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Abstract: This brief review highlights systematic progress in the design of synthetic glycolipid (neo-
glycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and
gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar
head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes,
they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability.
In order to obviate the necessity for these additional stabilizing ingredients, recent investigations
have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has
provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two
hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular
arborescent neoglycolipid syntheses coined glycodendrimersomes.
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1. Introduction

A large number of classical therapeutic drugs have limited clinical efficacy due to their
constrained capacity to reach the targeted tissues or because they are linked to harmful
toxic effects at the large doses required to compensate for these weaknesses. Drug delivery
through encapsulation into liposomes has been a real breakthrough in improving the thera-
peutic index of several drugs, particularly in cancer where liposomes were first applied [1].
Liposomes are nanometer-size nanoparticles, often spherical, capable of incorporating
either hydrophobic or hydrophilic molecules within the lipid bilayer or the aqueous cavity,
respectively. Several hundreds of drugs, including anticancer and antimicrobial agents,
chelating agents, peptide hormones, enzymes, proteins, vaccines, and genetic materials,
have been encapsulated into the aqueous or lipid phases of liposomes. One of the most
definitive demonstrations of these excellent properties has recently been widely observed
with the SARS-CoV-2 vaccines of Pfizer-BioNTech and Moderna encapsulating mRNAs.
Liposome technologies have greatly matured and they are now formulated into various
sizes, compositions, and other characteristics, including surface groups anchoring capable
of specific tissue targeting [1–3], such as carbohydrates [4]. In this way, they can selec-
tively deliver to the target site for in vivo applications, thereby, dramatically increasing the
therapeutic index of otherwise deleterious drugs

However, aqueous solutions of liposomes face physical and chemical instabilities
during long-term storage. Hydrolysis and oxidation of phospholipids and liposome
aggregations are the most common cause of their instabilities. Interestingly, carbohydrates
have been investigated for their ability to protect liposomes against fusion and leakage
during lyophilization processes. A particular aspect has been the discovery that sugars
offer cryo-protection [1]. Recent liposomal formulations, such as PEGylated liposomes
(stealth-liposomes), can extend blood circulation time and vary drug distribution in the
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body, which can also reduce possible cardiotoxicity. Several lipid structures are commonly
found in modern liposome formulations (Figure 1).
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Figure 1. Chemical structures of most common lipids in liposome formulations including some from the recently approved
Pfizer-BioNTech and Moderna SARS-CoV-2 liposomal vaccines. Abbreviations: DOTAP, 1,2-dioleoyl-3-trimethylammonium
propane; DPPC, dipalmitoylphosphatidylcholine; DOPA, 1,2-Dioleoyl-sn-Glycero-3-Phosphate; MSPC, monostearoylphos-
phatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; DSPC, distearoylphosphatidylcholine; HSPC, hydrogenated soy
PC; DMPG, l-α-dimyristoylphosphatidylglycerol; DMPC, 1-α-dimyristoylphosphatidylcholine; DOPC, 1,2-Dioleoyl-sn-
glycero-3-phosphocholine; DOPE, dioleoyl phosphatidylethanolamine; DSPG, distearoylphosphatidylglycerol; PEG2000-
DSPE, polyethylene glycol 2000-distearoylphosphatidylethanolamine.

2. Natural Glycolipids

Glycolipids are important members of the glycoconjugate family [4]. They are en-
dowed with natural amphiphilicity since they are composed of hydrophilic carbohydrate
head groups and lipophilic tails. They are essential molecules amongst biomolecules as
they are implicated in many complex biological processes. Several simple representatives
are also used as surfactants in detergency or emulsification technology. In the complexity
of biological interactions and cell-cell communications, their amphiphilicity is mostly re-
sponsible for their physicochemical activities and peculiar functions [5]. For glycolipids
of biological relevance, this is associated with their location in, out or within cell mem-
branes and their aptitude to cross it. More importantly, they can associate together on
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the cell surfaces to form colonies forming rafts that are responsible of fundamental mul-
tivalent carbohydrate-protein and carbohydrate-carbohydrate interactions [6–15] having
physiological significances [16].

Glycolipid-forming liposomes closely resemble that of cell membranes, albeit greatly
simplified. They have been comprehensively studied as models of cell membranes [4]. Re-
constitution of the membrane-bound carbohydrates within liposome bilayers has been one
of the most useful techniques in studying the functions of the membrane glycoconjugates.
Glycoliposomes are attractive as delivery systems due to their capacity to improve the
stability, therapeutic efficiency, and pharmacokinetic properties of drugs while reducing
their side effects and have the advantage of being biodegradable and nontoxic. In addition,
surface chemistry and lipid composition can be easily modified to address their precise
applications. Cell surface carbohydrates have specific interactions with their cognate pro-
teins, which play an important role in various biological recognition processes, such as
fertilization, metastasis, inflammations, and host–pathogen adhesion. Therefore, they serve
as attractive molecules for surface modification of liposomes with purpose for specific
biomedical applications.

