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G protein-coupled receptors (GPCRs) are the largest family of membrane proteins with
more than 800 members. GPCRs are involved in numerous physiological functions
within the human body and are the target of more than 30% of the United States
Food and Drug Administration (FDA) approved drugs. At present, over 400 experimental
GPCR structures are available in the Protein Data Bank (PDB) representing 76 unique
receptors. The absence of an experimental structure for the majority of GPCRs demand
homology models for structure-based drug discovery workflows. The generation of
good homology models requires appropriate templates. The commonly used methods
for template selection are based on sequence identity. However, there exists low
sequence identity among the GPCRs. Sequences with similar patterns of hydrophobic
residues are often structural homologs, even with low sequence identity. Extending
this, we propose a biophysical approach for template selection based principally on
hydrophobicity correspondence between the target and the template. Our approach
takes into consideration other relevant parameters, including resolution, similarity within
the orthosteric binding pocket of GPCRs, and structure completeness, for template
selection. The proposed method was implemented in the form of a free tool called
Bio-GATS, to provide the user with easy selection of the appropriate template for a
query GPCR sequence. Bio-GATS was successfully validated with recent published
benchmarking datasets. An application to an olfactory receptor to select an appropriate
template has also been provided as a case study.

Keywords: biophysical approach, hydrophobicity correspondence, template selection, homology modeling,
GPCR, olfactory receptor, automated tool

INTRODUCTION

The three-dimensional (3-D) structure of the proteins is important for deciphering its
biological function and gaining mechanistic insights of biological events. Analyzing the
relationship between sequence, structure, and function between proteins might help in
transferring functional annotation between proteins. Cyrus Chothia’s contribution in incorporating
computational approaches for a sequence-structure relationship, such as the development of
Structural Classification of Proteins (SCOP) database (Lo Conte et al., 2000), has opened up

Frontiers in Molecular Biosciences | www.frontiersin.org 1 April 2021 | Volume 8 | Article 617176

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.617176
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2021.617176
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.617176&domain=pdf&date_stamp=2021-04-07
https://www.frontiersin.org/articles/10.3389/fmolb.2021.617176/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-617176 March 30, 2021 Time: 18:8 # 2

Jabeen et al. Bio-GATS for GPCR Template Selection

new avenues for structural bioinformatics. The hierarchical
division of proteins into classes, folds, superfamilies, and families
based on structural and functional similarities by SCOP has
enabled linking of known protein structures with homologous
sequences lacking a known structure. Distant homologies can
also be tracked through the SCOP database (Redfern et al., 2008).
The use of homolog structures for generating the structural
model of a protein lacking experimental structure forms the
basis of homology modeling. The success of the homology
model is greatly determined by the selected template and
the alignment generated between the target and the template
(Wallner and Elofsson, 2005; Haddad et al., 2020). In this
article, we have developed a graphical user interface for selecting
suitable templates for GPCRs. Our biophysical method for
GPCR template selection is based primarily on hydrophobic
correspondence (HC) between the target and the template,
inspired by the work of Cyrus Chothia on the conceptual
methods for hydrophobicity determination (Chothia, 1976).

G protein-coupled receptors, also known as seven
transmembrane (TM) domain receptors, constitute the largest
family of cell surface receptors with above 800 members in
humans. All GPCRs share a common architecture of seven
TM helices connected through three extracellular (ECL 1–3)
and three intracellular (ICL 1–3) loops with an extracellular
amino (N-) terminus and intracellular carboxyl (C-) terminus
(Miyagi et al., 2020). The most common classification system
used for GPCRs is based on sequence and functional similarities.
This schema classifies GPCRs into six classes, viz. class A
(rhodopsin-like family), class B (secretin family), class C
(metabotropic glutamate family), class D (fungal mating
pheromone receptors), class E (cyclic adenosine monophosphate
or cAMP receptors), and class F (frizzled/smoothened receptors).
All classes of GPCRs govern myriad functionalities within the
human body, ranging from sensory perception (smell, taste,
vision) to neurotransmission, metabolism, immune response,
blood pressure regulation, and cognition (Hu et al., 2017).
GPCRs recognize diverse ligands including peptides, hormones,
odorants, tastants, vitamins, photons, ions, and metabolites,
among others (Wacker et al., 2017). The extracellular ligands
bind to the inactive GPCRs and bring about a conformational
change to the helical bundle, which in turn activates intracellular
transducers such as G-proteins, or β-arrestins. The intracellular
transducers are connected to the helical bundle through ICL3.
Therefore, GPCRs exhibit multiple conformational states, with
the active and inactive states being the predominant ones
(Miyagi et al., 2020).

Dysfunction of GPCR signaling leads to pathological
conditions within the human body, making GPCRs the largest
druggable protein family. More than 34% of FDA approved
drugs target GPCRs (Saikia et al., 2019). Currently, only ∼15%
of the GPCRs are targeted. This under-representation is mainly
due to the absence of known ligands for more than 30% of
non-olfactory GPCRs (Insel et al., 2019). Virtual ligand screening
coupled with experimentation has resulted in the discovery of
novel ligands for numerous GPCRs (Congreve et al., 2020). Both
ligand-based virtual screening (LBVS), as well as structure-based
virtual screening (SBVs), have been used in finding novel

ligands for GPCRs. LBVS can only be applied to the receptors
having known ligands. Machine learning-based methods for
LBVS are becoming popular for expanding the ligand set of
the receptor with a large number of known ligands (Butkiewicz
et al., 2019; Jabeen and Ranganathan, 2019). SBVS has also
been used to find novel ligands for GPCRs (Congreve et al.,
2020) but unfortunately, only 91 GPCRs have experimentally
resolved structures to date, according to GPCRdb statistics
(Munk et al., 2019) (as of 05.01.2021) with over 500 structures
deposited in the Protein Data Bank (PDB) (Berman et al.,
2000). This sequence to structure gap is mainly because of
the challenges associated with structure determination of
GPCRs (Baker et al., 2017; Jabeen et al., 2019a). Among the
challenges are difficulties in heterologous expression, lower
stability, maintaining the structural integrity by embedding
into the membrane-like environment, and the existence of
multiple conformations (Miyagi et al., 2020). The booming
period for GPCR structural biology started in 2000 when the first
GPCR structure (bovine rhodopsin) was resolved (Palczewski
et al., 2000). Due to continuous improvement in structural
biology methods, experimentally resolved GPCR structures
are increasing but they are still under-represented compared
to soluble, globular proteins. Experimental structures are now
available for all classes except E (Munk et al., 2019). Most of
the experimentally resolved structures belong to GPCR class A.
Consequently, most of the available drugs in the market target
class A receptors (Basith et al., 2018).

