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a b s t r a c t 

At present times, COVID-19 has become a global illness and infected people has increased exponentially 

and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intel- 

ligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) 

approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL tech- 

niques are trained to resolve the supervised learning issue. At the same time, the potential measure of 

the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be de- 

signed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a 

novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and clas- 

sification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to 

enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extrac- 

tor and unsupervised VAE model is applied for the classification process. In order to verify the superior 

diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the 

effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual re- 

sults of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple 

classes respectively. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, 2019 novel coronavirus is referred as COVID-19 orig- 

nated from Wuhan city, China in December 2019, and it has 

een progressed as a dreadful disease and considered a communal 

ealth problem around the globe. The COVID-19 is a global dis- 

rder and evolved from Severe Acute Respiratory Syndrome Coro- 

avirus 2 (SARS-CoV-2) [1] . Coronaviruses (CoV) belong to the 

irus family and the disease is named COVID-19 which mimics 

he virus SARS-CoV as well as Middle East Respiratory Syndrome 

MERS-CoV). COVID-19 has defined a novel viral infection devel- 

ped in 2019 which has not been predicted in human beings. Also, 
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t is considered to be a zoonotic disorder as the germs have af- 

ected both animals and users. Developers have found that SARS- 

oV virus is formed out of decomposed cats and it has been 

pread among human beings while MERS-CoV virus is desecration 

rom dromedaries and distributed from Arabian camel to humans. 

OVID-19 virus is actually dispersed from bats to human beings. 

his type of virus is transferred through respiratory organs from 

uman to human and results in rapid virus transmission. It pro- 

okes slight symbols for most of the patients and some people 

ave severe infection. 

The physicians have applied X-ray images for pneumonia analy- 

is, lung disorder, abscesses, and swollen lymph nodes. Every hos- 

ital has X-ray imaging devise and it is possible to take X-rays test 

or COVID-19 without any special testing tools. The demerits of X- 

ay testing are that it requires radiology expert, time-consuming, 

xpensive. Therefore, developing an automatic analysis model is 

xtremely significant to limit the overhead of medical profession- 

ls. In addition, positive findings are attained from X-ray as well 
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s computed tomography (CT) images. However, it can be unfit for 

urther diagnosis due to the prolonged diagnosis period of time. 

he accurate diagnosis rate of this method varies to greater extent. 

ence, maximum count of repeated tests has to be conducted for 

aining appropriate outcomes. But, it signifies a spherical alloca- 

ion of images, it depicts the similar features with alternate viral 

ung disorder. 

Previously, in case of fast progression of coronavirus, numerous 

orks have been performed by many developers. In recent times, 

eep learning (DL) is considered to be the well-known model re- 

ated to medical sector for diagnosing process [2] . DL is considered 

o be the combination of Machine Learning (ML) models which 

s extremely concentrated on computing automated feature ex- 

raction as well as image classification and capable of perform- 

ng object prediction as well as medicinal image classification. The 

L and DL techniques are assumed to be well-organized method 

sed in mining, analyzing, and pattern identification from images. 

egaining the betterment of clinical decision making as well as 

omputer-aided detection (CAD) is considered to be non-trivial due 

o the generation of new data. Moreover, DL is defined as the pro- 

ess in which Deep Convolutional Neural Networks (DCNN) was 

mployed to perform automatic feature extraction, which exploits 

he convolution task and layers perform on non-linear data. A layer 

s operated by data transformation from high to abstract level. Ba- 

ically, DL represents novel deep networks when compared with 

lassical ML methods with the help of big data. 

The contribution of the study can be defined as follows. This 

aper devises an efficient unsupervised DL based variational au- 

oencoder (UDL-VAE) model for COVID-19 detection and classi- 

cation. The UDL-VAE model performs adaptive Wiener filtering 

AWF) based preprocessing, Inception v4 with Adagrad based fea- 

ure extraction, and unsupervised VAE based classification. The ap- 

lication of Adagrad technique helps to adjust the hyperparame- 

ers of Inception v4 model, and thereby the classification perfor- 

ance can be improved. For facilitating the effective detection per- 

ormance of the UDL-VAE method, a comprehensive experimental 

alidation takes place to make sure the proficient performance of 

he UDL-VAE model. 