Glycolipids can be classified based on their lipid moieties as glycoglycerolipids, gly-
cophosphatidylinositols, and glycosphingolipids. Glycolipids are found in membranes of
most living organisms and their carbohydrate components are directly involved with their
recognition/protection properties [17,18]. Microbial-derived glycolipids are increasingly
serving as models for sustainable and stable sources of highly diversified, yet simple and
economically viable glycolipids [19]. Together with other glycoconjugate members of cell
surface glycoproteins, they form the glycocalyx, which coats the cells that provide contact
with their environment. Carbohydrates and their cognate glycolipids and glycoproteins
at the cell surfaces are involved in key biological phenomena, such as tumor cell expres-
sion or markers, bacterial and viral infections, inflammatory responses, and immune cell
regulations. The precise role of the lipid tails of glycolipids, embedded within the lipid
bilayers of the cells, is not yet fully understood. Nonetheless, they play a major role in
correctly presenting carbohydrate antigens to other cells or to protein receptors, as well as
in membrane stability and overall organization. Although the lipid components of eukary-
otic glycolipids are mostly built around sphingolipids, those of prokaryotic organisms are
much more diversified and complex.

Analysis of the self-assembling properties of glycolipid analogues has highlighted
the crucial role of the conformations and molecular packing of the hydrophobic chains
in the understanding of the interfacial aggregation phenomena. The physicochemical
properties of artificial lipid architectures, mimicking the natural membrane composition,
are informative for their exploitation in designing more stable and viable version of biolog-
ically relevant vesicles [20] and for drug delivery [21]. Therefore, optimizing the molecular
architectures of glycolipids carbohydrate has been the subject of intense activities [22]. The
high polarity and biological recognition patterns of the carbohydrate moieties coupled
with the hydrophobic character of the lipid tails are both intimately related and make these
two molecular entities responsible for the nanomaterial properties they are endowed with.

3. Natural Glycosphingolipids (GSLs) and Gangliosides

More complex glycolipids form a special family identified by the sphingolipids (SLs)
and glycosphingolipids (GSLs) members that are common structural components of mam-
malian cell membrane. Sphingolipids are composed of a characteristic ceramide moiety
composed of an N-acylated sphingosine group (2-amino-4-trans-octadecene-1,3-diol). Glu-
cose or galactose glycosidically linked to the primary hydroxy group of the sphingosine
moiety provides the simplest glycosphingolipid family members: Glucosylceramide and
galactosylceramide (Figure 2). Linkage of a phosphorylcholine moiety results in sphin-
gomyelin, a very abundant membrane lipid. Further additions of oligosaccharides and sul-
fate groups to glycosphingolipids give rise to a broad range of complex glycosphingolipids,
such as sulfatide and α-galactosylceramide. Those with a capping N-acetylneuraminic acid



Molecules 2021, 26, 4281 4 of 21

are known as gangliosides. Giving their roles in neurodegenerative diseases, their studies
and syntheses have been largely documented [17,18].
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4. Neoglycolipids (NGLs) and Glycan Microarrays

Several strategies for surface glyco-functionalization of liposomes have been reported
in the latest decades. In particular, two strategies have been commonly used [4]. The
first one is a direct liposome formulation approach. First, it consists of the design of the
glycolipid ligand, followed by the preparation of liposomes in combination with other
principal lipids, a major weakness that the present review is hoping to emphasize. The
second approach, known as the post-functionalization approach, mainly involves grafting
the carbohydrate ligand onto the preformed liposomes via various simple and direct
ligation chemistries. Biomedical applications of glyco-functionalized liposomes generally,
include targeted drugs, genes, and antigens delivery.

Given the complexity of natural glycolipids, glycosphingosines, and gangliosides in
particular, several efforts have been directed at the syntheses of simpler analogs referred
to as neoglycolipids [22]. The problems associated with naturally occurring glycolipid
syntheses rely on: (i) Difficulty in synthesizing the stereo- and region-controlled side chains;
(ii) selective reduction of the sugar protecting groups in the presence of the sphingosine
unsaturation, isomerization, racemization and/or hydrolysis. Several groups have already
reported synthetic glycolipids [23,24].

The biological importance of multivalent and rather specific carbohydrate–protein
interactions has triggered a plethora of sophisticated methods for unravelling the exact
glyco-architectures of the glyco-ligands involved in the biological processes of interest.
However, there are major challenges in translating the identity and characteristics of
biological systems that operate through carbohydrate recognition. This is due to the
fact that glycans cannot be cloned, complex glycan structures are difficult to synthesize,
and oligosaccharides isolated from natural sources in homogeneous form are generally
available only in limited quantities. In addition, it is well-recognized that carbohydrate-
protein interactions are generally weak. The pioneering work of the Feizi’s group in
the creation of neoglycolipids (NGLs) has paved the way for the modern techniques
in glycan microarrays [25]. The technology involves conjugation of glycans, pure or as
mixtures, to an amino lipid of the phosphatidylethanolamine type to generate artificial
glycolipids (Scheme 1). The hydrophobic lipid tails of NGLs with amphipathic properties
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can be immobilized on solid surfaces for detection of their cognate binding proteins.
Liposomal formulation of NGLs can also mimic the glycans displayed at the cell surface
with their intrinsic mobility, thus can form high-avidity rafts. Most importantly, NGLs can
be incorporated into liposomes in a multivalent state for inhibition assays.
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Scheme 1. Typical neoglycolipds (NGLs) synthesis involving N-aminooxyacetyl-DHPE (AOPE) via oxime ligation to
reducing oligosaccharides obtained by either syntheses or isolated from natural sources; DHPE: 1,2-dihexadecyl-syn-
glycero-3-phosphoethanolamine.

