4% SDS for 3 h; 1000 U/mL
DNase for 3 h - [65]

Porcine tendon
tissues

100% acetone for 30 min; 0.25%
trypsin-EDTA; 2% SDS for 96 h

3 mg mL−1 pepsin in
0.1 M HCl

[66]

Porcine auricular
cartilage

Immersed in 0.02% Tris/EDTA
with protease inhibitor for 48 h;

1% Triton X-100; incubated
with DNAse/RNAse (15
µg/mL) for 24 h; retreated

with 0.02% Tris/EDTA solution
for 48 h

- [67]
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Table 1. Cont.

Tissue or Organ
Sources Decellularized Method Mode of Digestion Ref.

Porcine liver
0.025% trypsin for 30 min 1%
Triton solution for 24 h; 2%

SDS for 36 h

Digested in 0.5 M acetic
acid and pepsin
solution for 96 h

[68]

Rat liver

1% Triton X-100 for 2 h; 0.1%
SDS for 1 h; 750 U/mL DNAse

and 25 U/mL RNAse for 30
min

Digested in 1 mg/mL
of HCl (0.1 M) of
pepsin for 72 h

[24,69]

Porcine liver 0.5% Triton X-100 for 9 h; 1%
SDS for 3 h - [69]

Rat liver

1% Triton x-100 with 0.1%
NH4OH (15 mL/min, 1 h; 20

mL/min, 2 h); sterile DI water
(5 mL/min, 40 min; 15

mL/min, 15 min; 20 mL/min,
45 min); 0.1% peracetic acid

(PAA) in 4% alcohol (5
mL/min, 40 min); submerged

in PAA (30 min); sterile DI
water (5 mL/min, overnight)

- [70]

Porcine, canine,
human, rat liver

Exposed the liver tissue to
trypsin/EGTA and Triton

X-100

Digested in pepsin
solution [71]

Porcine liver 0.1% SDS wash overnight

Digested at a 10
mg/mL dECM and 1
mg/mL pepsin at 0.01

M HCl for 48 h

[72]

Porcine skin

0.25% trypsin for 6 h; 70%
ethanol for 10 h; 3% H2O2 for

15 min; 1% Triton X-100 in
0.26% EDTA/0.69% Tris for 6 h
with a solution change for an
additional 16 h; 0.1% peracetic

acid/4% ethanol for 2 h

Digested in a 1 mg/mL
pepsin solution in 0.01
N HCl for 48 h at 10 mg

ECM/mL solution

[73]

Porcine skin

0.25% trypsin for 6 h; 1% Triton
X-100 for 24 h; 10%

isopropanol for 24 h; 30 U/mL
DNase for 24 h; 0.1% peracetic

acid in 4% ethanol for 2 h

Digested in papain
solution (125 µg/mL)

for 16 h
[74]

Nile tilapia skin

2.5 U/mL disperse for 3 h; 1%
SDS for 6 h; 25 U/mL Pierce

Universal Nuclease for 3 h; 1%
SDS for 1 h

- [75]

Groin skin

Cycle freeze–thaw 3 times;
0.25% trypsin/EDTA for 2 h;
processed with isopropanol
overnight; treated with 1%

Triton X-100 for 48 h

- [76]

Porcine peritoneum

Treated with a solution (pH 5.6)
containing 2% SDS and 0.3%

NaCl; ultrasonic treatment for
24 h;

- [77]
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Table 1. Cont.

Tissue or Organ
Sources Decellularized Method Mode of Digestion Ref.

Porcine small
intestinal submucosa

Treated with mechanical
removal of the tunica mucosa,

the tunica serosa, and the
tunica muscularis externa;

treated with peracetic acid to
remove remaining cells, RNA,

and DNA

- [78]

Porcine skin

0.25 wt% trypsin and 1 mM
EDTA for 6 h; 1 wt%

TritonX-100 for 24 h; 30 U/mL
DNase for 24 h

0.5 M acetic acid
solution containing 15
mg of pepsin per 100
mg dECM for 120 h

[79]

Porcine lateral and
medial menisci

Frozen in liquid nitrogen for 5
min and then thawed at 21 ◦C

for 10 min repeated 6 times;
0.25% (w/v) trypsin for 8 h; 3%
(w/v) sodium deoxycholate for
3 d; 50 U/mL DNAse for 48 h

