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expression of endocannabinoid signaling
elements and acute agonist responsiveness
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Background: Previously we have found that cannabinoid treatment of zebra finches during sensorimotor stages of
vocal development alters song patterns produced in adulthood. Such persistently altered behavior must be
attributable to changes in physiological substrates responsible for song. We are currently working to identify the
nature of such physiological changes, and to understand how they contribute to altered vocal learning. One
possibility is that developmental agonist exposure results in altered expression of elements of endocannabinoid
signaling systems. To test this hypothesis we have studied effects of the potent cannabinoid receptor agonist
WIN55212-2 (WIN) on endocannabinoid levels and densities of CB; immunostaining in zebra finch brain.

Results: We found that late postnatal WIN treatment caused a long-term global disregulation of both levels of the
endocannabinoid, 2-arachidonyl glycerol (2-AG) and densities of CB; immunostaining across brain regions, while
repeated cannabinoid treatment in adults produced few long-term changes in the endogenous cannabinoid

Conclusions: Our findings indicate that the zebra finch endocannabinoid system is particularly sensitive to
exogenous agonist exposure during the critical period of song learning and provide insight into susceptible brain

Background

Zebra finches learn a song during distinct periods of
vocal development [1]. Exposure to cannabinoid agonists
during these periods alters vocal development by redu-
cing both song stereotypy and the number of notes
incorporated into mature song produced in adulthood
[2,3]. This, combined with evidence for distinct develop-
mental regulation of CB; cannabinoid receptor expres-
sion during periods of song learning [4], suggests a role
for endogenous cannabinoid signaling in normal vocal
developmental processes. Vocal learning and production
in zebra finches is associated with marked physiological
changes within distinct regions of telencephalon (e.g.
IMAN, Area X, auditory Field L2, RA) and thalamus
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(DLM, ovoidalis) known to be critical for song percep-
tion, production and learning. Each of these regions dis-
tinctly and densely expresses CB; receptors [3]. Normal
development in song regions is associated with gross
anatomical changes in region volume, neuron number
and density, both increases and decreases in axonal
interconnections between song regions, and changes in
synaptic densities. Cannabinoid-altered vocal develop-
ment implies that exogenous agonist exposure must
somehow alter some or all of these processes responsible
for critical periods of song learning. We are currently
working to identify which processes are modified by
developmental cannabinoid exposure and the mechanism
(s) responsible.

Distinct song region CB; receptor expression implies
a role for endocannabinoid signaling in vocal learning.
The endocannabinoid system is a bona fide neuro-
chemical signaling system comprising at least two
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G-protein-coupled receptors (CB; and CB,, with the for-
mer expressed at much higher density in CNS), and an
array of fatty acid ligands, most notably anandamide and
2-arachidonyl glycerol (2-AG), that are capable of activat-
ing the receptors. Like most cell signaling systems, can-
nabinoid receptors and endocannabinoid ligands are
subject to biochemical regulation of synthesis, expression
and metabolic breakdown [5]. A particularly notable
form of G-protein-coupled receptor regulation is agonist-
induced internalization and metabolism, whereby the
duration of agonist effects are limited by decreased
receptor expression [6]. Thus, a potential mechanism for
exogenous cannabinoid-induced alteration of normal
development may involve endocannabinoid and receptor
regulation. This hypothesis was tested through the
experiments described below.

Results

CB; immunostaining

Relative optical densities of CB; immunostaining within
selected brain regions are summarized by treatment
groups in Figures 1 and 2. Persistent effects of chronic,
25-day WIN treatments on CB; staining densities were
assessed by comparing VEH-VEH and WIN-VEH
groups. In the case of animals treated during sensorimo-
tor development (Figure 1), repeated daily WIN treat-
ments led to a significant decrease in staining density
within all regions except DLM (differences from VEH-
VEH group indicated by an asterisk). This contrasts
with chronic treatment effects produced in adult ani-
mals where chronic WIN treatments either produced no
effect (IMAN, Area X, Ov, cerebellum) or increased
staining densities (HVC, RA, DLM, see Figure 2).