. Literature Review 

Generally, ML methods are considered as a sub-section of Artifi- 

ial Intelligence (AI) and used prominently for medical domains in 

eature extraction and image analysis. Sorensen et al. [3] processed 

he heterogeneity from collective Regions of Interest (ROI). Then, 

he features are classified by using a standard vector space-relied 

lassifier. Zhang and Wang [4] offered a CT classification with 3 

lassical features called grayscale values, shape, as well as texture, 

nd symmetric features. It can be achieved using Radial Basis Func- 

ion Neural Network (RBFNN) and perform feature classification. 

omem et al. [5] proposed a relative study utilizing JeffriesñMa- 

usita (JñM) distance and KarhunenñLoËve transformation feature 

xtraction processes. Albrecht et al. [6] developed a classifier with 

he average grayscale measure of images in several image classi- 

ers. Yang et al. [7] suggested an automatic classifier for classifying 

he breast CT photographs utilizing morphological properties. Fol- 

owed by, the performance is limited when same process is deter- 

ined with diverse datasets. In addition, hand-engineered models 

re simulated to develop CNN as well as automated feature extrac- 

ion methods. Thus, CNN structure is referred as DL structure used 

n extraction and classification of images. 

Ozyurt et al. [8] employed a hybrid mechanism known as fused 

erceptual hash depends on CNN to reduce the classification time 

f liver CT photographs and maintain the performance. Xu et al. 

9] applied a Transfer Learning (TL) procedure to overcome the 

linical image imbalance problem. Followed by, the performance 
268 
f GoogleNet, ResNet101, Xception, as well as MobileNetv2 are 

ompared to gain better results. Lakshmanaprabu et al. [10] an- 

lyzed the CT scan of lung images utilizing optimal deep neural 

etwork (DNN) and Linear Discriminate Analysis (LDA). Gao et al. 

11] changed original CT images to maximum and minimum atten- 

ation pattern rescale. Consequently, images are subjected to re- 

ampling and classified by applying CNN. 

Shan et al. [12] developed DL based model for automatic seg- 

entation of lung as well as defected regions using chest CT im- 

ges. Xu et al. [13] concentrated on making basic screening mod- 

ls for differentiating COVID-19 pneumonia and Influenza-A viral 

neumonia from healthy cases under the application of pulmonary 

T images as well as DL module. Wang et al. [14] processed on the 

asis of COVID-19 radiographic modification from CT images and 

eveloped a DL method for extracting graphical features of COVID- 

9 to provide clinical analysis prior to reach pathologic condition 

nd eliminate the fatal state of a patient. From Hamimi [15] , MER- 

CoV has depicted that features in chest X-ray as well as CT are 

epictions of pneumonia. Xie et al. [16] utilized Data Mining (DM) 

odels for classifying SARS and pneumonia use of X-ray images. 

In [17] , a new AI-powered pipeline using DL model is devel- 

ped to automatically detect COVID-19 and classification process 

akes place using CT scans. In addition, the segmentation network 

s integrated to the classifier model for COVID-19 identification and 

esion categorization. In [18] , a novel Multiple Kernels-ELM-based 

eep Neural Network (MKs-ELM-DNN) model is projected to de- 

ect COVID-19 using CT images with CNN model. In [19] , a set of

 classifier models are employed for COVID-19 diagnosis such as 

GG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, 

rtificial neural network (ANN), decision tree (DT), and random for- 

st (RF) using CT images. Some other COVID-19 diagnosis models 

re existed in the literature [20-37] . Even though there are numer- 

us methods developed in diagnosing COVID-19, still there is a re- 

uirement of identifying COVID-19 from Chest X-ray images. Fol- 

owed by, X-ray devices are used in scanning defected regions of a 

ody such as fractures, bone misplacement, lung disorder, and le- 

ions. The CT scanning is defined as the expanded version of X-ray 

sed for examining soft tissues in the internal organs. The time de- 

ay in detecting COVID-19 pneumonia results in mortality. Hence, 

n efficient COVID-19 diagnosing method is applied for prediction 

nd classification of disease. 

. Unsupervised Learning based COVID-19 Diagnosis Model 

The proposed unsupervised learning based COVID-19 detection 

nd classification model is demonstrated in Fig. 1 . The figure in- 

icated that the medical image quality can be raised by the use 

f AWF technique. Then, Inception v4 with Adagrad model extracts 

ut the suitable set of feature vectors from the preprocessed im- 

ge. At last, unsupervised VAE method is implemented to define 

he appropriate class labels of the input medical images. 