Notably, the amphipathic properties of NGLs account for the absence of non-specific
binding on the glycan microarrays or in enzyme-linked lectin/immunoassays (ELLA/ELISA).
An additional advantage of liposomal formulation of NGLs is that they can be prepared in
aqueous buffers rather than in volatile solvent. Analogously to natural glycolipids, NGLs
derived from extracted glycan mixtures can be resolved on high-performance TLC (HPTLC)
plates for binding studies. Moreover, the good ionization properties of NGLs facilitate
sequences determination of the glycan moieties during mass spectrometry analyses.

Several other techniques exist toward the syntheses of more simple and unnatural gly-
colipids. Amongst these, the efforts of the Tiamaki’s group toward the preparation of lipid
tails harbored on aromatic scaffolds are notable (Scheme 2) [22]. They were synthesized
using typical glycosyl donors, such as the peracetylated mannopyranosyl trichloroace-
timidate, and (1) aromatic lipid tails (2–4) using Lewis acid catalyzed glycosidation. The
glycolipids could be easily incorporated into liposomes of L-α-phosphatidylcholine which
were fully characterized and purified by gel-permeation chromatography. The liposomal
formulation could be prepared by both conventional techniques, i.e., the injection method
or the thin film method. Uniform and unilamellar vesicles of ~130 nm were readily ob-
tained by several passages on a membrane extruder (100 nm). The sugar moieties of the
synthetic glycolipids possessing a hexamethylene spacer (6) were clearly accessible on
the surface of the liposomes and interacted specifically with their cognate lectins (Ricin
for galactoside and Concanavalin A for mannosides) to give liposomal assemblies. The
agglutination of the corresponding glycoliposomes induced by lectins was determined by
turbidity analyses and particle size based on dynamic light scattering and laser diffrac-
tion methods. Liposomes possessing a shorter ethylene (5) or longer decamethylene (7)
linker gave poor lectin-induced agglutinates, indicating that the length of the aglycon
linkers were critical in the carbohydrate-lectin interactions. All together, these data formed
the basis for the author’s investigation on arborescent glycoliposomes (dendrimersomes)
(see below). Furthermore, the stability of the liposomes was determined by fluorometry.
After standing for 1 month in HEPES buffer at room temperature, the fluorophore used
(calcein) in the internal aqueous phase did not leak, indicating that no collapse of the
glycolipid-incorporated liposomes occurred under the conditions used. From dynamic
light scattering (DLS) analysis, neither aggregation nor change in the size distribution of
the dispersed liposomes was observed. Analogous mannosylated liposomal preparations,
incorporating the anti-cancer chemotherapeutic cytarabine (Ara-C) were recently shown to
possess immunomodulatory properties [21].
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Scheme 2. Synthesis of mannosylated neoglycolipids mounted on an aromatic scaffold [22].

An even simpler version for the preparation of a wide range of neoglycolipids was
published in the author’s laboratory [26]. It was based on the very efficient and versatile
radical induced (AIBN) thiol-yne reaction involving propynyl glycosides, such as com-
pound 8 and a series of alkanethiols (9, 10) (Scheme 3). When the reactions were performed
in a one-pot process using a slight excess of the alkane thiols, symmetrical thioglycerogly-
colipids were obtained (13, 16). More importantly, when the reactions were sequentially
accomplished with one equivalent of alkane thiols (9, 10) and the intermediate vinylic
thioethers isolated (11, 12), the second thiol additions could be executed with different
alkanethiols to afford unsymmetrical thioglyceroglycolipids (14, 15).
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Scheme 3. Neoglycolipids synthesized by sequential thiol-yne reactions afford lipids that may contain two different
hydrophobic tails [26].

Liposomes of 150–300 nm were obtained by solvent injection of their ethanol or
tetrahydrofuran (THF) solution in water. The resulting structures were analyzed by DLS
and atomic force microscopy (AFM). The glycosylated lipid nanoparticles showed good
stability in water. Alternatively, giant soft unilamellar vesicles were also obtained by film
hydration and visualized by differential interference contrast microscopy (DIC). Incor-
poration of a hydrophobic dye (Nyle Red) to the solution prior to evaporation allowed
visualization by confocal microscopy [26]. Finally, the biological functions of the newly
formed glycolipid vesicles were evaluated by multivalent carbohydrate–protein binding
interactions using concanavalin A (ConA) for the mannolipids. Agglutination assays and
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the binding of the mannoglycolipid by dendritic cells (DCs) induced an increase in DCs
immunostimulatory potential. Importantly, no changes in cells viability at tested doses
were observed. Moreover, the mannosylated liposomes were investigated as a potential
method to improve the plasma stability of peptide-based drugs, such as the kappa opioid
receptor selective antagonist dynantin, and the NOD2 innate immune receptor ligand
muramyl dipeptide (MDP). The combination of MDP with the glycolipid led to better
peptide entrapment, which greatly improved its plasma stability [27,28].