Acute effects of WIN treatments (given 90 min prior
to perfusion) on staining densities were assessed by
comparing VEH-VEH and VEH-WIN groups. Following
developmental vehicle injections and maturation to early
adulthood, acute WIN treatments decreased CB; immu-
nostaining densities in all brain regions except DLM.
A different pattern of acute responsiveness was observed
in animals treated in adulthood: acute increases in stain-
ing densities were observed within HVC, RA, DLM and
Ov. Acute responsiveness following repeated WIN
administration was assessed by comparing WIN-VEH to
WIN-WIN groups. In the case of animals treated with
WIN during development, acute WIN exposure resulted
in significantly increased CB; immunostaining densities
in all brain regions studied (Figure 1, differences indi-
cated by a double-dagger). This effect of acute WIN to
increase staining densities following chronic WIN dif-
fered with responses observed following chronic VEH in
every brain region (Figure 1, compare VEH-WIN to
WIN-WIN, differences indicated by a dagger). Following
repeated WIN treatments of adults, no acute WIN effect
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was detected in any region except within the molecular
layer of cerebellum where densities were increased fol-
lowing earlier chronic WIN exposure (Figure 2G, com-
pare WIN-VEH to WIN-WIN, difference indicated by
a double-dagger).

Effects on brain 2-AG levels

Effects of repeated WIN treatments on levels of the
endocannabinoid 2-AG in various brain regions were
assessed by LC-ESI-MS-MS. Results are summarized in
Figure 3. WIN exposure during sensorimotor develop-
ment significantly increased 2-AG levels in rostral tele-
ncephalon (containing the song regions IMAN and Area
X, Figure 3A). Levels were unchanged in caudal telence-
phalon (containing vocal motor regions, HVC and RA)
and thalamus/midbrain (containing Ov and DLM). In
contrast to effects produced in rostral telencephalon,
developmental WIN exposure decreased 2-AG content
within cerebellum. No effects of repeated WIN treat-
ments on 2-AG levels in adult animals were observed in
any of the brain regions studied (Figure 3B).

Discussion

Results reported herein demonstrate that developmental
cannabinoid exposure persistently disregulates endocan-
nabinoid signaling at both the receptor and endogenous
agonist levels. This disregulation is significant because
it’s accompanied by altered vocal development that is
produced by the same cannabinoid treatments [2,7].
These findings are among the first to associate cannabi-
noid-altered behavioral development with persistently-
altered neurophysiology.

More work in evaluating persistent cannabinoid effects
has employed cell and tissue culture systems. For exam-
ple, in ex vivo cultures of rat hippocampi, periods of
24 hr WIN exposure dose-dependently reduces CB;
immunostaining [8] which is consistent with persistent
effects of chronic WIN that we find after developmental,
but not adult exposure (compare VEH-VEH and WIN-
VEH groups, Figures 1 and 2). It may be important that
most ex vivo tissue culture systems employ tissue
obtained from immature animals. For example, in the
case cited above, hippocampi were isolated from rat
pups at post-natal day two. Therefore, ex vivo cultures
of CNS tissue may more closely model effects on the
developing CNS than the mature, adult system. Interest-
ingly, rat and zebra finch development occur over simi-
lar periods, with ‘adolescence’ reached between 35 - 45
days, and early adulthood by about 90 days [7,9].

In cultures of cells heterologously expressing CB;
receptors, it has been appreciated for some time that
agonist stimulation promotes a rapid internalization of
receptor protein [10]. In our histological model, tissue is
permeabilized, allowing antibody access to both plasma
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Figure 1 Developmental cannabinoid exposure alters CB; immunostaining within various zebra finch brain regions. Initial daily
treatments over 25 days are indicated by first designations (VEH-, WIN-). Later, single acute treatments in adulthood are indicated second (-VEH,
-WIN, see Table 1). Treatments were delivered during sensorimotor song learning (from 50-75 days) and measured in adulthood (> 100 days).
Basal levels of staining are decreased following repeated WIN exposure during development in all regions but DLM (compare VEH-VEH to WIN-
VEH). Acute responsiveness is increased in all regions (compare VEH-WIN to WIN-WIN). Asterisks indicate differences from VEH-VEH treatment