.1. Adaptive Wiener Filtering based Preprocessing 

The remarkable development of Wiener Filter (WF) has per- 

ormed the image processing due to the low pass features and in- 

ends to develop inevitable blurring of lines as well as edges. When 

he signal is defined as a non-Gaussian process like natural images, 

F has surpassed the nonlinear estimators. The count of iterations 

or resolving the problem has applied a nonstationary scheme in 

hich the features of signal as well as noise are enabled to modify. 

he WF expressed is describes a shift-invariant filter, and a similar 

lter is applied for the entire image. The filter can be made as spa- 

ially variant by applying local spatially differing method of noise 
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Fig. 1. The working process of proposed UDL-VAE model. 
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Fig. 2. The inception module. 
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ttribute σn and represented as, 

 = 

S f f 

S f f + σ 2 
n ( x ) 

(1) 

The filter development is costlier due to the filter is changed 

rom pixel to pixel in an image. 

Lee suggested an effective execution of noise-adaptive WF by 

hanging the signal as stationary procedure and leads in the filter 

ormation, 

ˆ f ( x ) = m f ( x ) + 

σ 2 
f ( x ) 

σ 2 
f 
( x ) + σ 2 

n 

(
g ( x ) − m f ( x ) 

)
(2) 

Where m f denotes the local mean of signal g, and σ 2 
f 

implies 

ocal signal variance. Actually, a local mean operator is adopted by 

ormalized local production function (LPF) in which support region 

f filter describes the position of mean operator. It can be pointed 

hat the filter development is depicted as same as unsharp mask- 

ng, even though the latter is not adaptive locally. 

The WF result from a minimization relied on mean square error 

MSE) criteria is related to 2nd order statistics of input data. The 

pplication of WF is to filter signals of interest and offers subopti- 

al results. The stationary white noise Wiener solution is develop- 

ng visible function, 0 ≤ α ≤ 1 , based on the magnitude of image 

radient vector, in which 0 for “huge” gradients and 1 for absence 

f gradient. As a result, the generalized Backus-Gilbert condition 

as attained better result: 

 α = 

S f f 

S f f + ασ 2 
(3) 

The Backus-Gilbert model is defined as a regularization model 

hat varies from alternate models and prefers to enhance the sta- 

ility and smoothness of the solution. Even though the Backus- 

ilbert statement is varied from standard linear regularization 

odels, the variations among the models are minimum. 

Eq. (3) indicates the explicit trade-off among resolution as well 

s stability. α = 0 provides a filter which is identity mapping while 

= 1 offers a smoother Wiener solution. Under the selection of 

patially variant solution, a function of image location is = α(x ) . 

t is comprised of a method with undesired properties where the 
269 
lter is changed from point to point and it results in computation 

verhead. The “signal equivalent” model with a filter in linear in- 

egration of stationary WF as well as identity map: 

 α = α
S f f 

S f f + σ 2 
+ ( 1 − α) (4) 

It can be pointed that H α is similar to Wiener solution for α = 

 , and in case of α = 0 a filter is considered as identity map. It is

vident that Eq. (4) is represented as 

 α = 

S f f 

S f f + σ 2 
+ ( 1 − α) 

σ 2 

S f f + σ 2 
(5) 

Eq. (5) implies that method is considered as a linear integration 

f stationary LPF elements as well as nonstationary high pass units 

38] . The addition of H in stationary Wiener solution is depicted in 

q. (5) as 

 α = H + ( 1 − α) ( 1 − H ) (6) 

.2. Inception v4 with Adagrad based Feature Extraction 

Here, preprocessed medical image is subjected to feature ex- 

raction in which the required features are extracted from given 

mage using Inception v4 method Szegedy et al. [39] . Basically, 

NN is comprised of numerous layers namely, convolutional lay- 

rs, down-sampling layers, as well as activation layers. The inputs 

f CNN are determined by means of 1D, 2D as well as 3D. CNNs 

aving 1D inputs classify the images directly in spectral domain 

hereas, in 2D, the inputs extract features from adjacent pixels 

nd using neighbors of pixel to be divided as input; and finally, 

NNs with 3D inputs filter complicated features from spectral as 

ell as spatial domains. Then, CNNs with spatial data is capable 

f accomplishing optimal performance by means of classification 

ccuracy. Fig. 2 shows the structure of Inception module. Here, 

 CNNs were developed on the basis of Directed Acyclic Graphs 

DAG) structure in which fundamental layers are defined in the fol- 

owing. 