Lyophilized and
pulverized into fine

powder
[80]

Rat heart

Perfused through the
ascending aorta with 200 mL of

PBS containing heparin (20
U/mL) and 10 mM adenosine

followed by 0.1% SDS,
deionized water, 1% Triton

X-100, 100 U/mL penicillin-G
(Gibco), 100 U/mL

streptomycin, and 100 U/mL
amphotericin B

- [81]

Porcine heart
0.1% SDS containing 7 mmol/L

EDTA for 24 h, washed with
70% ethanol

2.0 mL of 6.0 N HCl for
24 h [82]

porcine aortic valves
and pericardia

5 mM Tris buffer with 1%
Triton X-100 for 24 h; HBSS

medium supplemented with
100 mg/L DNase, 20 mg/L

RNase and 100 mg/L trypsin
for 90 min; new 5 mM Tris

buffer with 1% Triton X-100 for
24 h

- [83]

Porcine myocardium

PBS solution with 1.0% Triton
X-100 for 72 h; 20 mg/mL

ribonuclease A and 0.2 mg/mL
deoxyribonuclease for 48 h

0.05% collagenase, type
IV, 0.5 mg/mL

pancreatin, 1 mg/mL
BSA solution

[84]

Zebrafish ventricular
wall

Repeated freeze–thaw cycles,
red blood cells, and

DNA/RNA are removed by
the erythrolysis buffer and de-
oxyribonuclease/ribonuclease

Mechanically ground
into fine powders in

liquid nitrogen
[85]

Porcine vena cava 0.1% SDS for 16 h; 40 U/mL
DNase for 2 h - [86]

Saphenous vein

0.25% trypsin with 0.02%
EDTA for 5 min; 10 mmol/L

Tris, 5 mmol/L EDTA for 72 h;
frozen at −80 ◦C for 2 h and
thawing at 37 ◦C for 30 min

50 mL 10 mM ethylene-
diaminetetraactic

acid
[87]
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Table 1. Cont.

Tissue or Organ
Sources Decellularized Method Mode of Digestion Ref.

Wistar rat kidney Perfusated by 1% SDS 5 mL of papain solution
for 24 h [88]

Porcine kidney

Repetitive cycle of: perfused
with 0.5 M NaCl solution for 30
min; 0.5% SDS solution for 30
min; deionized (DI) water for

30 min

Lyophilize and
mechanically ground

into fine powders
[89]

Rat kidney Perfused with 1% SDS for 4 h
or 1% SLES for 6 h - [90]

Rat kidney perfused with 1% SDS for 3 h
and 1% Triton X-100 for 16 h - [91]

Rabbit kidney Perfused with 1% SDS for 90 h,
2% Triton X-100 for 12 h - [92]

Rat kidney
Perfused with 1% SDS for 48 h,
0.2 mg/mL deoxyribonuclease

I and 10 mM MgCl2 for 16 h
- [93]

Rhesus monkey
kidney

Perfused with 1% SDS and 1%
Triton X-100 - [94]

Porcine kidney Perfused with 1% SDS for 28 h,
1% Triton X-100 for 2 h

Incubation with papain
extraction reagent for 3

h
[95]

Porcine skin

0.25% trypsin for 6 h; 0.1% SDS
in 0.26% EDTA with 0.69% Tris

for 6 h; 1% Triton X-100 in
0.26% EDTA with 0.69% Tris

for 12 h

Lyophilized and dried
for 72 h [96]

3.2. Evaluating the Prepared dECM

The decellularized matrix is derived from homologous or allogeneic tissues or organs,
and it may contain residual cellular components that cause immune rejection. It is critical
to establish or standardize strict criteria for evaluating the prepared decellularized matrix
for safety reasons. Accordingly, the decellularized extracellular matrix is often evaluated
primarily in terms of nucleic acid analysis [97], cytoplasmic or non-nucleic component
analysis [98], protein analysis [99], and mechanical or structural analysis [100].

Based on the available studies on decellularized matrices applied for in vivo or in vitro
studies, a uniform standard was established to evaluate the residual nucleic acid content
to avoid immune rejection. The standards were stated as less than 50 ng dsDNA/mg
dry weight of dECM, less than 200 base pair DNA fragment length [101], and minimal or
no nucleic acid material observed by histological or immunohistochemical analysis. Fur-
thermore, spectroscopy-based methods, antibody-based component-specific staining, and
ELISA can be used to identify essential components such as collagen, GAGs, and adhesion
proteins [102]. Similarly, the surface morphology of the dECM must be observed. Decel-
lularized samples are typically vacuum-dried, and gold sprayed before being examined
using a scanning electron microscope [103].