Homology modeling could be used for structure-based
drug design (SBDD), in the absence of an experimental
structure, as it is more reliable than ab initio modeling
(Nikolaev et al., 2018). To assess the accuracy of GPCR
structural model predictions, community-wide GPCR Dock
competitions are conducted. Scientific research groups from
all over the world are given the GPCR target sequences for
blind structure prediction, with undisclosed 3D structures. The
predicted models along with their atomistic interactions with
pharmaceutically important small molecules, are then ranked
based on the experimentally resolved structures (Kufareva
et al., 2014). These competitions have shown that homology
models are able to impart valuable insights into receptor-
ligand interactions, especially when sequence identity between
target and the template exceeds 35% (Alfonso-Prieto et al.,
2019). In fact, ligand screening against dopamine D3 receptor
was conducted initially using a homology model and provided
results comparable to the experimental receptor structure
(Carlsson et al., 2011).

Homology modeling of GPCRs poses several challenges,
with template selection being the most prominent one. This
is due to the unavailability of a close structural template for
many GPCRs and limited representation of structures in active
and intermediate conformations. Active structures are available
for 47 receptors from classes A, B1, C, D, and F, and the
structures for 20 receptors (classes A, C, and B1) are present
in intermediate conformation. Also, 63 receptors are present in
inactive conformation (classes A, B1, C, and F).

The accuracy of homology models is largely dependent on the
choice of the template structure (Rataj et al., 2014). There are
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a number of servers designed specifically for GPCR homology
modeling, such as GPCR-I-TASSER, GPCR Online MOdeling
and DOcking server (GOMoDo) (Sandal et al., 2013), GPCR-
Sequence-Structure-Feature-Extractor (SSFE) (Worth et al.,
2017), GPCR-ModSim (Esguerra et al., 2016), and GPCRM
(Miszta et al., 2018). The process of template selection varies
among each server. GPCR-I-TASSER uses a local meta-threading
server (LOMETS) (Zheng et al., 2019) to select templates for
a particular GPCR. LOMETS uses eleven different threading
programs (CEthreader, FFAS3D, HHpred, HHsearch, MUSTER,
Neff-MUSTER, PPAS, PRC, PROSPECT2, SP3, and SparksX) to
select templates for a GPCR target. GOMoDo uses the HHsearch
protocol to select the template for a query GPCR sequence. The
user can either use the server-generated alignment, supply their
own alignment, or use a previously stored alignment for GPCR
homology model building. GPCR-SSFE selects the template based
on the sequence-structure profile generated by HMMER2. The
webserver provides a TM-wise template suggestion. It uses 27
GPCR structures as templates. The server-generated alignment is
used for model building within GPCR-SSFE. The GPCR-ModSim
server uses a set of 33 structures (22 inactive, eight intermediate,
and three active) and a GPCR query sequence to generate the
profile alignment and then selects the suitable templates. The
templates for a specific region can be also selected by the user.
The server-generated alignment, as well as a manually edited
alignment, can be used for model building. The GPCRM server
uses sequence identity calculated by ClustalW2 for selecting the
template structures. Single or multiple templates may be selected,
depending upon the sequence identity between the query and
the template. The server also provides the feature of selecting
the template based on the user’s choice. The user can also opt
for inactive or active templates. The set of templates include 63
inactive and 31 active GPCR structures.

Numerous benchmarking studies have been conducted by
incorporating global and local similarity measures to select the
appropriate template for GPCRs. Models based on local similarity
measures have produced better results in virtual screening
experiments (Castleman et al., 2019; Szwabowski et al., 2020).
Multiple studies have shown that sequence identity above 30%
could result in good GPCR homology models (within 3 Å)
(Shahaf et al., 2016; Loo et al., 2018; Jaiteh et al., 2020). But
most of the GPCRs share low sequence identity with available
templates. It is also known from the literature that models
based on greater sequence identity are not always the best
ones and models based on distant homologs have performed
well in virtual screening experiments (Rataj et al., 2014; Perry
et al., 2015). Therefore, additional measures other than sequence
identity must be considered for appropriate template selection.
Also, a detailed inspection of all available homolog structures is
essential for finding an optimal template, rather than randomly
selecting a template based on the closest homolog, to generate
better homology models (Kosinski et al., 2013). Sequences with
similar hydrophobic patterns are often homologs, resulting in
hydrophobicity being used in determining even distant homologs
(Lolkema and Slotboom, 1998; Silva, 2008). The consideration of
hydrophobic information for GPCR model building enables the
representation of functional aspects as well (Crasto, 2010).

We proposed a biophysical approach recently for GPCR
template selection (Jabeen and Ranganathan, 2020), which was
applied to an olfactory receptor (OR), based on hydrophobicity
correspondence (HC), the resolution, completeness of structures
(or query coverage), and similarity between the residues within
the orthosteric binding pocket for GPCRs (hotspot residues).
Bio-GATS presents a GUI for template selection of GPCRs,
based on this biophysical approach (Figure 1). Ligand profiles
for selected templates and the target can be compared to get
an optimal template. Further incorporation of mutagenesis data
while refining the binding pocket of the model might help in
improving the overall model.