Assume x as the vector of pixels in input image X , and single 

euron computes the process x and generates the simulation out- 

ome a . Hence, neuron function is described in the following: 

 = σ ( f x + b ) (7) 

here f denotes the weight filter, b implies the bias, and (·) in- 

icates the activation function called nonlinear function. A neu- 

on is commonly related to particular spatial position ( i, j ) as well 

s a dimension d . It refers that convolutional block is executed n 

ntire position of spectral dimensionality. For DAG, the input fea- 

ure x ∈ R 

H×W ×D is defined as the position ( i, j, d ) with multi- 

imensional filter f ∈ R 

H ′ ×W 

′ ×D ×D ′ as well as bias b , the output 

 ∈ R 

H ′′ ×W 

′′ ×D ′′ is depicted as given below: 

 i ′′ j ′′ d ′′ = σ

( 

b d ′′ + 

H ′ ∑ 

i ′ =1 

W 

′ ∑ 

j ′ =1 

D ∑ 

d=1 

f i ′ j ′ d × x i ′′ + i ′ −1 , j ′′ + j ′ −1 ,d ′ ,d ′′ 

) 

(8) 
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Fig. 3. The Inception Module with Dimensionality Reduction. 
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It is pointed that activation function is performed with square 

mages under different image-processing issues, however, it is op- 

rated in random inputs and filters. When the top-bottom and left- 

ight paddings ( P −
h 

, P + 
h 

, P −w 

, P + w 

) as well as down-sampling strides 

 S h , S w 

) are depicted in Eq. (8) : 

 i ′′ j ′′ d ′′ = σ

( 

b d ′′ + 

H ′ ∑ 

i ′ =1 

W 

′ ∑ 

j ′ =1 

D ∑ 

d=1 

f i ′ j ′ d × x S h ( i ′′ −1 ) + i ′ −P −
h 

, S h ( j ′′ −1 ) + j ′ −P −w ,d ′ ,d ′′ 

) 

(9) 

The size of output for convolutional layer in DAG structure is 

epresented as H 

′′ = 1 + [ ( H − H 

′ + P −
h 

+ P + 
h 

) / S h ] . 

For every layer, a single activation function has been employed. 

lso, a sigmoid function as well as Rectified Linear Unit (ReLU) 

re the prominently applied activation functions. And ReLU is ex- 

ressed in Eq. (10) . 

( x ) = max ( 0 , x ) (10) 

Additionally, the convolutional layers, down-sampling process 

re included in the layers for enhancing the receptive field of neu- 

ons. Initially, down sampling is achieved by using pooling layers 

nd stride for skipping few convolutions [40] . The major responsi- 

ility of CNNs in image classification is to detect the class labels 

f sample by reducing the loss function L . A typically employed 

og-loss function is used and depicted as: 

 ( x, c ) = − log x (11) 

Where x c represents the positive label values. Here, a softmax 

unction has been employed for top layer and generate the re- 

ult with probability distribution which means that x k = p(k ) , k = 

 , . . . , C. After applying L , weights and biases are computed by 

oss reduction. Finally, optimization is estimated by using a Gradi- 

nt Descent (GD) method. The primary derivative of loss function 

s attained by means of upgrading weight with a learning rate λ in 

ll iteration ad shown in the following: 

f i = f i + λ( ∂ L /∂ f i ) (12) 

The primary derivative ∂ L /∂ f i is attained by using Back Propa- 

ation (BP) chain rule. 

The former models of Inception schemes are applied for train- 

ng diverse blocks where the repeated blocks are divided as mas- 

ive subnetworks and place the entire storage region. Therefore, In- 

eption method is simply tuned and depicted that massive credi- 

le modifications are performed on the basis of filter count in dif- 

erent layers which do not affect the supremacy of fully equipped 

ystem. The optimization of training rate is performed by proper 

ayer sizes tuned in reaching optimal trade-off in processing under 

iverse subnetworks. In contrast, by Tensor Flow, present Inception 

odels are described without the repeated partitions. It is due to 

he application of present storage area to perform backpropagation 

BP), accomplished by activating the required tensors for gradient 

rocessing and demonstrate estimation for reducing the tensors. 