4. Strategies for Preparing dECM-Based Bioinks

Bioinks are often referred to as biomaterial-wrapped cells in direct cell printing, provid-
ing appropriate support and a three-dimensional microenvironment for cells. According to
the source and affinity, primary bioink materials can be divided into natural exo-matrix ma-
terials of animal origin (collagen, fibrin, hyaluronic acid, GelMA, matrix gum, etc.), natural
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biomaterials of non-animal origin (alginate, chitosan, agarose, etc.), and synthetic polymer
materials (polyethylene glycol, Pluronic F127, etc.). Decellularized matrices are usually com-
pounded with the above materials to enable the fabrication of three-dimensional structures.
In this context, several neoteric methods of constructing decellularized substrates are briefly
described (Figure 3). Visscher et al. [23] constructed a photo-cross-linkable cartilage-derived
ECM bioink for auricular cartilage tissue engineering. Briefly, the prepared decellularized
cartilage tissue powder was digested in an acetic acid solution of porcine pepsin. To make
a photo-cross-linked dECM-based bioink, the separated product was initially dissolved
in acetic acid, the pH was then adjusted to 8–9, and methacrylic anhydride (MMA) was
added. After the reaction, the photo-cross-linkable decellularized matrix was obtained after
dialysis and lyophilization (Figure 3A). Zhuang and colleagues [24] prepared a composite
bioink consisting of GelMA, dECM, and nano-clay that possessed better printability and
biocompatibility than dECM-based bioinks. In general, conventional methods use pepsin
to digest the decellularized matrix before compounding the hydrogel material, resulting in
the degradation of the natural structure, the biochemical components, and the mechanical
strength of the decellularized tissue. In an attempt, Kim and group [25] developed a type
of dECM powder–based bioink and successfully fabricated micro-patterns with 93% cell
viability to overcome the relatively poor printability and mechanical properties of tradi-
tional dECM bioinks. In this research, liver dECM powder was prepared without pepsin
treatment instead of freeze-milling processes, and then loaded into gelatin to manufacture
a 3D structure as shown in Figure 3B. In addition, Zhao and colleagues investigated the
effect of different digestion times on the properties of dECM. They discovered that dECM
possessed a high viscosity at the initial stage of digestion (3 h), as well as good printability
and tissue-induced regeneration ability [66].
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5. 3D Bioprinting Technologies

3D bioprinting, a novel manufacturing technology, uses cells and biological materials
as a bioink to establish hierarchical three-dimensional structures with complex structures
and biological functions through additive manufacturing methods, according to the require-
ments of bionic morphology, organism function, and cellular microenvironments [104]. 3D
bioprinting has been widely used in the past few decades to build many tissues and organs,
such as skin [105], cartilage [106,107], and liver [81,108,109], not only for patients suffering
from diseases, but also for drug screening [110–112], organ transplantation [113], and other
research. Nevertheless, there are still many bottlenecks in 3D bioprinting: the development
and application of bioinks [114,115], bioprinting of vascularized structures in vivo [116,117],
and achieving functionalization of printed structures. Herein, we systematically describe
several printing methods using dECM-based bioinks: extrusion-based [118], inkjet [119],
and digital light processing [120]. In brief, extrusion bioprinting builds structures by ex-
truding bioink to form continuous fibers; droplet bioprinting generates discrete droplets
for stacking and molding; and light-cured bioprinting uses photosensitive materials for
light curing and stacking layer-by-layer to generate 3D models.