5. Neoglycoliposomes Bearing Arborescent Architectures

The structures of natural glycolipids and neoglycolipids described thus far were es-
sentially built from classical approaches utilizing one hydrophilic sugar head group and
two lipid tails, as seen in Figure 1 for liposome precursors. In the next sections, these
“standard” molecular architectures will be referred to as being of a 1:2 ratio (one sugar: two
lipid tails). In addition, most liposomal formulations based on the above glycolipids also
contained these compounds in order to stabilize the vesicles, including cholesterol. Until
recently, there have been only scarce examples challenging this avenue [29]. In light of the
various successes encountered with glycodendrimers as multivalent display for improved
carbohydrate-protein interactions [6–15], the concept was extended to a new family of
glycolipids exposing arborescent architectures. This novel family of neoglycolipids has
been coined as “glycodendrimersomes” [30–32]. The roles of the newly created arbores-
cent architectures have been to increase the liposomal stability, their binding affinity, the
carbohydrate distribution/localization, and to avoid the use of common lipid additives,
such as cholesterol and egg yolk components.

One early example was designed to compare the relative “multivalent” efficacy be-
tween glycodendron peptides built on the complex sialyl Lewis X (sLex) tetrasaccharide and
its liposomal equivalent [33]. First, the sLeX glycodendrons were synthesized on L-lysine
scaffolds according to Scheme 4. Initially, the three amine groups of the lysine dimer (17)
were coupled with the homobifunctional spacer ethylene glycol bis(succinimidylsuccinate)
(EGS, 18) to provide trimeric active ester 19. After HPLC purification of the EGS-modified
peptides with one N-hydroxysuccinate function per EGS left unreacted, the trimeric 19 was
next grafted to glycylamine derivatives of sLex (20) in a second step to give trimeric sLeX

(21) (dimer not shown). The analogous sLex glycolipid 25 was prepared using dimyris-
toylphosphatidylethanolamine (DMPE, 22) coupled to disuccinimidyl suberate (DSS, 23)
as a homobifunctional spacer to afford intermediate active ester 24, which was then treated
with sLex glycylamine 20 to give the final sLex glycolipid 25. The liposomes were prepared
using egg yolk phosphatidylcholine. The vesicle diameters ranged from 36 nm to 97 nm
with decreasing sLex-DMPE content.

The set of multivalent sLex was evaluated using three types of binding assays to
block receptor mediated hepatocyte HepG2-cells binding: soluble anti-sLex monoclonal
antibody (CSLEX1); immobilized E-selectin; activated human umbilical vein endothelial
cells (HUVECs). Compared to the monovalent sLex (20), the inhibition powers of both
sLex dimer (not shown) and trimer 21 were enhanced up to 50-fold for cell binding to
the soluble antibody, and that of sLex-liposomes made from 25 by 7 orders of magnitude,
i.e., ~3 × 10−11 M for 50% inhibition (IC50). The inhibition activity against immobilized E-
selectin was enhanced only 3-fold for the dimer and 10-fold for the trimer (21) but 5 orders
of magnitude for sLex-liposomes containing 25, respectively. A similar tendency was ob-
served in the HUVECs assay. Compared to monovalent sLex (20) used as a reference point,
the relative efficiencies of the dimer and the trimer (21) were one and two, respectively, but
about 20,000 for sLex-liposomes resulting from 25. It was concluded that the multivalency
of the sLex-ligands prepared is an essential but not sufficient precondition for a high inhibi-
tion potency. Additionally, the structural properties of inhibitors determine their binding
behavior, which must be considered for the design of potential therapeutic probes.
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Scheme 4. Detailed synthesis of mono- (20), dimeric- (not shown), and trimeric (21) glycodendrons of the biologically
relevant sialyl Lewis X (sLeX) antigen and comparison to its corresponding neoglycolipid analog 25 [33].