groups (p < 0.05, one-way ANOVA followed by SNK post-tests). Daggers indicate differences from VEH-WIN groups, double-daggers indicate
differences from WIN-VEH.
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Figure 2 Repeated cannabinoid treatment during adulthood alters CB; immunostaining primarily within vocal-motor-related regions
of zebra finch brain (HVC, RA, and DLM). Initial daily treatments over 25 days are indicated by first designations (VEH-, WIN-). Later, single
acute treatments are indicated second (-VEH, -WIN, see Table 1). Basal staining levels are increased following repeated WIN exposure in
adulthood in (B) HVC, (D) RA, and (F) DLM (compare VEH-VEH to WIN-VEH in these panels). Acute responsiveness is not modified following
repeated treatments (compare VEH-WIN and WIN-WIN). Chronic treatment did increase responsiveness within the molecular layer of the
cerebellum (double-dagger, panel G) Asterisks indicate differences from VEH-VEH treatment groups (p < 0.05, one-way ANOVA followed by SNK
post-tests).
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Figure 3 Effects of chronic, developmental, cannabinoid treatments on endogenous 2-AG levels in zebra finch brain. Brains were
rapidly dissected into rostral (Rostral Tel.) and caudal (Caudal Tel) telencephalon, midbrain and cerebellum. Lipids were extracted, spiked with
deuterium-labeled internal standards and subjected to LC-ESI-MS-MS for quantitative analysis of 2-arachidonyl glycerol (2-AG) content. (A):
ANOVA indicates a significant relationship between brain region and 2-AG content (p < 0.05). Post-hoc analysis reveals a significant increase in
2-AG content in rostral telencephalon (which contains the song regions IMAN and Area X). Significant decreases in endocannabinoid content
within cerebellum were observed following developmental WIN (*p < 0.05). (B): No effect of repeated WIN treatments given during adulthood
on 2-AG levels were found.

membrane-delimited and potential intracellular pools of
receptor protein, making it unlikely that the rapid (90
min post-treatment) changes in staining density that we
observe are due to acute cellular translocation of recep-
tor protein (although this may very well be occurring).
A more likely mechanism for rapid changes in antibody
staining may involve changes in epitope access related
to interaction with other cellular proteins. The peptide
used to produce our anti-zebra finch CB; antibody
represents the first 16 amino acids of the intracellular
tail region of the receptor [3], a domain implicated in
signal transduction and interaction with intracellular
regulatory proteins [11]. Fixation and cross-linking of
tissue with receptors coupled to such regulatory or sig-
nal transduction proteins may occlude epitope access,
reducing antibody interaction and resulting in reduced
staining intensity. Thus, differences in staining densities
that we have documented may be more indicative of dif-
ferential effects on CB; interaction with other proteins
than on receptor abundance itself. Of course we cannot
exclude the possibility that decreased immunostaining
may indicate receptor degradation and/or reduced
expression, as both phenomenon are known to occur
following agonist activation [10].

It is interesting that acute WIN treatment of birds
chronically treated with vehicle control injections

responded differently following late-postnatal and adult
treatments (for example, see VEH-WIN responses in
Figures 1B and 2B). We observed similar differential
effects of control treatments on acute changes in FoxP2
expression [12]. These differences may be attributable to
distinct sensitivity to handling stress during sensorimo-
tor development, but not adulthood. Alternatively, a dif-
ferential sensitivity to visual isolation in developing vs.
adult animals may have contributed. Following develop-
mental treatment, birds were housed in visual isolation
to prevent potential song learning from other subjects
(animals treated as adults were also isolated for the
same period as part of the control treatment). This iso-
lation lasted 25 days, encompassing late-sensorimotor
development to early adulthood (75-100 days). Zebra
finches are social, flocking birds, and so isolation during
development may have produced stress [13]. The poten-
tial for handling- and isolation-induced effects on vocal
development is a question worthy of additional study. It
is notable that accumulating evidence supports a role
for endocannabinoid signaling in stress responses and
fear extinction [14].