Extrusion-based bioprinting is currently the most common method due to its ease of
use, a wide range of material selection (polymer melt, hydrogel, dECM, nano-clay, etc.),
and low application cost [121]. Typically, bioink is deposited onto a printing platform by
pneumatic or mechanical assistance (piston or screw) in a syringe or particular cartridge.
In addition, extrusion-based bioprinting can be adapted to create vascular structures
with coaxial nozzles. Despite the advantages and successes, the drawbacks are relatively
obvious, such as a low print resolution [122] and shear force affecting cell viability [123].
To solve the poor extrusion printability of dECM bioinks, the use of multiple material
composite, especially nanoparticles, has become a widespread approach. Shin et al. [124]
developed a dECM-based bioink mixed with Laponite and PEGDA to improve the viscosity
of the system (above 5000 Pa·s). Laponite not only ensured smooth extrusion during the
manufacturing process, but also maintained high fidelity during the stacking process. In
another case, beta tri-calcium phosphate [125] and graphene oxide (GO) [126] were used
to improve the printability of dECM-based bioink. Apparently, dECM compounded with
alginate [127,128], GelMA [129,130], and gelatin [131,132], presented good extrudability
with improve printability. A schematic diagram of several extrusion printing types of
devices is shown in Figure 4A.

Compared with extrusion-based bioprinting, inkjet bioprinting is based on the micro-
electro-mechanicalsystems (MEMS) process with thermal bubble or piezoelectric-driven
jet micro drop molding. This approach offers the advantages of low cost, high accuracy,
and fast molding speed [133]. Continuous inkjet and drop-on-demand (DOD) printing
approaches are the two most common types of currently employed inkjet printing. Among
them, DOD printing is further divided into thermal DOD inject bioprinting, piezoelectric
DOD inject bioprinting, electrostatic DOD inject bioprinting, and electrohydrodynamic
jetting. The two most common inkjet printer device diagrams are as shown in Figure 4B.
However, the thermal effects and mechanical stresses generated by inkjet bioprinting tech-
nology during the printing process can damage the encapsulated cells and reduce cell
survival. Furthermore, inkjet bioprinting technology cannot produce high-viscosity materi-
als, making it incapable of printing high cell density hydrogels, limiting the development
of inkjet bioprinting [134].

Digital light printing (DLP) is an upgraded version of SLA (stereo lithography ap-
pearance). DLP works by projecting product cross-sectional graphics onto the surface of
liquid photosensitive resin using digital micromirror elements to project, allowing the
irradiated resin to be light-cured layer-by-layer, resulting in a relatively fast printing speed
(Figure 4C) [135]. Furthermore, by non-utilizing conditions such as shear stress and higher
temperatures and pressures, DLP technology is gentler on cells and bioactive components.
In addition, diverse materials such as photo-cross-linkable resins, ceramics, and dECM
can be brought into printing. Owing to the superiority of DLP bioprinting technology,
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several outstanding DLP printers have emerged in recent years, resulting in tremendous
advancements in fabricating 3D structures.
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6. Applications

Cells in the human body are hierarchically arranged in a complex and dynamic
microenvironment, referred to as the ECM, in which various growth factors and other cells
present different effects on cell behavior [136]. Therefore, establishing a biomimetic ECM is
critical for developing tissue repair, artificial organs, and drug screening models. In this
section, we present the applications of decellularized bioinks with a focus on the most
recent reports.

6.1. Cartilage-Derived dECM Bioinks

Cartilage is a non-vascular, non-lymphatic tissue in the body, densely packed with
connective tissues. However, it possesses minimal self-repair ability when subjected to
external injury or long-term chronic strain [137]. Cartilage dECM bioinks, derived from
specific native tissue, have been applied for use in cartilage tissue repair efficaciously.