As a case study, we have selected OR1A1, a human OR, as a
query sequence. ORs are the largest superfamily of GPCRs and
have no known experimental structure. Only 30 of 405 human
ORs are currently known as proteins, with the rest regarded
as “missing” proteins on account of insubstantial proteomic
evidence (Jabeen et al., 2019a). ORs share low sequence identity
with available GPCR structures. Therefore, it is challenging to
get a reliable homology model for any OR. OR1A1 is ectopically
expressed in gut enterochromaffin cells and proposed to be
involved in serotonin release (Braun et al., 2007). Also, OR1A1
is known to be ectopically expressed in HepG2 liver cells where
it is responsible for hepatic triglyceride metabolism modulation
(Wu et al., 2015).

MATERIALS AND METHODS

Bio-GATS is written in Python 3 programming language (Van
Rossum and Drake, 2011). The interface was built using PyQt5.
The computing was performed through pandas. The numPy
library was utilized for mathematical tasks. Biopython (Cock
et al., 2009) was used for running BLAST (Altschul et al., 1990)
locally through the command line, and for aligning the query
sequence with that of the template. The HC plots were visualized
using matplotlib. The hydrophobicity moment was calculated
and plots were visualized using modlAMP package (Müller et al.,
2017). A downloadable result summary file, from which images
and data can be easily extracted, is generated in Microsoft (MS)
Word format, using the docx library.

Bio-GATS requires Python, Biopython and also local BLAST
to be installed locally to align sequences and then calculate the
sequence identity values. Bio-GATS is linked to the GPCR dataset
stored in an MS Excel file, which can be updated locally, as
new GPCR structures are solved. The template selection process
is divided into three steps: TM splitting and alignment, HC
calculation, and finally, sequence similarity calculation among
hotspot residue positions within the target and the template.

Also, a scoring matrix has been defined to rank the
templates. The final score of the template is calculated based on
resolution, the HC score, and binding site (or hotspot) residue
similarity (BRS) score.

GPCR Dataset
The dataset used by Bio-GATS comprises GPCR sequences,
available GPCR structural templates, TM definition of each
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FIGURE 1 | Workflow for GPCR template selection through a biophysical approach, with details of how templates are selected and the alignment is generated.

entry and structure resolution, conformation, and positions
having structural information for each of the available templates
(query coverage). The data for available GPCR structures were
downloaded from GPCRdb. It contains 76 unique receptors and
over 400 PDB entries (as of 05.08.2020). The resolution of GPCR
structures varies from 1.7 to 7.7 Å. Some GPCRs are over-
represented, with 52 different structures of variable resolution
available for bovine rhodopsin (UniProtKB OPSD_BOVIN)
followed by 49 structures for human adenosine receptor A2a
(AA2AR_ HUMAN). The data for 814 GPCR sequences and their
TM definitions were taken from the published GpcR Sequence-
Structure (GRoSS) alignment (Cvicek et al., 2016).

TM Splitting and Alignment
During the first step, the sequence of each TM was retrieved
after splitting the sequence of both target and template according
to the TM definitions taken from the GRoSS alignment. The
corresponding TMs of target and template were then aligned
together by tethering the center residues of each helix, as adopted
by several groups (Wolf et al., 2017; Abaffy et al., 2018). The
center residue for each helix is labeled as X.50 (X being the TM
number), according to Ballesteros–Weinstein numbering scheme
(Ballesteros and Weinstein, 1995).

Hydrophobicity Profile Generation
The hydrophobicity profile for each helix was generated using the
Eisenberg scale (Eisenberg et al., 1984), as detailed in our recent
publication (Jabeen and Ranganathan, 2020) and briefly outlined
here. A moving window of size 11 was set up as suggested for
the identification of putative transmembrane α-helices (Wallace
et al., 2004). The average value over all the residues in a window

was taken and ascribed to the center residue of the window. We
then measured the HC between each aligned helix of the target
and the template. The HC is represented as the sum of squared
differences (SSD) (eq. 1 and eq. 2):

Hn =
n+5∑

i = n−5

hi
/

11 (1)

SSD =

√
N∑

n =1
(Htemplate,n −Htarget,n)2 (2)

where Hn is the calculated hydrophobicity for the aligned
template-target residue in the nth position of the alignment and
hi is the hydrophobicity of the ith residue from the Eisenberg
scale. The value, is normalized by dividing with the total
number of residues in a particular helix, as the SSD value is
length dependent and will only be relevant if a per-residue
value is considered.

Calculating Sequence Similarity Between
Hotspot Residues Known for GPCRs
We have taken the 24 traditional orthosteric ligand binding
positions observed in most of the available GPCR structures.
The positions are labeled according to Ballesteros–Weinstein
numbering scheme and include 3.28, 3.29, 3.32, 3.33, 3.36, 3.37,
4.52, 5.39. 5.40, 5.43, 5.44, 5.47, 5.53, 6.44, 6.48, 6.51, 6.52,
6.55, 6.58, 7.31, 7.34, 7.38, 7.41, 7.42 (Chan et al., 2019). The
similarities between these hotspot residues among the target-
template pairs were computed using GPCRtm scoring matrix,
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designed specifically for GPCRs considering the compositional
bias of hydrophobic TM regions (Rios et al., 2015).

Target-Template Scoring
Each of the selected templates is scored based on two parameters:
the HC-score and the BRS score (Munk et al., 2019). For each
aligned helix, if the SSD per residue is between 0 and 0.1, 2
is added to the HC-score, while for SSD per residue >0.1, 1
is subtracted from the HC-score. This scheme is adapted from
the BLAST match and mismatch scoring scheme and provides
significant weighting for hydrophobicity. The overall HC-score is
computed for each target-template pair using eq. 3,

HC-score = Sh =
7∑

i = 1
si (3)

where Sh is the overall hydrophobicity correspondence score
ranging from helix 1 to 7, and si is the SSD per residue per helix.
Sb is computed through GPCRtm matrix, Sr is the resolution
score. If the resolution is ≤ 2.5 Å, the value for Sr is 1, otherwise
it is 0. The total score St is computed by eq. 4.