Then, Inception-v4 is projected to drop out the unwanted es- 

imation and develop estimation for Inception blocks of differ- 

nt grid sizes. Fig. 3 demonstrates the process of Inception mod- 

le with dimensionality reduction. In the residual inception blocks 

f residual versions from Inception method, minimum Inception 

locks are projected across common Inception. Between the dis- 

inct versions of Inception techniques, the step time of Inception- 

4 is found to be low. Batch normalization is found to be the ac- 

ual variance among the residual as well as non-residual Inception 

locks. 

Under residual scaling, the residual version begins to provide 

nstability and the network becomes inactive in the presence of 

lter count > 10 0 0, representing that the last layer earlier to the 

verage pooling generates only 0’s under various number of iter- 

tions. It can be discarded by diminishing the rate of learning or 
270 
djusting the extra batch normalization layer. On the other hand, 

yperparameters undergo tuning for controlling the effective per- 

ormance of the Inception method. The procedure of selecting the 

yperparameters is the main feature of the DL approaches. In this 

ase, the hyperparameters of the Inception-v4 model are tuned by 

he use of Adagrad optimization model. 

It refers the parameter-based learning rates and corresponding 

earning rates of variables that are improvised sequentially as small 

nd large parameters which are upgraded irregularly. Hence, up- 

ate rule for Adagrad is provided as, 

 0 = 0 ( initialize squared gradient accumulator ) 

 t = v t−1 + (∇J ( θt−1 ) ) 
2 ( accumulate squared gradient ) (13) 

t = θt−1 − η√ 

v t + e 
◦ ∇J ( θt−1 ) ( apply update ) (14) 

Where 0 defines Hadamard (element-wise) product as well as 

∇J( θt−1 )) 
2 implies the element-wise square of applied gradient. 

lso, division and square root η√ v t + ∈ are evaluated from element- 

ise model. Then, ith component η√ ∑ t 
k =1 

( ∂ i J( θk −1 ) ) 
2 + ∈ 

of secondary 

ector refers the learning rate applied for upgrading the param- 

ter i in iteration t . A major inefficiency of Adagrad optimizer is 

tatic development of accumulator v in complete training process 

nd every iteration of ith coordinate the respective squared partial 

erivative of cost function J has been included and concludes in 

nfinite learning rates like ≈ 0 and terminates the training opera- 

ions. 

.3. Unsupervised VAE based Classification 

At the last stage, VAE model is applied to allocate the proper 

lass label of the applied medical images. Basically, VAE is relied 

n the traditional Auto-Encoder (AE). In prior to developing VAE, 

t is crucial to learn the AE process. In general, AE is a type of

nsupervised learning method which desires to extract secondary 

eatures concealed in the actual data. Hinton had applied unsuper- 

ised automated encoder to pre-train and resolve the issues of gra- 

ient diminishing. 

VAE is a type of deep Bayesian system which is the combina- 

ion of NN in conjunction with statistics. When compared with for- 

er AE, it enforces the latent codes and follows certain distribu- 

ion like Gaussian distribution. Actually, encoder portion of entire 

N is developed to imply the conditional probability q φ( z| x ) , in 

hich x denotes the actual data, φ refers the weights of encoder, 

nd z shows the latent codes. Inversely, VAE promotes the distribu- 

ion of latent codes z to the standard normal distribution. Finally, 

atent codes z are comprised of stable statistical features which re- 

ult in better convenience for decoder and efficacy of this model 

41] . Next, decoder manages to reform the actual data by applying 

atent codes z. Consequently, NN having the weight 0 indicates a 



R.F. Mansour, J. Escorcia-Gutierrez, M. Gamarra et al. Pattern Recognition Letters 151 (2021) 267–274 

c

w

t

t

c

t

3

t

t

a

b

d  

p

D

T

q

3

a

t

i

w

o

m

t

l

d

b

L

λ
t

d

4

b

t

A

m

i

p  

i

t

v

h

O

o

s

a

0

h

o

Fig. 4. The Sample Images. 