In one instance, scaffolds were fabricated with a mixture of PU and PCL polymers
and cell-laden decellularized meniscus ECM (me-dECM) bioink (Figure 5). Briefly, me-
dECM bioink was first prepared after decellularization of the porcine medial meniscus and
validated for relevant composition (Figure 5i) and rheological properties (Figure 5ii). Sub-
sequently, the scaffold with a simulated meniscus structure was prepared by combining the
use of a magnetic resonance (MRI) imaging technique to scan the meniscal articular bone,
using PU_PCL material to simulate the meniscus structure (Figure 5iii), and wrapping the
me-dECM bioink with human marrow mesenchymal stem cells (hBMSCs) in the printed
meniscus. The results indicated that me-dECM bioink with high printability and long-term
architectural integrity performed well in meniscus tissue recapitulation [138]. However, a
further difficulty in developing a 3D tissue structure that mimics the microstructure and
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microenvironment of natural cartilage tissue is that various pro-inflammatory factors can
impede tissue regeneration [133]. In an attempt to address this problem, another research
group compounded cartilage dECM with poly(ethylene glycol) diacrylate (PEGDA) and
combined it with the natural anti-inflammatory molecule honokiol (Hon) to create cartilage
scaffolds using 3D printing technology. The levels of pro-inflammatory factors TNF-α,
IL-1β, and IL-6 released from macrophages co-cultured with PEGDA/ECM scaffolds were
significantly increased after lipopolysaccharide (LPS) treatment. However, the addition
of Hon could significantly inhibit the secretion of the above pro-inflammatory factors,
indicating that Hon had excellent anti-inflammatory effects. Moreover, in vitro animal
experiments revealed that the PEGDA/ECM/Hon scaffold promoted the regeneration of
cartilage and bone tissue at the site of osteochondral defects [63]. Apart from inflammatory
issues, the cross-linking mode of hydrogels (ionic cross-linking, photo-cross-linking, enzy-
matic cross-linking) can also impact the restorative effect. Although UV cross-linking is
the most commonly used modality for GelMA hydrogels, studies revealed that UV light
potentially influenced cellular activity [139]. To address this issue, SF-dECM blends were
mixed with the same volume of 80% PEG for in situ cross-linking to create a cross-linker-
free bioink with similar biological and mechanical activities to the original cartilage. Finally,
the SF-dECM bioink-fabricated 3D cartilage scaffold promoted BMSC proliferation and
facilitated chondrogenesis [64].
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6.2. Liver-Derived dECM Bioinks

Although the liver has a strong ability to regenerate itself, hepatocytes cultured in vitro
rapidly lose their phenotypic characteristics and functions in vivo, which significantly limits
the research on fabricating artificial livers and liver cancer designs for drug screening [79].
Therefore, a culture platform that mimics the in vivo environment of hepatocytes is ur-
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gently needed. In this context, many efforts to simulate the in vivo microenvironment of
hepatocytes to address liver diseases have been explored. In 2011, Ren and colleagues used
liver dECM as a three-dimensional culture substrate for hepatocytes and demonstrated
that the dECM could promote cell proliferation while maintaining phenotype and func-
tion [140]. On the downside, this simple in vitro 3D culture had not allowed for the precise
deposition of cells and the customization of personalized tissues. Mao et al. developed
a fresh decellularized bioink composed of GelMA and liver dECM (Figure 6i), in which
human hepatocyte cells were encapsulated to fabricate an inner gear-like structure of liver
microtissue (Figure 6iii) using DLP-based 3D bioprinting (Figure 6ii). In vitro experiments
revealed that the dECM played a prominent role in enhancing hiHep cell activity, pro-
liferation, and liver function metabolism. Furthermore, DLP 3D bioprinting technology
showed higher print resolution than extrusion printing [68]. Although UV cross-linking can
improve print resolution and result in faster cross-linking, the effects on cells are complex
and difficult to ascertain.
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6.3. Skin-Derived dECM Bioinks

Similar to cartilage and liver dECM-based bioinks, skin dECM-based bioinks present
the advantages of a tissue-specific microenvironment and tissue repairing. However,
weak mechanical strength leads to low printability and high molding difficulty [141].
In 2018, Kim et al. prepared a skin decellularization matrix and carried out a detailed
investigation of its gelation ability. It was observed that S-dECM bioink was in a pre-
gel state at 15 ◦C and could be fully cross-linked after 30 min of incubation at 37 ◦C
(Figure 7A(iii)). Next, an endothelial progenitor cell (EPC)-laden 3D-printed skin patch
was fabricated to verify the capability to promote wound healing and vascularization [142].
Notably, the results of this study provided an essential reference for the preparation of skin
tissue engineering bioinks. Won and coworkers [80] configured a bioink using skin dECM
and human dermal fibroblasts to print artificial skin tissue structures, and cross-linked
them through temperature changes. By analyzing the gene expression pattern in the cells
of the construct, the skin regeneration mechanism of the bioink was verified, and the
successful demonstration of the decellularized matrix was able to effectively enhance the
skin morphology and the development-related gene expression (Figure 7B).
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Figure 7. Two examples of skin-derived dECM bioinks for 3D printing applications. (A) Skin-derived
bioink formulation and its properties analysis: (i) S-dECM bioink preparation process; (ii) quantitative
analyses of dECM bioink, including collagen, GAGs, elastin, hyaluronic acid, and DNA; (iii) sol-gel
transition of dECM bioink; and (iv) printability test of dECM bioink [142]; (B) Structure of the 3D-printed
construct using skin bioink and gene expression: (i) cell-laden 3D scaffold; and (ii) changes in gene
expression in the 3D-printed cell-laden construct [80].