St = Sh + Sb + Sr (4)

Sh can attain a maximum value of 14 while Sb may exceed
70, depending upon the score computed by GPCRtm. To avoid
biases, we normalized both Sh and Sb between 0 and 1 and
computed the ranking score, Srank for ranking the top three
templates while searching for templates, using eq. 5,

Srank = Snh + Snb + Sr (5)

where Srank is the total score between the target-template pair, Snh
is the normalized HC-score, Snb is the normalized BRS score and
Sr is the resolution score, retained from eq. 4.

Homology Modeling
Bio-GATS provides a complete alignment that was used to
build a 3-D structural model for SBVS using Modeller 9.18
(Webb and Sali, 2017) by a previously established protocol
for GPCR homology modeling (Jabeen et al., 2019b). The
sequence alignment between the target and the template can
be manually adjusted using MEGA7 (Kumar et al., 2016) by
tethering center residues, class A GPCR conserved motifs, and
cysteine residues forming a disulphide bridge. Bio-GATS uses
predicted transmembrane regions from the GRoSS sequence
alignment of all known GPCRs sequences (Cvicek et al.,
2016). The ligand of each template was initially copied
to the 3-D model and removed later to create an empty
binding pocket within the query model structure for the
OR1A1 case study.

Molecular Docking
For OR1A1, molecular docking of ligands was performed with
ICM software (Abagyan et al., 1994). The binding pocket

was predicted though ICMPocketFinder (An et al., 2005) and
selected based on the available mutagenesis data for all ORs
(Jabeen et al., 2019a).

RESULTS AND DISCUSSION

Bio-GATS has been tested on multiple computers, running
on Linux as well as Windows platforms, and found to
run successfully with the required dependencies installed. To
validate our approach, we applied it to recent target-template
datasets from published benchmarking studies and compared
the results. We also considered representative receptors from
each class (A, B, C, D, and F) with known experimental
structure and built their models on the basis of templates
selected by Bio-GATS. The models were then compared with
the cognate experimental structures by calculating their root
mean square deviation (RMSD) values. Further, we carried
out a case study using an ectopically expressed olfactory
receptor, OR1A1. We used the best templates from our
approach, to build the models for OR1A1, which were
validated by molecular docking with known ligands of the
receptor, to check for retrieval of mutagenesis data important
for ligand binding.

Performance of Bio-GATS on Published
Benchmarking Datasets
To assess the performance of Bio-GATS, we collated the
already published target-template pairs used in benchmarking
studies and/or virtual ligand screening (VLS) runs. The
best benchmarked modeling pair choices, as well as pairs
which did not perform well, were considered for the
analysis. The performance of the templates was ranked as
good or bad, in published studies, on the basis of good
ligand enrichment in VLS (Perry et al., 2015; Loo et al.,
2018; Jaiteh et al., 2020), local and global (RMSD) from
crystal structures (Castleman et al., 2019), and both ligand
enrichment and RMSD from the crystal structure (Shahaf
et al., 2016). Researchers have compared varied parameters
in these studies among the target-template pairs, including
global sequence identity, TM-wise sequence identity, local
sequence identity (identity within the binding pocket), model
refinement through molecular dynamics and/or induced-
fit docking, and the ligand binding site plasticity. These
parameters were applied to classify templates as good or bad in
their publications.

We applied our approach to these selected target-template
pairs and compared the results of published studies and our
approach. A total of 28 target-template pairs for nine different
GPCR targets belonging to class A and published within last
5 years were considered for comparison. We calculated St for each
target-template pair. All target-template pairs rankings in the
benchmarking studies corresponded to the numerical St values
(Table 1 and Supplementary Table 1). The top St scores for each
target was ranked “good” in the benchmarking studies.

It was also evident from the collected dataset that
high sequence identity does not always imply a good HC.
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PAR2_HUMAN shows good HC with both PAR1_HUMAN
and OPRX_HUMAN, in accord with the VLS results (Perry
et al., 2015), although it is closer to PAR1_HUMAN (sequence
identity: 41%) than to OPRX_HUMAN (sequence identity: 28%).
There are many instances where good HC is observed among the
target-template pairs even the sequence identity falls below 30%
(Supplementary Table 1).

Also, sequence-structure correlation is not always implied
according to the published studies, for instance, the model
of P2Y12R based on P2Y12R- PAR1_HUMAN pair (sequence
identity: 23%) was closer to the P2Y12R crystal structure
in comparison with the model based on the P2Y12R-
OPRK_HUMAN pair (sequence identity: 28%) (Castleman
et al., 2019). We note that the St scores reported here correctly
rank PAR1_HUMAN as the best template over the other three
templates (Table 1), without model building and VLS.

In the case of PAR2- PAR1_HUMAN and PAR2-
OPSD_BOVIN pairs, although both have good HC, the hotspot
residues are dissimilar, with Sb(PAR2-OPSD_BOVIN) of −2,
and Sb(PAR2- PAR1_HUMAN) of 51. Thus, BRS comparison
is a useful parameter in selecting the appropriate template for
GPCRs. Overall, the St score is able to identify the best template
for each of the nine target receptors in Table 1.

TABLE 1 | Performance of Bio-GATS on recent published target-template pairs.