True examples of glycodendrimersomes bearing 2:2 and 4:2 sugars to lipid ratios were
described as early as 2008 by the team of Schuber et al. [34]. In that study, the authors
evaluated the influence of the sugar valency for the targeting of human dendritic cells using
mannosylated liposomes. The development of new generations of vaccines necessitates an
efficacious delivery of the antigenic portions to antigen-presenting cells (APCs) such as
dendritic cells, known to harbor mannopyranoside receptors (DC-SIGN) [35]. The lipid
portion of these compounds was prepared in six steps starting from glycerol, tetraethylene
glycol, and oleyl alcohol to afford lipid 26 (Scheme 5). Carbodiimide (DCC, NHS, CH2Cl2)
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coupling with peracetylated mannoside 27 gave conventional glycolipid 28, having a sugar
to lipid ration of 1 to 2, after sugar deprotection (K2CO3, MeOH). Similar treatment with
mannosyl dimer (29) and tetramer (30) afforded neoglycolipid 31 and 32 having the 2:2
and 4:2 sugar to lipid ratios, respectively.
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Scheme 5. Syntheses of manno-glycerolipids harboring one (28), two (31), and three (32) sugar moieties, respectively [34].

The neoglycoliposomes were prepared by mixing egg yolk phospholipids L-α-
phosphatidylcholine (PC), L-α-phosphatidyl-DL-glycerol (PG) and cholesterol (75/20/50
molar ratio), in chloroform with the appropriate mannosylated lipid (28, 31, 32) at 0–16 mol%
mannose content. In their study, the authors compared the interaction of plain (70 nm) and
mannose-targeted liposomes (110 nm), containing mono-, di-, and tetraantennary mannosyl
lipid derivatives, with human monocyte derived immature dendritic cells (iDCs).

Efficient mannose receptor-mediated endocytosis by iDCs was observed for the man-
nosylated liposomes. In contrast, only non-specific interaction with little uptake was
observed with plain liposomes. As anticipated, liposomes prepared with multibranched
mannosylated lipids (31, 32) displayed higher binding affinity for the mannose receptor
than vesicles containing the mono-mannosylated analog (28). Interestingly, it was found
that di-mannosylated ligands (31) present at the surface of the liposomes were as efficient
as tetra-mannosylated ones (32) in uptake/endocytosis. Importantly, once presented as
multivalent glycodendrimersome, high generation dendrimers are not an absolute require-
ment for the design of vaccines. In addition, the mannose-mediated uptake of liposomes
did not result in an activation of iDCs.

Another investigation by the group of Guo et al. described the synthesis of glycoden-
drimersomes presenting a ratio of 3:2 of the E-/P- selectin ligands 3′-sulfated Lewisa, an
important interaction involved in inflammatory processes [36]. For this purpose, they used
a pentaerythritol scaffold (34) and the arborescent glycolipid was constructed according to
Scheme 6 using compounds 33–38 as precursors. The glycodendrimersomes were prepared
using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, 55 mol%), cholesterol (40 mol%)
and 39 (5 mol%). The sizes of the liposome, with, and without, sugar, after extrusion were
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120 and 110 nm, respectively as measured by DLS. The glycoliposomes were stable for at
least a month when incorporated with 5 to 15 mol% of the glycolipid.
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Lewisa trisaccharide in a trimeric dendron [36].

Self-assembling of arborescent neoglycodendrimersomes harboring α-C-linked galac-
topyranosides mounted on a 2,2-bis(hydroxymethyl)-propionic acid (bis-HMPA) scaf-
fold ending with palmitic acid dimers has been described by the Gillies group [37]
(Scheme 7). The glycolipid hybrid was made to mimic the natural KRN 7000 immunos-
timulant (Figure 2). The synthetic strategy involved the initial preparation of a distearyl
glycerol lipid tail (40) functionalized with an azide group for further coupling using the
CuAAC click chemistry. The glycodendrons, such as the octameric 41 were composed
of a series of polyester dendrons of G0–G4 generations having peripheral amine groups
and an alkyne functionality at the focal point. The amines were then conjugated to a
C-linked α-D-galactoside derivative (α-Gal) ending with an isothiocyanate functionality to
afford amphiphiles 42 having 2–16 α-Gal moieties, respectively. The structure represents
an interesting NGL with an 8:2 ratio of the hydrophilic to hydrophobic tail, respectively.
Aqueous self-assembly using the injection method resulted in vesicles for the G0 through
G2 generations and micellar structures for the higher G3 and G4 generation. Again, the
authors concluded that the hydrophilic–hydrophobic balances were determinant factors
for these amphiphilic structures.

A versatile and overwhelming approach to glycodendrimersomes has been described
by the Lindhorst’s group [38]. The powerful strategy is based on the post-synthetic trans-
formation of pre-formed glycodendrons having suitable functionalization at the focal point.
Given the wide range of available glycodendrons in the literature [6–15], the methodology
would be readily amenable to scalable, complex, and useful liposomes having arborescent
glycoarchitectures. An example is depicted in Scheme 8 [38]. It involved the use of readily
available carbohydrate derivatives having an alcohol function in the aglyconic moiety, such
as in mannoside 43. Initial treatment with methallyldichloride (3-chloro-2-chloromethyl-1-
propene) (44) (NaH, THF) gave rise to dimer 45. Reductive ozonolysis (O3, NaBH4, CH2Cl2,
MeOH) afforded alcohol 46, which upon a second coupling with methallyldichloride, pro-
vided tetramer 47 in 63% yield. Reductive ozonolysis as above followed by allylation
gave 48 (69%), suitable for a cross-metathesis reaction using the ruthenium based Grubbs’
catalyst. Indeed, cross-metathesis with allylated glycerolipid 49 (38%), hydrogenolysis
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of the resulting trans-double bond (H2, Pd-C, MeOH, 94%) and full acid-catalyzed acetal
deprotection (TFA, H2O, 9:1) gave mannosylated glycodendrimersome 50 in 98% yield.
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Scheme 7. Amphiphilic arborescent neoglycolipid (glycodendrimersome precursor) (42) built from known 2,2-
bis(hydroxymethyl)-propionic acid (bis-HMPA), palmitic acid (40), and an α-C-linked galactopyranoside analog of the
immunostimulant KRN7000. Dendron of generation three (G3) is illustrated with eight sugars [37].
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6. Modular Approach to Arborescent Glycoarchitectures