6.4. Cardiac-Derived dECM Bioinks

A 3D-printed pre-vascularized stem cell patch was reported to enhance the therapeutic
efficacy of myocardial injury in 2016 [143]. Prior to this work, Jang and colleagues [144]
developed a novel printing and cross-linking method for cardiac decellularized matrix
bioinks to investigate the potential of dECM for cardiac repair. A two-step cross-linking
method using sequential vitamin B2-induced UVA cross-linking and thermal gelation to
solidify decellularized extracellular matrix (dECM) bioink was applied to print cardiac
decellularized matrix bioinks in a bid to achieve a precise modulation of the mechanical
properties of the printed structures. As shown in Figure 8A, the decellularized matrix
bioink mixed with VB2 was extruded and then induced using UV irradiation to covalently
cross-link the protein components in dECM to form a three-dimensional structure with
specific mechanical properties, followed by further cross-linking at 37 ◦C. Accordingly,
Jang et al. developed a stem cell patch for cardiac tissue regeneration. Briefly, decellular-
ized bioinks encapsulating human c-kit + cardiac progenitor cells (hCPCs) and human
turbinate tissue-derived mesenchymal stem cells (MSCs), respectively, were extruded onto
pre-printed PCL substrates using a dual-jet printer to prepare cardiac patches, aimed at in-
vestigating whether they could compensate for the shortcomings of conventional stem cell
therapy. As a result, both in vitro culture tests and animal experiments showed excellent
therapeutic effects. In particular, the stem cell cardiac patch showed strong vascularization
ability in in vivo trials and significantly improved heart function. Das et al. [145] prepared
heart dECM-based bioinks encapsulating primary cardiomyocytes, and fabricated engi-
neering heart tissue (EHT) models with a high elastic modulus using a dual-jet printer
(Figure 8B). Specifically, the matrix microenvironment and culture conditions are decisive
factors affecting cell–cell and cell–matrix interactions, affecting not only the structural
arrangement of cardiomyocytes, but also the expression of related genes.
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step cross-linking mechanism that applies concurrent cross-linking of vitamin B2-induced covalent
cross-linking and thermal cross-linking; (ii) 3D printing and cross-linking; and (iii) digital image of
the scaffold [144]; (B) Schematic depicting the stages starting with the preparation of the hdECM
bioink to fabrication of the cell-laden EHT: (i) development of the hdECM bioink; and (ii) fabrication
of the cardiomyocyte-laden EHT using a 3D bioprinter [145].

6.5. Blood Vessel–Derived dECM Bioinks

Gao [146] fabricated a bio-blood-vessel structure to deliver endothelial progenitor cells (EPCs)
and the proangiogenic drug atorvastatin for the treatment of ischemic diseases (Figure 9). The
EPCs and atorvastatin-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (APMs)
were encapsulated by a hybrid bioink composed of vascular tissue–derived decellularized
ECM (VdECM) and extruded using 3D coaxial cell printing technology. During the printing
process, Pluronic F127/CaCl2 (CPF-127) components were extruded into the inner layer,
and VdECM/alginate was placed as the outer layer. Finally, CPF 127 was removed after
ionic cross-linking to form a hollow vessel structure. Further, an evaluation of the thera-
peutic effect in an in vivo model in nude mice revealed enhanced cell proliferation and
differentiation of EPCs, increased neovascularization, and a significant salvage of ischemic
limbs, indicating that 3D-printed ECM-mediated cell/drug implantation presented a new
reference for the treatment of ischemic diseases.
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6.6. Kidney-Derived dECM Bioinks