Target receptor Template pairs Published ranking St

hPAR2 hPAR1 [36] Good 52

hOPRX [36] Good 31

bOPSD [36] Bad 10

h5HT7 hOPRX [34] Good 41

hPAR1 [34] Bad 30

hPAR1 hOPRK [33] Good 42

hOPRX [33] Good 40

hAA2AR [33] Bad 19

hADRB2 hOPRK [33] Good 31

hAA2AR [33] Good 17

hP2Y12R [33] Bad 9

hP2Y12R hPAR1 [32] Good 26

hOPRK [33] Bad 15

h5HT1B [32] Bad 10

hADRB2 [33] Bad 9

hACM2 hDRD3 [32] Good 44

hOPRK [33] Good 26

hP2Y12R [33] Bad 3

hFFAR1 hAT1R [32] Good 24

hP2Y12R [32] Bad 22

h5-HT2AR h5-HT2CR [35] Good 71

bOPSD [35] Bad 20

hAA2AR [35] Bad 19

hCXCR4 [35] Bad 11

hCNR1 [35] Bad 9

hDRD2 hCXCR4 [35] Good 26

bOPSD [35] Bad 11

hCNR1 [35] Bad 2

Validating Bio-GATS Template Selection
Through Experimentally Resolved GPCR
Structures
To further validate Bio-GATS, we selected 20 class A, 10 class
B, four class C, one class D, and three class F receptors having
experimentally solved structures. In all cases, the experimental
structure was selected as the top ranked target template
by Bio-GATS. Ignoring this top ranked structure, homology
models for 38 receptors were build using Modeller (Webb
and Sali, 2017) based on the second top template selected
through Bio-GATS. The alignment was manually edited within
loop regions through MEGA7 (Kumar et al., 2016). The
generated models were compared with experimental structures
through RMSD calculation for TM regions. For all models
the RMSD of structurally aligned region was in the range
0.5–2.5 Å (Supplementary Table 2) as shown in Figure 2
(mean = 1.38 ± 0.43 Å, median = 1.29 Å). The interquartile
range (IQR) for all classes is 0.60 Å. For individual classes,
class A is showing the IQR from 0.62 Å with sample size of
20. The IQR for class B and C is 0.36 and 0.16 with sample
size of 10 and 4, respectively. To date, as only one structure is
available for class D, this template was selected for this receptor,
although it is phylogenetically distant and therefore showing a
high RMSD value. The IQR for modeled class F receptors 0.1
with sample size 3 although two of three models were built on
the basis of class B templates. The results of this study on 38
representative receptors from each class are showing the utility
of hydrophobicity correspondence as a measure for template
selection. The median for individual classes was under 1.5 Å
except for classes D and F.

Subsequently, three receptors from classes A, B, C, F, and the
single class D receptor was modeled through GPCR modeling
servers such as GPCR-ModSim (Esguerra et al., 2016), GoMoDo
(Sandal et al., 2013), GPCRM (Miszta et al., 2018), and GPCR-
SSFE (Worth et al., 2017). The RMSDs for TM regions of
automated models and models constructed using Bio-GATS

FIGURE 2 | RMSD between modeled structures and experimental structures
for all GPCR classes, class A, B, C, D, and F (presented in Supplementary
Table 2). The boundary of the box closest to zero indicates the 25th
percentile, a black line within the box marks the median, and the boundary of
the box farthest from zero indicates the 75th percentile.
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TABLE 2 | The templates selected by Bio-GATS and the automated servers for representative GPCRs from each class along with RMSD values between the generated
models and experimental structures for TM residues.

Receptor and
PDBID

Bio-GATS GPCRM GPCR-SSFE GPCR-ModSim GoMoDo

Template and
PDBID

RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

h5HT2A (6A94) tADRB1 (4BVN) 1.313 tADRB1 (5F8U
and 2VT4)

1.347 Many1 1.717 tADRB1 (2VT4) 1.427 None6 –

hTA2R (6IIU) bOPSD (1U19) 2.248 hCNR1 (5TGZ)
hAA2AR (5UIG)

1.804 Many2 1.975 hOPRX (4EA3) 1.948 hOPRX (4EA3) 1.911

hPE2R3 (6AK3) hOPRM1
(5C1M)

1.623 h5HT2C (6BQG
and 6BQH)

1.484 Many3 1.939 bOPSD (3PQR) 2.013 hOPRX (4EA3) 2.005

hCRFR1 (4K5Y) hGLR (5EE7) 1.626 hCRFR1*
(4Z9G)

0.966* None4 – hP2Y12 (4NTJ) 2.738 h5HT1B (4IAR) 1.853

hPACR (6P9Y) hSCTR (6WZG) 0.645 hCALCR
(5UZ7)

1.273 None4 – bOPSD (3PQR) 2.192 None6 –

hSCTR (6WZG) hCALRL (6UVA) 1.304 hCALCR
(5UZ7)

1.466 None4 – hACM2 (4MQS) 2.174 hCRFR1 (4K5Y) 1.773

hGRM1 (4OR2) hGRM5 (6N52) 1.122 hGRM1*
(4OR2)

0.108* None4 – None5 – None6 –

hGRM5 (6N52) hGRM1 (4OR2) 1.207 hGRM5*
(5CGC, 5CGD)

0.875* None4 – None5 – hOPRM1
(4DKL)

2.369

hGABR1 (6W2Y) hGABR2
(7C7S)

1.057 hGRM1 (4OR2)
hGRM5 (5CGC)

1.537 None4 – None5 – hGRM1 (4OR2) 1.492

ySTE2 (7AD3) hGLP1R (6X19) 2.425 hOPRM1
(5C1M)
h5HT2C
(6BQH)

2.298 None4 – hADRB2
(3SN6)

2.968 hP2Y12 (4PXZ) 2.721

hFZD4 (6BD4) hPTH1R (6FJ3) 1.878 tADRB1 (5F8U,
2VTR)

2.916 None4 – hPAR1 (3VW7) – hPAR1 (3VW7) 2.179

hFZD5 (6WW2) hPTH1R (6FJ3) 1.817 hSMO
(4O9R,4QIN)