Despite the confounding effects of control treatments,
chronic effects of repeated WIN exposure on later acute
WIN sensitivity are clear. Following developmental WIN
treatment, staining densities were reduced in all of the
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brain regions except DLM (Figure 1, compare VEH-
VEH to WIN-VEH). Following adult treatments, signifi-
cant increases were seen in only three regions: HVC,
RA, and DLM. HVC and RA are vocal motor regions of
caudal telencephalon (see Figure 4). Activity in HVC
drives RA which outputs to the nucleus of the twelfth
cranial nerve which innervates the syrinx, eliciting voca-
lization [15]. The thalamic region, DLM, modulates this
caudal vocal-motor output indirectly through projection
to the rostral song region, IMAN, that in-turn, projects
to RA [16]. Distinct cannabinoid effects in these vocal-
motor regions during adulthood further suggests a nor-
mative role for cannabinoid signaling in song produc-
tion, a conclusion reinforced by earlier evidence that
acute WIN decreases vocal output in adults [17]. In
addition to modulating vocal output in adulthood, the
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rostral song regions IMAN and Area X are essential for
vocal learning during development [18]. More general-
ized effects within all song regions but DLM following
developmental cannabinoid exposure, underscores the
distinct sensitivity to cannabinoid agonism during peri-
ods of zebra finch vocal learning.

On the surface it appears that developmental expo-
sure-related increased levels of the endocannabinoid,
2-AG, and decreased CB; immunostaining are contra-
dictory (compare Figure 3A and Figure 1A and 1C).
However, if as proposed above, staining is more a func-
tion of receptor state than abundance, it follows that
persistently decreased staining following developmental
agonist exposure may be due to interaction with signal
transduction proteins that antagonize binding of the
antibody. Such coupling may actually increase the

Figure 4 Representative CB1 immunostaining. (A) Medial parasagittal sections contain rostral song regions IMAN and Area X, thalamic
regions DLM and Ov, and cerebellum. (B) More lateral parasagittal sections capture HVC and RA. Dorsal and caudal are indicated by arrows, the
bars = 1 mm. (C) A tracing of the micrograph in panel A serves as a diagram summarizing relative locations of song regions studied. Regions
present in panel A are represented in black, other regions are diagrammatically represented in grey (HVC, RA and nXIl). Established
interconnections between song regions are indicated with arrows. Grey arrows indicate rostral forebrain circuitry essential for vocal learing.

Black arrows indicate caudal vocal-motor circuitry.
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population of functional CB; receptors. If this is the
case, then acute increases in staining following WIN
challenge of animals developmentally exposed may indi-
cate uncoupling from other cellular proteins and
decreased responsiveness (compare WIN-VEH and
WIN-WIN groups in all panels of Figure 1, note that
similar increases were not seen following adult treat-
ment, Figure 2). Assays of CB; receptor function follow-
ing developmental treatments will be required to clearly
test this hypothesis [19].

Reports of rapid changes in expression of endocanna-
binoid signaling elements in vivo have not been widely
reported, and this is a key contribution of the work
reported herein. Most prior reports of altered expression
of cannabinoid signaling elements in vivo involve studies
of regulation of feeding behavior. In zebra finches, we
have found that brief periods of food deprivation are
associated with increased brain levels of 2-AG [3]. In
pancreatic islet cells of Wistar rats, overnight periods of
food deprivation are associated with increased expres-
sion of CB, receptors, an effect rapidly reversed by oral
glucose [20].

Unlike food restriction-induced general increases of 2-
AG levels in all regions of brain except cerebellum [3],
developmental WIN exposure increased 2-AG selectively
within rostral telencephalon and decreased levels in cer-
ebellum (Figure 3A). These results indicate that canna-
binoid-altered vocal development is associated with
persistent enhancement of endocannabinoid signaling
within rostral telencephalon. This is interesting as the
song regions of rostral telencephalon (IMAN and Area
X, see Figure 4), are not essential for production of
learned song [21,22], and seem to perform a modulatory
function related to song timing, that perhaps serves as
an error-correcting mechanism [16]. Decreased 2-AG
content within cerebellum is notable, as this region has
not typically been associated with vocal development.
Potential persistent effects of developmental cannabinoid
exposure on motor function warrants further investiga-
tion, and recent evidence suggests that cerebellum is
more important to sensory integration and cognition in
zebra finches than previously thought [23]. In mice,
functional changes in cerebellar sensitivity to cannabi-
noid drugs have been observed as a function of toler-
ance and following antagonist-precipitated withdrawal
[24]. This raises the possibility that similar effects of
chronic treatment are produced following cannabinoid-
altered vocal learning, and may contribute to altered
developmental course.