Table 1 

The Performance analysis of UDLVAE Model for Binary 

Class under different folds 

Cross Folds Sens. Spec. Acc. F-measure 

Fold_1 0.981 0.988 0.984 0.983 

Fold_2 0.985 0.983 0.984 0.990 

Fold_3 0.987 0.992 0.991 0.991 

Fold_4 0.987 0.989 0.989 0.990 

Fold_5 0.983 0.988 0.986 0.988 

Average 0.985 0.988 0.987 0.988 

Fig. 5. The Binary-class results analysis of the UDLVAE model. 

Table 2 

The Performance analysis of UDLVAE Model for Multi- 

Class under different folds. 

Cross Folds Sens. Spec. Acc. F-measure 

Fold_1 0.997 0.993 0.995 0.994 

Fold_2 0.996 0.995 0.995 0.995 

Fold_3 0.990 0.990 0.990 0.991 

Fold_4 0.989 0.992 0.987 0.987 

Fold_5 0.997 0.997 0.995 0.994 

Average 0.994 0.993 0.992 0.992 

s

m

U

d

c

o

onditional probability p θ ( x | z ) . In order to retain the uncertainty 

ithin the system, inputs of decoder undergo sampling from scat- 

ering of latent codes z. Therefore, encoder is modeled in 2 resul- 

ant parameters namely, mean as well as variance vector of latent 

odes z. Followed by, 2 parameters describe the normal distribu- 

ion for sample. 

.4. Kullback-Leibler (KL) divergence 

To make distribution of latent code model for specific distribu- 

ion, a major problem is to estimate the space among 2 distribu- 

ion q and p. KL divergence is established for estimating the vari- 

tions among 2 probability distributions. Hence, the closer distri- 

utions are smaller the measure of KL . When there are 2 unseen 

istribution p(x ) and q (x ) , then KL divergence is attained by ap-

lied expression: 

 KL ( ( p ( x ) ‖ q ( x ) ) = −∫ p ( x ) logq ( x ) dx − ( −∫ p ( x ) log p ( x ) dx ) 

= ∫ p ( x ) log 

{
p ( x ) 

q ( x ) 

}
dx. (15) 

his is referred as Kullback Leibler or KL divergence from p(x ) and 

 (x ) . 

.5. Establishment of loss function 

In this model, there are 2 objectives in VAE namely, reform the 

ctual data and create latent codes in certain distribution. Hence, 

he loss function has been classified into 2 portions. The initial part 

s to estimate the distance from produced and actual data. After- 

ard, MSE function has been applied and referred as desired value 

f squared difference among 2 parameters. MSE is applicable to 

easure the difference between actual and reformed data. The lat- 

er portion is the loss to relate the distance among distribution of 

atent code z as well as remarkable Gaussian distribution. The KL 

ivergence is used and resulted in final loss process of VAE has 

een devised as, 

 VAE = λMSE ( x, y ) + E p data ( x ) 

[
−KL 

(
q φ( z| x ) || p ( z ) )], (16) 

Where x indicates the actual data, y defines the reformed data, 

represents a parameter, q φ( z| x ) defines the distribution of la- 

ent codes produced from actual data x by encoding device, and 

p(z) depicts the distribution of latent codes. Therefore, E p data (x ) [ . ] 

emonstrates the numerical expression. 

. Experimental Validation 

The performance validation of the presented UDLVAE model has 

een tested against COVID Chest X-ray dataset [ 42 ]. It contains 

he images under distinct classes namely Normal, COVID-19, SARS, 

RDS, and Streptococcus. The parameter setting of the proposed 

odel is given as follows. Batch size: 500, max. epochs:15, learn- 

ng rate: 0.05, dropout rate: 0.2, and momentum: 0.9. A few sam- 

le test images are illustrated in Fig. 4 . Besides, the dataset is split

s five different folds. 

Table 1 and Fig. 5 tabulates the binary classification results of 

he UDLVAE model interms of distinct performance measures with 

arying folds. The obtained values denoted that the UDLVAE model 

as reached to effective classification outcome under diverse folds. 

n the applied fold_1, the UDLVAE model has accomplished a sens. 

f 0.981, spec. of 0.988, acc. of 0.984, and F-measure of 0.983. Be- 

ides, on the applied fold_3, the UDLVAE method has demonstrated 

 sens. of 0.987, spec. of 0.992, acc. of 0.991, and F-measure of 

.991. Also, on the applied fold_5, the UDLVAE technique has ex- 

ibited a sens. of 0.983, spec. of 0.988, acc. of 0.986, and F-measure 

f 0.988. 
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Table 2 and Fig. 6 examines the Multi-class classification re- 

ults of the UDLVAE model with respect to distinct performance 

easures with varying folds. The attained values referred that the 

DLVAE model has achieved effective classification results under 

iverse folds. On the applied fold_1, the UDLVAE method has show- 

ased a sens. of 0.997, spec. of 0.993, acc. of 0.995, and F-measure 

f 0.994. Additionally, on the applied fold_3, the UDLVAE technique 
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Fig. 6. The Multi-class results analysis of the UDLVAE model. 