1.427 None4 – hADRB2
(2RH1)

– hSMO (4JKV) 1.461

hSMO (5V56) mSMO (6O3C) 1.717 hSMO (5L7I)* 0.745* None4 – None5 – h5HT1B (4IAR) 1.944

The minimum RMSD values are in bold and second best values are in italics. The human GPCRs are prefixed by h, mouse by m, zebra fish by z, common turkey by t,
yeast by y, and bovine by b.
*self template used; RMSD values were therefore not considered.
1GPCR-SSFE templates: hACM4 (5DSG), hHRH1 (3RZE), hDRD3 (3PBL), hPAR2 (5NDD), h ADRB2 (2RH1), hP2Y12 (4NTJ), bOPSD (1U19), hACM3 (4U15).
2GPCR-SSFE templates: hPAR1 (3VW7), zLPA6 (5XSZ), hP2Y12 (4NTJ), hCXCR4 (3ODU), hAA2AR (4EIY), hPAR2 (5NDD).
3GPCR-SSFE templates: mOPRD1 (4EJ4), hP2Y12 (4NTJ), hCXCR4 (3ODU), sOPSD (2Z73), hCCR5 (4MBS), hHRH1 (3RZE), hPAR2 (5NDD).
4GPCR-SSFE does not work on non-Class A GPCRs.
5GPCR-ModSim does not work sequences greater than 600 residues such as hGRM1, hGRM5, hGABR1, and hSMO.
6GOMoDo does not work for h5HT2A, hPACR, and hGRM1.

suggested templates were compared (Table 2). We chose to
compare RMSDs of TM regions only as loop modeling and
refinement within servers is a time taking process. GPCR-SSFE
was only able to generate models for class A GPCRs. While
GPCR-ModSim cannot accept input sequence greater than 600
residues therefore, could not model selected class C GPCRs
and one class F GPCR, i.e., SMO_human. Also, for all the
receptors from class A to F considered for this study, GPCR-
ModSim always selected the template from class A. Of 13 GPCRs,
five models built on the basis of templates selected by Bio-
GATS showed minimum RMSD with experimental structure
of the receptor. The four models constructed by GPCRM
(CRFR1_human, GRM1_human, GRM5_human, SMO_human)
were based on receptor’s own structure as a template therefore,
showing the minimum RMSD (Table 2). The RMSD comparison
shows the utility of our biophysical method to select the
appropriate templates for all classes of GPCRs.

To further extend the application of Bio-GATS we built
three models each for class A and C orphans through servers
as well as on the basis of Bio-GATS suggested templates.
The structural alignment of automated models and manual
model (based on Bio-GATS template) for GPR35_human showed
the differences in modeling TM1 by GPCRSSFE and TM6
by GPCRM. For P2RY10, the model built by GoMoDo was
distorted with disoriented TM1 (Supplementary Figure 1). For
class C orphans, there were significant differences among all
the automated and manual models as shown by structural
superposition (Supplementary Figure 2) and RMSD values
(Supplementary Table 3).

Case Study on OR1A1
Currently, there exists no close homolog for ORs as evident
from the phylogenetic tree between available GPCR templates
and OR1A1 (Figure 3). We used Bio-GATS to search for
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an optimal template for OR1A1. We selected OR1A1 as a
case study because it contains the maximum mutagenesis data
against six ligands among OR superfamily. The selection of
templates was done on the basis of resolution (Insel et al.,
2019), matching hydrophobicity profiles (Sh), and the BRS
score (Munk et al., 2019). We considered inactive structures
having ≤ 2.5 Å resolution, in accord with our earlier study on
OR1A2 (Jabeen and Ranganathan, 2020). The top three templates
selected by Bio-GATS for OR1A1 are human NK-1 or tachykinin
receptor 1, NK1R_HUMAN (PDBID: 6HLP), bovine rhodopsin,
OPSD_BOVIN (PDBID: 1U19) and the human thromboxane A2
receptor, TA2R_Human (PDBID: 6IIU). We also considered one
template (CXCR4_HUMAN, PDBID: 3ODU) that was showing
poor HC and low BRS score with OR1A1, for comparison, from

the downloadable Bio-GATS result summary table (available
from Bio-GATS Github page). All four structures belong to class
A GPCRs. 6HLP and 6IIU show greater than 35% sequence
identity with OR1A1 (Table 3).

Hydrophobic correspondence for each TM of the top two
templates 6HLP and 1U19 compared to OR1A1 are shown
in Supplementary Figures 3, 4, with the other two templates
to OR1A1 shown in Supplementary Figures 5, 6. All OR1A1
TMs have good HC with 6HLP TMs, except TM6. OR1A1
shows good HC with 1U19 from TM1 to TM5 but not for
TM6 and TM7, while it shares good HC with 6IIU in TM1,
2, 3, 5, and 6 but not in TM4 and TM7. The OR1A1 has
poor HC throughout with 3ODU except within TM1, 3, and
5. The hydrophobic moment was calculated for both the target

FIGURE 3 | Phylogenetic tree showing all available GPCR templates are distantly related to OR1A1. The selected templates for OR1A1 are shown in red color,
members having known structures for class A are in black, Class B1 are in green color, Class C are in purple, and Class F are in gold color.
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FIGURE 4 | The helical wheel plots are taken from Bio-GATS for the TM1 of the target sequence (OR1A1) and the templates [NK1R_Human (6HLP), OPSD_BOVIN
(1U19), TA2R_Human (6IIU), and CXCR4_Human (3ODU)]. The hydrophobic moment for OR1A1 and 1U19 are pointing in similar directions.

sequence as well as the template sequences. The hydrophobic
moment plots show the amphiphilic nature of the helices for
the target as well as templates (TM1 in Figure 4, TM2–7 in
Supplementary Figures 7–9). Amphiphilic helices are partly in
the membrane and partly exposed to the aqueous phase. We
used the Eisenberg scale and a window size of 11 as suitable
for membrane proteins (Eisenberg et al., 1984) to calculate the
hydrophobic moment of each helix. The hydrophobic moment
points in the direction of maximum hydrophobicity (shown by an
arrow within the hydrophobic moment plots) and it often faces
the lipid surface (Liu et al., 2004). A large hydrophobic moment
value shows the amphiphilicity of the helix perpendicular to
its axis (Eisenberg et al., 1982). TMs 5, 6, and 7 for OR1A1
are more amphiphilic as compared to the rest of the helices.
The hydrophobic moments for OR1A1 TMs 1, 2, 5, and 6 are
pointing almost in the same direction as 1U19 (Figure 4 and
Supplementary Figures 7–9). The incorporation of hydrophobic
moment information into the structural model building is
essential in the proper positioning of helices within the model
(Crasto, 2010).