Production of opposing effects on 2-AG levels across
CNS regions by the same drug is interesting, and may
be attributable to differing neurochemistry within each
area (e.g. rostral telencephalon vs. cerebellum). A grow-
ing consensus supports a presynaptic inhibitory role for

Page 7 of 10

endocannabinoid activation of CB; to reduce the prob-
ability of neurotransmitter release. Because presynaptic
CB; activation inhibits release of both excitatory (e.g.
glutamatergic) and inhibitory (e.g. GABAergic) transmit-
ters, regional cannabinoid effects may depend upon rela-
tive levels of excitatory vs. inhibitory tone (reviewed by
[25]). For example, across all species studied, CB; densi-
ties are particularly high within the molecular layer of
cerebellum [26]. This region is largely comprised of the
axonal parallel fibers that rise from cerebellar granule
cells. These parallel fibers synapse on Purkinje cell den-
dritic arbors, primarily releasing excitatory glutamate
(reviewed by [27]). Presynaptic CB; activation produced
by repeated WIN treatments would be expected to
reduce the probability of excitatory glutamate release,
effectively reducing neural activity, and decreasing post-
synaptic release of 2-AG. In the case of rostral telence-
phalon, distinct and dense CB; receptors are expressed
within the prominent Area X of striatum [7]. CB,
expression is particularly dense within Area X at 50-75
days of age, the period during which exogenous WIN
treatments were administered in our current studies [28].
In contrast to molecular layer of cerebellum, Area X is
characterized by significant inhibitory GABAergic trans-
mission [29,30]. Thus, cannabinoid agonism may be
expected to reduce inhibitory signaling within Area X,
leading to increased neuronal activity and post-synaptic
2-AG release.

Conclusions

In summary, repeated cannabinoid agonist exposure
during zebra finch sensorimotor vocal development was
associated with increased levels of the endocannabinoid,
2-AG, and decreased CB; immunostaining intensities
within regions of rostral telencephalon. Similar changes
were not observed following repeated WIN treatment of
adult animals, demonstrating distinct developmental
cannabinoid sensitivity during vocal development.
Developmental WIN exposure also altered acute respon-
siveness to WIN challenge, an effect that was not seen
following chronic treatment of adults. These findings
suggest that the cannabinoid-altered vocal development
involves persistent changes in expression, regulation and
responsiveness of endocannabinoid signaling elements.
In the context of the developing zebra finch CNS, these
endocannabinoid signalling elements are particularly
susceptible to disregulation caused by prolonged expo-
sure to cannabinoids.

Methods

Animals

Male zebra finches bred in our aviary and sexed at ~ 25
days via PCR [31] were used in these experiments.
Except where indicated otherwise, six animals were
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assigned to each treatment group. Prior to the start of
experiments, birds were housed with an adult male song
tutor in flight aviaries and provided free access to mixed
seeds (SunSeed VitaFinch), grit, water, and cuttlebone.
Each flight aviary contained several perches. The light-
dark cycle was controlled at L:D 14:10 h and ambient
temperature was maintained at 78°F.

Animals were cared for and experiments conducted
according to protocols approved by East Carolina Uni-
versity’s Animal Care and Use Committee.

Treatments

Drug treatments were given by intramuscular injection
of 50 pl into the pectoralis muscle. Drug dilutions for
injection were made from 10 mM stocks (in DMSO) to
produce a final vehicle of 1:1:18 DMSO:Alkamuls (Rho-
dia, Cranberry, NJ):PBS (pH = 7.4). Because zebra
finches are inactive and don’t sing in the dark, treat-
ments were given immediately prior to the beginning of
light cycles to avoid potential song- and activity-related
changes in receptor expression. Prior work investigating
immediate early gene expression experiments indicated
that peak agonist-induced immunoreactivity of both
ZENK and FoxP2 occurs 90 min following treatment with
the potent CB;/CB, receptor antagonist WIN55,212-2
(WIN) and therefore this period was adopted to investi-
gate potential acute changes in CB; immunostaining
[32,33].