Another widely applicable and adaptable synthetic strategy toward arborescent gly-
colipids was achieved through the collaboration of the Roy’s and Percec’s groups [30–32].
The approach is depicted in Figure 3. It involved a modular combination of subunit frag-
ments based on the judicious choice of the core scaffolds, such as pentaerythritol (34) or its
equivalent amine branch tris(hydroxymethyl)aminomethane (TRIS). This was followed by
the build-up of a wide range of lipid moieties elaborated on 3,5-dihydroxybenzoic acid, its
3,4-dihydroxy counterpart, or 3,4,5-trihydroxybenzoic acid (gallic acid). Short PEGylation
on suitably branched scaffold next afforded the often necessary hydrophilic branches useful
to interspace the sugar residues that are best post-assembled using click chemistry. In
their initial settings, the authors constructed 7 libraries composed of 51 self-assembling
amphiphilic Janus dendrimers. Their self-assembly by simple injection of THF or ethanol
solution into water or buffer and by hydration were ascertained by a combination of
methods including dynamic light scattering, confocal microscopy, cryogenic transmission
electron microscopy, Fourier transform analysis, and micropipette-aspiration experiments
to assess mechanical properties. These assemblies were stable over time in water and vari-
ous buffers, exhibited narrow molecular-weight distribution, and displayed dimensions
that were programmable by the concentration of the solution from which they were injected.
These results demonstrated, for the first time, the candidacy of glycodendrimersomes as
new mimics of biological membranes with programmable glycan ligand presentations, as
supramolecular lectin ligands, and the possibility to use them as vaccines and targeted
delivery devices.
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Figure 3. Synthetic strategy and necessary fragments used in the modular construction of seven
libraries of 51 dendritic neoglycolipids [30–32].

A detailed depiction of the modular synthetic strategies is illustrated in Scheme 9.
Three sets of sugar derivatives were used as either propargylated aglycons or as extended
azides: Galactosides (Gal) 51, 52; mannosides (Man) 53, 54; and lactosides (Lac) 55, 56.
They could be coupled to either of their functional lipid counterparts 57–62 using copper-
catalyzed azide-alkyne cycloaddition (CuAAC). As stated above, 7 libraries of 51 com-
pounds could be produced using a family of lipids. These libraries revealed a diversity of
hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles,
aggregates of Janus glycodendrimers, and rodlike micelles, and glycodendrimermicelles,
cubosomes, and solid lamellae.

An additional advantage of the synthetic strategy was the capacity to construct vari-
ous families of architectures that were coined: Single-single; twin-twin; and twin-mixed
(Figure 4) [31]. The single-single motif is essentially reminiscent to the one described above
in Scheme 2 [21,22], and recently used in drug delivery [21]. The twin-mixed glycoden-
drimersome topology was shown to be most efficient in binding three different lectin
species from plants, bacteria, and humans. This behavior was likely due to better acces-
sibility of the sugar moiety by the large multivalent lectins. In their third paper [32], the
authors demonstrated an intriguing property originating from the lactosylated twin-mixed
glycodendrimersome against the wild-type human galectin-1 (WT hGal-1). The WT hGal-1
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is a homodimeric lectin, the two subunits of which being held together by hydrophobic
protein-protein interactions. An engineered version of the hGal-1 was produced in which
the two protein subunits were covalently linked together by peptide bonds. When the lacto-
sylated liposomes were allowed to agglutinate the lectins, through the usual cross-linking
abilities, the wild-type dimers dissociated into monomeric protein that could no longer be
agglutinated over time. These results clearly demonstrated the strong affinity/avidity of
such glycodendrimersomes. Examples of the construction of typical twin-mixed structures
are illustrated in Scheme 10.
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Scheme 10. Detailed synthesis of twin-mixed neoglycolipids [30–32].