An example of the downloadable Bio-GATS summary file,
with details of helix-wise alignment, HC comparison and
hydrophobic moment results, along with the overall GRoSS

TABLE 3 | Parameters used by Bio-GATS to predict top templates for OR1A1.

Rank Template Sequence
identity (%)

Resolution
(Å)

Sh Sb Sr St Srank

1 6HLP 37 2.2 11 6 1 18 2.91

2 1U19 20 2.2 8 8 1 17 2.75

3 6IIU 36 2.5 8 8 1 17 2.75

22 3ODU 25 2.5 2 −9 1 −6 1.54

Sequence identity is listed for comparison.

alignment, is provided for the OR1A1-1U19 target-template pair
in Supplementary Note 1.

For most queries, there best scoring template can be selected
for analysis, and the Bio-GATS alignment can be used directly
for model building and SBVS. For OR1A1, the top three
templates show very similar Srank scores (Table 3), suggesting
that they may all be suitable for the query sequence, due to
the evolutionary distance of OR1A1 (and other ORs in general)
from available templates (Figure 2). Further analysis such as
ligand profiling is required from our previous study on OR1A2
(Jabeen and Ranganathan, 2020), to see if all three templates are
equally suitable or one is better than the other two.
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We calculated the Tanimoto score between the known OR1A1
ligands and the ligand bound to the template structures, based
on PubChem fingerprints computed using Knime (Berthold
et al., 2009). Retinal (PubChem CID: 638015), the ligand for
1U19 (Figure 5 in blue) is more similar to the known ligands
for OR1A1 followed by ramatroban (PubChem CID: 123879,
Figure 4 in green) in 6IIU and netupitant (PubChem CID:
6451149, Figure 5 in gold) in 6HLP. We also compared the ligand
profile for the lower scoring 3ODU and OR1A1. An isothiourea
derivative, ITD (PubChem CID: 25147749, Figure 5 in pink),
the ligand for 3ODU, did not match with any OR1A1 ligand
(Figure 5), listed in listed in Supplementary Table 4 and is clearly
not suitable for OR1A1.

The available structure for 6HLP is not complete, also the
ligand profile for netupitant does not match with OR1A1 ligands.
The 2nd best template 1U19 possesses a complete structure and
contain a hydrophobic ligand that matches with OR1A1 ligand
profile. It has the same resolution as 6HLP and Sb (8) is also
better than that of 6HLP. Therefore, we selected 1U19 as a final
template. To validate the Bio-GATS template selection, we built
the homology model based on the suggested template (1U19)
and performed molecular docking with known OR1A1 ligands
having mutagenesis data and inspected whether we are able to
recover the mutagenesis residues or not. For comparison, we also
built a model with a template showing poor correspondence with
OR1A1 in terms of Sh, Sb and ligand profile.

We built models for OR1A1 based on 1U19 and 3ODU
(template showing low Srank, and mismatched ligand profile),
to differentiate between good and bad templates. We built

FIGURE 5 | Ligand profile for OR1A1 and selected templates. The similarity of
OR1A1 ligands with: retinal (from 1U19) is represented in blue color, netupitant
(from 6HLP) is in gold color, ramatroban (from 6IIU) is represented in green
color, and ITD (from is represented in pink color). OR1A1 ligands from 1 to 51
are listed in Supplementary Table 4. Tanimoto scores between OR1A1
ligands and the template ligands range from 0.1 to 0.7 (in bold).

50 models using each template. The models with minimum
Modeller objective function were selected for mutagenesis data
analysis by molecular docking. Currently, OR1A1 has site-
directed mutagenesis data for 13 sites for six ligands. Five
positions 3.36, 3.37, 3.40, 4.56, and 5.46 are involved in
(S)-(-)-citronellol (PubChem ID: 7793) and (S)-(-)-citronellal
(PubChem ID: 443157) binding, 11 positions 3.34, 3.36, 3.37,
3.39, 4.53, 4.56, 5.46, 6.47, 6.48, 7.41, and 7.42 are important
for (S)-(+)-carvone (PubChem ID: 16724) and (R)-(-)-carvone
(PubChem ID: 439570) binding, and positions 6.48 and 6.55
are crucial for musk tibetene (PubChem ID: 67350) and musk
xylene (PubChem ID: 62329) binding to OR1A1. Overall, seven
positions 3.36, 3.37, 6.48, 6.55, 7.41, and 7.42 are part of the
orthosteric binding site of GPCRs.

We downloaded the structures for these six ligands from
PubChem and docked them to the predicted binding pocket of
OR1A1, selected on available mutagenesis data. After docking
(S)-(-)-citronellol and (S)-(-)-citronellal, we recovered 5/5 sites
with the 1U19-based OR1A1 model but only 2/5 sites with the
3ODU-based OR1A1 model. Upon docking (S)-(+)-carvone and
(R)-(-)-carvone, we were able to recover 6/11 sites with a 1U19-
based model but only 3/11 sites with a 3ODU-based model.
Docking musk xylene and musk tibetene into the binding pockets
of OR1A1 models resulted in the recovery of both sites with a
1U19-based model and just one site using a 3ODU-model. In
summary, we were able to recover maximum mutagenesis sites
with the 1U19-based OR1A1 model (Supplementary Table 5).
Thus, comparing the ligand profile of the target and candidate
templates might be a useful measure in validating an appropriate
template, in addition to the other measures. Mutagenesis data
might also help in refining the predicted binding pocket of the
model and has previously been incorporated to improve GPCR
homology models in the literature (Ivanov et al., 2009; Perry et al.,
2015).