For developmental experiments, once-daily injections
of vehicle (VEH- groups) or 1 mg/kg WIN (WIN-
groups) were given to male zebra finches from 50 to
75 days of age (during the sensorimotor period of zebra
finch vocal learning). WIN treatment during this period
is well-documented to alter both song stereotypy and
incorporation of notes into mature song (see [34,35]).
Following completion of treatments, animals were
allowed to mature to at least 100 days of age in visual
isolation. Upon maturation, groups of animals were
either given a single acute vehicle injection (VEH-VEH
and WIN-VEH groups), or given a single acute injection
of 3 mg/kg WIN in order to induce potential changes in
CB; immunoreactivity (VEH-WIN and WIN-WIN).
Groups of adults (n = 4) were treated similarly to con-
trol for effects dependent on developmental exposure.
Note that treatment groups are designated by the
repeated, developmental treatment indicated first, and
separated by a hyphen from the indication of a second
final acute treatment given in adulthood. Treatment
groups and designations are summarized for clarity in
Table 1.

CB; immunostaining
Ninety minutes following acute treatments, birds were
killed by Equithesin overdose and transcardially perfused
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Table 1 Summary of Treatment Groups
Chronic Tx Acute Tx

Abbreviation # Animals (QD for 25 days) 1x in adulthood

VEH-VEH 6 LPN*, 4 Adult Vehicle Vehicle

VEH-WIN 6 LPN*, 4 Adult Vehicle 3 mg/kg WIN

WIN-VEH 6 LPN*, 4 Adult 1 mg/kg WIN Vehicle

WIN-WIN 6 LPN* 4 Adult 1 mag/kg WIN 3 ma/kg WIN

*LPN, Late-Postnatal Treatment.

with phosphate-buffered saline (PBS, pH = 7.4) followed
by phosphate-buffered 4% paraformaldehyde, pH = 7.0.
After brains were removed and immersed overnight in
buffered 4% paraformaldehyde, they were blocked down
the midline and left hemispheres were sectioned parasa-
gittally (lateral to medial) on a vibrating microtome.
Immunohistochemistry was performed using a standard
protocol reported in [36]. For immunohistochemistry
experiments, 30 micron sections of zebra finch brain
were reacted with a 1:3000 dilution of polyclonal anti-
zebra finch CB, antibody raised in rabbit. The selectivity
of this antibody for zebra finch CB; has been demon-
strated previously, and it has been used in multiple stu-
dies [3,4,37]. Tissue sections were rinsed in 0.1% H,O,
for 30 min, blocked with 5% goat serum for 30 min, and
reacted overnight in blocking solution containing anti-
zebra finch CB; antibody (1:3000). After antibody expo-
sure, sections were rinsed in PBS (pH = 7.4), incubated
in blocking solution containing biotinylated goat anti-
rabbit antiserum (1:500) for 1 hour, rinsed with PBS
again, and then submerged in avidin-biotin-peroxidase
complex solution (purchased as a kit from Vector
Laboratories, cat # PK-4005) for 1 hour. Antibody label-
ling was visualized with DAB solution (Vector cat #
SK-4100). Control sections that were not reacted in pri-
mary antibody were not immunoreactive. To eliminate
possible variance associated with reaction conditions,
tissue from equal numbers of animals from each treat-
ment group within an experiment were processed
simultaneously.

Staining was examined in various brain regions at 40 x
using an Olympus BX51 microscope under brightfield
conditions. Multiple images were captured using a Spot
Insight QE digital camera and Image-Pro Plus software
(MediaCybernetics, Silver Spring, MD) under identical,
calibrated exposure conditions. These images were back-
ground-corrected and converted to grey scale (see
Figure 4). The borders of brain regions were traced
manually. In cerebellum, only molecular layer staining
was measured. Mean optical densities of brain areas
enclosed within traced regions were determined without
knowledge of treatment condition from five separate sec-
tions per animal using Image-Pro Plus software. Mea-
surements were made independently by two investigators
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and pooled for analysis. Mean optical densities within
each region were compared across treatment group using
one-way ANOVA as described below.