Detailed structures of a family of three different sugars Gal (51), Man (53), and Lactose
(55, 63) having aglyconic azide group that was coupled to inter-spaced Pegylated alkyne
precursor (64) using the click reaction CuAAC are depicted in Scheme 10 to provide twin-
mixed glycolipids 65–68. Briefly, propargyl alcohol 69 was treated with succinic anhydride
(70) to give monoester 71 in 86% yield, which upon treatment with carbodiimide (DCC),
gave anhydride 72 (92%). Treatment of TRIS (73) with acetone under acidic conditions
afforded 74 in 60% yield. Condensation between 72 and 74 provided intermediate 75 in
92% yield. Further carbodiimide coupling with PEGylated gallic acid 76 gave 77 (94%).
Acetal methanolysis of 77 under acidic conditions gave diol 78, which after another round
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of carbodiimide coupling with lipid acid tail 79 provided key alkyne-bearing interme-
diate 64 (91%). The syntheses were also extended to the 3′-O-sulfated lactoside analog
63 [39], a useful modification that allows further selectivity with the family of galectin
receptors [40–42].

Arborescent neoglycoliposomes synthesized until recently were prepared via copper-
catalyzed azide–alkyne cycloadditions (CuAAC) to facilitate the anchoring of the unpro-
tected sugar moieties to the ester-sensitive lipid tails. Janus glycodendrimersomes had
hydrophilic linkers contained three to four oligo(oxyethylene)s that were directly connected
to the sugar. To expand the scope of these glycoarchitectures, automated solid-phase glycan
assembly (AGA) allowed access to more complex glycans. Therefore, oligosaccharides
obtained by AGA and equipped with an N-pentyl amino hydrophobic linker that facilitates
the conjugation to surfaces or biomolecules are readily available. However, these hydropho-
bic N-pentyl amino linker attached to oligosaccharides did not fulfill the most fundamental
structural requirement for the construction of arborescent NGLs by the click chemistry
already elaborated. Fortunately, ample literature exists demonstrating that the sugar built
with the isothiocyanate group in the aglyconic portion could also be directly used for
conjugation to amine-containing nanomaterials and proteins via a thiourea functionality.
The strategy has been extended to the usual saccharide described above together with
oligomannosides bearing either α-(1-2) and α-(1-6) linkages (69–76) (Scheme 11) [43]. The
resulting Janus glycodendrimersomes, prepared in this way, enabled the binding of the
glycans to their associated lectins, as previously.
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7. Arborescent Neoglycolipids as Detergents

The study of integral membrane-bound protein structures and functions is trouble-
some due to the difficulty in extracting and handling these highly lipophilic proteins.
Classical examples are the family of G protein coupled receptors (GPCRs). Aqueous sol-
ubilization, necessary for common biophysical analysis (ex. NMR), generally requires
a detergent to shield the large lipophilic surfaces of the native proteins. Detergents are
valuable tools for membrane protein manipulation. The micellar aggregates formed by
detergent have the ability to encapsulate the hydrophobic domains of membrane pro-
teins. The resulting protein−detergent complexes become compatible with the aqueous
environments, making structural and functional analyses feasible.

Many proteins remained difficult to investigate due to the lack of suitable deter-
gents. Chae and coworkers have introduced a class of arborescent amphiphiles with
hydrophilic groups derived from maltose (77, 78) (Scheme 12) [44]. Representatives of this
maltose–neopentyl glycol (MNG) amphiphile family showed favorable behavior relative to
conventional detergents, as manifested in multiple membrane protein systems, leading to
enhanced structural stability and successful crystallization. Therefore, MNG neoglycoam-
phiphiles represent promising tools for the structural analyses of membrane-bound protein.
Moreover, they recently also disclosed improve families of these interesting detergents as
exemplified by the mannitol-based amphiphilic compound 79 [45] and the highly branched
pentasaccharide 80 [46] (Scheme 11). The authors rationalized that the protein-detergent
complexes formed were smaller with these novel arborescent neoglyco- amphiphiles.
Several members of these families of detergents are commercially available [47].
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8. Arborescent Neoglycolipids Built from Cyclic Scaffolds