Fig. 7. The Average Analysis of Proposed UDLVAE Model. 

Table 3 

The Comparison study of UDLVAE with other existing methods. 

Methods Sensitivity Specificity Accuracy F-measure 

UDLVAE (Binary Class) 0.985 0.988 0.987 0.988 

UDLVAE (Multi Class) 0.994 0.993 0.992 0.992 

DWS-CNN (Binary Class) 0.984 0.986 0.985 0.986 

DWS-CNN (Multi Class) 0.991 0.992 0.991 0.990 

FR-CNN 0.977 0.955 0.974 0.985 

ResNet-50 0.930 0.677 0.896 0.939 

Inception V3 0.910 0.742 0.887 0.933 

AlexNet 0.925 0.714 0.905 0.946 

CovxNet 0.905 0.958 0.917 0.911 

CapsNet 0.842 0.918 0.892 0.842 

VGG19 0.971 0.960 0.963 0.942 

Deep Transfer Learning 0.896 0.920 0.908 0.904 

Multi-Layer Perceptron 0.930 0.872 0.931 0.930 

Logistic Regression 0.930 0.903 0.921 0.920 

K-Nearest Neighbour 0.890 0.907 0.889 0.890 

Decision Tree 0.870 0.889 0.867 0.870 
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as accomplished a sens. of 0.990, spec. of 0.990, acc. of 0.990, and 

-measure of 0.991. Eventually, on the applied fold_5, the UDLVAE 

pproach has outperformed a sens. of 0.997, spec. of 0.997, acc. 

f 0.995, and F-measure of 0.994. An average classification results 

nalysis of the UDLVAE model with other existing methods takes 

lace, as given in Fig. 7 . The resultant values depicted that the 

DLVAE model has accomplished a higher average sens. of 0.985, 

pec. of 0.988, acc. of 0.987, and F-measure of 0.988 on the clas- 

ification of binary classes. On the other hand, the UDLVAE model 

as resulted in a maximum sens. of 0.994, spec. of 0.993, acc. of 

.992, and F-measure of 0.992. 

Table 3 and Fig. 8 Fig. 9 provide an elaborate comparative re- 

ults analysis of the UDLVAE model with other existing techniques. 

n examining the predictive outcome interms of sensitivity, the 

apsNet and DT models have achieved minimal sensitivity values 
272 
f 0.842 and 0.87 respectively. Afterward, the KNN, DTL, and Cov- 

Net models have reached slightly increased and nearer sensitiv- 

ty values of 0.89, 0.896, and 0.905 respectively. Afterward, the In- 

eption v3 and AlexNet methods have reached a moderately closer 

ensitivity value of 0.91 and 0.925 respectively. At the same time, 

he ResNet-50, MLP, and LR models have accomplished an iden- 

ical sensitivity value of 0.93. Along with that, the VGG19 and 

R-CNN models have resulted in considerably improved sensitivity 

alues of 0.971 and 0.977 respectively. Eventually, the DWS-CNN 

odel has exhibited the higher result sensitivity values of 0.984 

nd 0.991 on the prediction of binary and multiple class labels re- 

pectively. Finally, the UDLVAE model has showcased superior out- 

omes by offering a maximum sensitivity of 0.985 and 0.994 on 

he prediction of binary and multiple class labels respectively. 

On investigative the predictive outcome with respect to speci- 

city, the ResNet-50 and AlexNet methods have achieved the worst 

pecificity values of 0.677 and 0.714 correspondingly. Similarly, the 

nception, MLP, and DT models have obtained slightly enhanced 

nd nearer specificity values of 0.742, 0.872, and 0.889 correspond- 

ngly. Next, the LR and KNN techniques have reached a moder- 

tely closer specificity value of 0.903 and 0.907 correspondingly. 

imultaneously, the CapsNet, DTL, and CovxNet models have ac- 

omplished even superior specificity values of 0.918, 0.920, and 

.958 respectively. Likewise, the FR-CNN and VGG19 models have 

esulted in considerably enhanced specificity values of 0.955 and 

.960 respectively. Also, the DWS-CNN technique has exhibited 

igher result specificity values of 0.986 and 0.992 on the predic- 

ion of binary and multiple class labels respectively. At last, the 

DLVAE model has showcased superior outcomes by offering a 

aximum specificity of 0.988 and 0.993 on the prediction of bi- 

ary and multiple class labels respectively. 