We also used GPCR modeling servers to select the
templates for OR1A1 and downloaded the generated alignment.
Unfortunately, GOMoDo, and GPCR-ModSim servers did not
permit submission of the query sequence therefore, results from
these two servers are not included in the current study. GPCR-
SSFE did not work for OR1A1 as the sequence did not match
with the HMMER2 generated profile. Both GPCRM and GPCR-
I-TASSER suggested AA2AR (PDBID: 3EML, resolution: 2.6 Å)
as the top template. 3EML has resolution >2.5 Å and is not
considered by Bio-GATS, although the high resolution AA2AR
template, 5IU4 was identified as the 5th ranking template (in the
result summary table, available from Bio-GATS Github page).
The alignment generated by the two servers and Bio-GATS
are shown in Supplementary Figures 10–12. The TM6 center
residues were not aligned within the GPCRM and GPCR-I-
TASSER server generated alignments but it was aligned properly
by Bio-GATS. The Bio-GATS generated alignment needs manual
adjustment within loop regions before proceeding to the model
building step (Supplementary Figure 12).

Bio-GATS Features
Bio-GATS is connected to a local data file which contains
manually curated 814 GPCR sequences, their TM definitions,
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PDBIDs of currently available 443 GPCR structures, their
conformation, resolution, and query coverage in terms of
completeness of the structure. Bio-GATS provides three main
features to the users. Firstly, the user can retrieve the top three
templates for the queried sequence by clicking on the search
button (Figure 6).

The top three templates are retrieved on the basis of three
biophysical parameters, namely the resolution, hydrophobicity
profile, and BRS score. The user can navigate among
inactive, active, and intermediate conformational states as
indicated in GPCRdb. The choice for selecting from a list
of high resolution (≤ 2.5 Å) structures is also provided
(Figure 7). For some receptors, there exist multiple PDBs
as in the case of OPSD_BOVIN, with 44 PDBs available.
For such a scenario, only high-quality structures were
shortlisted. The quality of the structure was determined on
the basis of resolution and completeness of the structure

(query coverage >75%). Hence, for the search template
option, high-quality structures for 54 receptors in inactive,
34 receptors in active, and 19 receptors in intermediate
conformations were considered. A detailed report (shown
in Supplementary Note 1) with alignments and helix-wise
HC and hydrophobicity moment of each target-template
pair can be downloaded for comparison and data/figure
extraction. A comprehensive data table with all scoring
parameters for all templates considered is also available
for further analysis (examples available from Bio-GATS
Github page).

For consideration of options other than resolution, HC, and
BRS score for template selection, the browse functionality is
available, as an advanced feature in Bio-GATS. Within this
feature, the expert user might browse for the best template
among the complete list of 76 receptors with 443 available
PDBs. In addition to the parameters considered earlier, the

FIGURE 6 | The main interface of Bio-GATS. Automated selection of templates can be done by clicking on the search template button.
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browse template page provides sequence identity and TM-wise
sequence identity for each template (Supplementary Figure 13).
The sequence identity is calculated through a locally installed
BLAST alignment. Also, all the available PDB entries, their
resolution, and query coverage for each receptor can be displayed
for comparison purposes (Supplementary Figure 14). The
Browse template feature thus lists comprehensive biophysical
parameters comparing the query sequence to all available
templates, which might also help the user in selecting multiple
templates. HC between the target and the template within
the search and browse template features are based on TM
definitions derived from the GRoSS alignment (Cvicek et al.,

2016). For customized TM definition, a third feature, the
SSD calculator, has been added to Bio-GATS, where HC is
calculated based on user-defined TM definitions for both the
target and the template (Supplementary Figure 15). This feature
is also useful for GPCR sequences that are not present within
the curated data.

The hydrophobicity plots can be visualized and downloaded
for each selected target-template pair (Supplementary Figure 3).
The helical wheel plots can also be shown which might help
the user in identifying the helical amphiphilicities (Figure 3).
Also, the center residue-based TM alignment between the
target and the template can be visualized and downloaded

FIGURE 7 | The Search template window with options including GPCR conformation (state) and resolution.
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(Supplementary Figure 16). The full-length alignment between
the target and the selected template can also be downloaded
in FASTA format for editing using available programs such as
MEGA (Kumar et al., 2016), and AliView (Larsson, 2014), or
directly building homology models through online servers such
as GOMoDo (Sandal et al., 2013) or locally installed independent
programs, for instance, Modeller (Webb and Sali, 2017). All
these options are available from the different Bio-GATS windows.
Further, a summary report (Supplementary Note 1) with the
full-length alignment, TM-wise alignment, HC plots, and helical
wheel plots of the target-template pair can be downloaded for
detailed analysis and for use in reports and publications.

CONCLUSION

The existence of low sequence identity among available GPCR
structures and sequences particularly OR sequences demands
additional parameters for template selection. HC, similarities
within the GPCR hotspot residues and matching the target-
template ligand profile might serve as additional local parameters
for GPCR template selection. Further, the incorporation of
mutagenesis data might be helpful in refining GPCR homology
models. Bio-GATS provides a convenient and user interactive
way of selecting an appropriate template for a target GPCR,
based on hydrophobicity profile and hotspot residue similarity
while displaying global sequence identity as well as TM
sequence identity for more advanced usage. The tool provides
a comprehensive biophysical comparison between a target
sequence and all the available templates which might assist in
selecting more than one templates, commemorating Chothia’s
pioneering work in structural bioinformatics.
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