Ali et al. [147] imparted photo-cross-linking properties to kidney dECM grafted with
methacrylic anhydride to print functional kidney microtissues in vitro without the support
of other polymers as shown in Figure 10. Methacrylate-modifiable cartilage dECM bioinks
have been reported in a previous study [23], in which the methacrylic anhydride content
could regulate the mechanical strength of the printed structures by controlling the grafting
rate of the dECM. Therefore, it is appropriate to predict that photo-cross-linked dECM
bioink will be a popular direction for future research.
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Figure 10. Preparation of KdECM and KdECMMA-based bioink formulations: changes in gene
expression in the 3D-printed cell-laden construct: (i) gross images of the decellularization process:
(a) normal kidney, (b) SDS treatment for 36 h, (c) Triton X-100 treatment for 24 h, and (d) washing in
saline for 72 h; (ii) schematic illustration of a photo-cross-linkable kidney-specific ECM hydrogel;
(iii) photography of KdECMMA before and after UV cross-linking; (iv) printing code and gross
images of the printed KdECMMA-based constructs [147].
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7. Possible Challenges and Solutions

It is undeniable that dECM materials play an important role as tissue engineering
scaffold materials; however, there are still many challenges and problems that need to be
overcome in the preparation of dECM and the preparation of dECM-based bioinks. We aim
to summarize these problems to find solutions and optimization in further research work.

The main challenges of the dECM are toxicity, mechanical properties, and immunity.
The dECM of allogeneic origin must undergo strict sterilization procedures to ensure
the maximum avoidance of side effects caused by the material’s toxicity [148]. However,
numerous studies have shown that inappropriate sterilization methods can lead to negative
effects on the structure, degradation, and biological activity of the dECM, and can even
result in the production of new toxic substances. For instance, gamma radiation causes
damage to the structure, and mechanical properties [149] and ethylene oxide cause protein
damage, and even carcinogenesis [150]. Therefore, optimizing the sterilization of the dECM
still needs to be studied in-depth with regard to the appropriate method and time of
sterilization for different tissues. In addition, the mechanical properties of the dECM have
been a long-standing issue. This article summarized cases of decellularized tissues and
organs from different sources. Indeed, most of them were digested with pepsin, leading
to severe damage to the natural structural and mechanical properties of the dECM [25].
Therefore, more work is needed to balance the biological and mechanical properties of the
dECM. As the predominant allogeneic or xenobiotic donor, the dECM may cause immune-
related issues, which could be a great challenge for achieving long-term in vivo safety [151].
Although there has been consensus in the evaluation of the dECM, different tissues induce
altered thresholds of the cellular content of the host immune-inflammatory response. Thus,
it is necessary to test the remaining cellular components, such as mitochondria [152]. As the
mechanisms of the relationship between specific cellular components and the host response
become better understood, the criteria for evaluating the effect of decellularization should
be updated and refined accordingly.

In addition, we summarized many other challenges to be overcome in the bioprinting
of dECM bioinks, in terms of printability and vascularization regeneration capabilities.
Although some methods have been proposed to enhance their printability, the weak me-
chanical properties and slow cross-linking speed of conventional dECM bioinks make
them impossible to manufacture in high-precision micro and nanostructures or in gra-
dient structures [25,153,154]. We believe that the development of photocurable double
bond–modified [147] or thiol-modified dECM bioinks can solve this problem to a certain
extent. Finally, the vascularizing regenerative capacity of the dECM is crucial in tissue
repair and regeneration. Though most tissues and organs are structured with rich vascular
networks, several studies indicated that the pro-vascularization of the dECM is not very
promising [63]. Combining dECM bioinks with pro-angiogenic–related nanomaterials or
drugs can effectively modulate the angiogenesis of recruited progenitor cells or embedded
stem cells, and this phenomenon has also been demonstrated in other studies [155,156].

8. Conclusions and Future Perspectives

Currently, tremendous advancements have been evidenced in the field of generating
scaffolds for tissue engineering and tumor models for drug screening based on the 3D
printing of dECM-based bioinks. The functional characteristics of scaffolds printed with
dECM bioinks from different organ tissues have been validated, and the morphology
and properties of the printed scaffolds have been defined as the matured preparation
parameters and printing parameters. In this review, we summarized the advances in the 3D
bioprinting of dECM-based bioinks, including scaffolds, artificial tissues and organs, and
tumor models, among others. Finally, we summarized the main challenges regarding the
dECM and dECM bioinks that are currently being faced and proposed some solutions. In
conclusion, the dECM is a highly promising tissue engineering material, and we sincerely
hope to formulate more standardized decellularization evaluation criteria in the future,
to develop dECM-based bioinks with controlled mechanical, degradation, and biological
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properties, to build tissues and organs using 3D bioprinting technology, and to create more
success stories for the field of life medicine.
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