Determination of 2-arachidonylglycerol (2-AG) content
Groups of male zebra finches were randomly assigned to
receive vehicle or 1 mg/kg WIN injections from 50 to
75 days of age (n = 4 animals per treatment). Following
these developmental treatments, birds were allowed to
mature to adulthood (100 days of age) in visual, but not
auditory isolation. To assess dependence of effects on
developmental exposure a separate experiment was done
with adult animals (n = 4) employing a similar 25-day
treatment period followed by visual isolation. Following
treatment and maturation, birds were killed by anes-
thetic overdose and brains rapidly removed to ice.
Brains were blocked down the midline, and tissue from
each hemisphere was extracted and analyzed indepen-
dently resulting in two data points per sample per bird.
Developmental experiments were performed in triplicate
resulting in a final n = 24 per treatment. Tissue from
each brain half was rapidly dissected into: rostral (con-
taining the song regions IMAN [lateral magnocellular
nucleus of anterior nidopallium] and Area X of stria-
tum); and caudal (containing the song regions HVC and
RA [robust nucleus of arcopallium] and auditory regions
L2 and NCM) telencephalon; cerebellum; and midbrain
and immediately frozen in liquid nitrogen. Frozen tissue
was stored at -80°C until extracted as described pre-
viously (Matias et al., 2003). Briefly, tissues were homo-
genized in and extracted with chloroform:methanol:Tris-
HCI 50 mM, pH = 7.5, 2:1:1, (v/v) containing internal
standards (10 pmol of anandamide-d8, palmitoylethano-
lamine-d4 and 100 pmol of 2-arachidonyl glycerol-d5,
obtained from Cayman Chemicals). The lipid-containing
organic phase was collected and dried. Samples were
reconstituted in 100 pL of 10:90 (v/v) water: methanol
with 0.1% ammonium acetate and placed in autosample
vials for analysis.

The electrospray ionization-mass spectrometry-mass
spectrometry (LC-ESI-MS-MS) method used to detect
and quantitative anandamide and 2-arachidonyl glycerol
(2-AG) was a modification of a previously published
method [38]. The LC-ESI-MS-MS system used was Shi-
madzu Shumadzu Prominence LC system coupled to an
Applied Bio Systems 3200 Q trap with a turbo V source
for TurbolonSpray. The MS analyses were carried out in
the multiple reaction monitoring mode and the follow-
ing transition ions were monitored: (348 > 62) and (348
> 91) for anandamide; (356 > 62) for Anandamide -d8;
(379 > 287) and (279 > 269) for 2-AG; (384 > 96) for 2-
AG-d5. The analytical column used was a Discovery
HS C18, 4.6 mm x 15 c¢m, 3 micron (Supelco, USA).
The mobile phase consisted of (10:90) water: methanol
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with 0.1% ammonium acetate and 0.1% formic acid and
a flow rate of 0.3 mL/min was used. A negative control
and seven point calibration curves at concentrations of
0, 0.25, 0.5, 1, 2, 4, 8 pmoles for 2-AG and 0, 0.038,
0.075, 0.15, 0.3, 0.6, and 1.2 pmoles for anandamide
were prepared with each analytical run. Sample concen-
trations were calculated by linear regression.

Statistical Analyses

Because sections containing all brain regions were reacted
together, and each antibody reaction contained tissue
from all four treatment groups, relationships between
drug treatments and within-region CB; immunostaining
optical densities were determined through two-way
ANOVA by treatment and brain region. Following
ANOVA determination that mean relative optical density
values differed across treatment, Student-Newman-Keuls
post-tests were done to determine brain regions with that
differed by treatment. In the case of 2-AG measurements,
brain areas were processed independently, and therefore
mean content of each area by vehicle or WIN treatment
groups were compared using t-tests.
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