On determining the predictive outcome interms of accuracy, 

he DT and Inception V3 models have reached lesser accuracy val- 

es of 0.867 and 0.887 respectively. Afterward, the KNN, CapsNet, 

nd ResNet-50 techniques have reached somewhat increased and 

earer accuracy values of 0.889, 0.892, and 0.896 correspondingly. 

esides, the AlexNet and DTL approaches have reached a moder- 

tely closer accuracy value of 0.905 and 0.908 respectively. At the 

ame time, the CovxNet, LR, and MLP models have accomplished 

ven higher accuracy values of 0.917, 0.921, and 0.931 correspond- 

ngly. Similarly, the VGG19 and FR-CNN manners have resulted in 

onsiderably improved accuracy values of 0.963 and 0.974 respec- 

ively. But, the DWS-CNN approach has demonstrated the supe- 

ior result accuracy values of 0.985 and 0.991 on the prediction of 

inary and multiple class labels respectively. Finally, the UDLVAE 

odel has showcased superior outcomes by offering a maximum 

ccuracy of 0.987 and 0.992 on the prediction of binary and mul- 

iple class labels correspondingly. 

On examining the predictive result with respect to F-measure, 

he CapsNet and DT techniques have obtained minimum F-measure 

alues of 0.842 and 0.87. Similarly, the KNN, DTL, and CovxNet 

echniques have attained slightly increased and nearer F-measure 

alues of 0.89, 0.904, and 0.911 respectively. Afterward, the LR and 

LP models have achieved a moderately closer F-measure value of 

.92 and 0.93 correspondingly. Simultaneously, the Inception V3, 

esNet-50, and VGG19 methods have accomplished even higher F- 

easure values of 0.933, 0.939, and 0.942 correspondingly. At the 

ame time, the AlexNet and FR-CNN techniques have resulted in 

onsiderably improved F-measure values of 0.946 and 0.985 re- 

pectively. Also, the DWS-CNN algorithm has portrayed the higher 

utcome F-measure values of 0.986 and 0.990 on the prediction of 

inary and multiple class labels correspondingly. Finally, the UDL- 

AE method has showcased superior outcomes by offering a supe- 

ior F-measure of 0.988 and 0.992 on the prediction of binary and 

ultiple class labels correspondingly. 
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Fig. 8. The Sensitivity and Specificity analysis of UDLVAE with other models. 

Fig. 9. The Accuracy and F-measure analysis of UDLVAE with other models. 
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. Conclusion 

This paper has developed a novel UDL-VAE method for COVID- 

9 detection and classification. The UDL-VAE model performs AWF 

ased preprocessing, Inception v4 with Adagrad based feature ex- 

raction, and unsupervised VAE based classification. Primarily, the 

edical image quality can be raised by the use of AWF technique. 

econdly, Inception v4 with Adagrad model extracts out the useful 

et of feature vectors from the preprocessed image. The applica- 

ion of Adagrad technique helps to adjust the hyperparameters of 

nception v4 model, and thereby the classification performance can 

e improved. Lastly, unsupervised VAE model is applied to define 

he appropriate class labels of the input medical images. For facili- 

ating the effective detection performance of the UDL-VAE method, 

 comprehensive experimental validation takes place to make sure 

he proficient performance of the UDL-VAE method. The obtained 

xperimental values showcased the effectual results of the UDL- 

AE model with the higher accuracy of 0.987 and 0.992 on the 

inary and multiple classes respectively. In future, metaheuristic 

ptimization based learning rate schedulers can be designed for 

yperparameter settings. In addition, the presented model can be 
273 
mployed to diagnose COVID-19 using other imaging modalities 

ike computed tomography (CT). As a part of future extension, it 

an be incorporated to the internet of things (IoT) and cloud based 

nvironment to enable e-healthcare applications. 
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