Other valuable approaches to self-assembling amphiphilic and arborescent glycoar-
chitectures based on cyclic scaffolds such as calix[4]resorcarenes and cyclodextrins have
provided interesting nanomaterials. For instance, a macrocyclic glycoconjugate having
four hydrophobic undecyl chains and eight oligosaccharide moieties (oligomaltose) on the
opposite sides of a calix[4]resorcarene macrocycle (83) has been described by the Aoyama’s
group [48]. It has been prepared from a range of maltooligosaccharide lactones (81) and
an octaamino derivative of the calix[4]resorcarene (82) (Scheme 13). The authors showed
that they form small micelle-like nanoparticles (d = 3 nm) in water based on dynamic
light scattering (DLS), gel permeation chromatography (GPC), and transmission electron
microscopy (TEM). Curiously, the micellar nanoparticles agglutinated in the presence of
Na2HPO4/NaH2PO4 forming aggregates up to 60–100 nm, as revealed by DLS as well
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as microscopy (TEM and AFM). The phosphate-induced agglutination processes could
be followed by surface plasmon resonance (SPR). Kinetic analyses demonstrated that the
phosphate-mediated inter(saccharide) interactions were significantly dependent on the
oligosaccharide chain lengths (n), becoming more favorable with increasing n’s.
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The attachment of biologically relevant carbohydrate head groups by covalent bond-
ing in several copies and at exact positions of cyclomaltooligosaccharides (cyclodextrins,
CDs) has been a highly productive and flexible strategy for the syntheses of multivalent gly-
conanomaterials [49]. The commercial availability of CDs in three different sizes (α-, β-, and
γ-CDs) combined with their hydroxyl groups of varied accessibilities and reactivity allow
excellent control of their regiochemical functionalization. “Click-type” ligation chemistries,
including copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC), thiol–ene coupling or
thiourea-forming reactions, have been systematically fulfilled to secure full homogeneity of
the resulting glycoconjugates. CD-based glycoconjugates constitute [49–51] key players in
studying and understanding the fundamental structural features deciphering multivalent
carbohydrate-protein recognition events [6–15]. The approach has also been applied using
chemoenzymatic glycan synthesis [52]. Nanometric glycoarchitectures, endowed with the
flexibility of adapting the nature and inter-saccharide distances and orientations in the
presence of their cognate receptors, such as lectins or capable of mimicking the fluidity of
biological membranes, have been particularly well-adapted by self-assembling amphiphilic
glycans. In addition, the role played by glyconanomaterials nicely positions them toward
applications in cancer therapies [53,54]. Moreover, such well-defined glycoconjugates are
useful for deepening our understanding of the sugar code [55].

Amphiphilic 7-membered β-cyclodextrins with alkylthio chains at the primary-hydroxyl
side and galactosylthio-oligo-(ethylene glycol) units at the most reactive secondary-hydroxyl
groups, pointing the bottom segment of the cone-shaped CD, have been clear exam-
ples of the role played by a proper balancing of the hydrophilic/hydrophobic partners
(Scheme 14) [56,57]. These molecules formed nanoparticles and vesicles having strong
multivalent effects in their binding to the bacterial lectin PA-1L from Pseudomonas aerug-
inosa. The balance between hydrophobic and hydrophilic components in amphiphilic
β-cyclodextrins, targeted by receptor specific glucoside or galactoside groups possessing
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either hexyl (84) or hexadecyl (85) alkyl chains have been shown to dramatically influence
the structural properties of these systems. The dissimilar amphiphilic features of single
cyclodextrins generated micellar aggregates and vesicles with an internal aqueous compart-
ment able to encapsulate guests. Small-angle light scattering (SAXS), cryo-TEM and AFM
investigations describe the size and shape of these self-assembling structures. Selective
binding interactions with the carbohydrate moieties of the nanoassemblies by a PA-1L
lectin with 85 has been successfully demonstrated using time-resolved fluorescence.
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An exhaustive review on amphiphilic β-cyclodextrins harboring arborescent archi-
tectures have been described by the group of García Fernández et al. [58]. Moreover,
analogous constructs were recently described using doxorubicin-loaded (Dox) glycoden-
drimersomes armed with mannopyranoside dendrons that are used as targeting compo-
nents. They have been efficiently prepared from per-6-azido-β-cyclodextrin [59]. The
amphiphilic neoglycolipids were synthesized using short propionic or valeric anhydrides
at the secondary hydroxyl groups, while propargyl α-D-mannopyranoside was once again
appended by azide–alkyne cycloaddition (CuAAC). Once loaded with Dox, the resulting
Dox-glyconanomaterials were efficiently taken up via receptor-mediated endocytosis by
MDA-MB-231 breast cancer cells that overexpress the mannose receptor. After cellular
uptake, the low intracellular pH caused the release of DOX, which triggered apoptosis.
Based on dynamic light scattering (DLS) measurements, the propionic anhydride-modified
self-assembled formats formed nanoparticles with an average hydrodynamic size of 112 nm
(PDI, 0.109) that increased to 199 nm (PDI, 0.141) after Dox-inclusion. The particle size
and morphology of the liposomes were evaluated using transmission electron microscopy
(TEM), which showed nanoparticles having spherical shapes with an average diameter of
45 nm. The same materials incorporating both doxorubicin and amphotericin B were used
to target the delivery of the combined drugs into macrophage cells. The combination of
both drugs lead to enhanced anti-leishmanial therapeutic efficacy through a synergistic
effect [60].

9. Conclusions

The syntheses of arborescent neoglycolipids called glycodendrimersomes have been
described using primarily “click-type” chemical ligations, such as the copper(I)-catalyzed
azide-alkyne cycloaddition (CuAAC), radical-induced thiol-ene, aminooxylation, or thiourea
ligation. They can be readily built from simple scaffolds, such as glycerol, pentaerythritol,
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tris(hydroxymethyl)aminomethane, clyclodextrins, and calix[n]arenes. Interesting, the
chemical linkages between the hydrophilic sugar-head groups and the lipid tail seem to
play a crucial role in the overall nanometer size and stability of the resulting liposomal
formulations. Curiously, the data accumulated, thus far, point to an increased number
of hydrophobic linkers as preferred embodiments. In addition, as seen with glycoden-
drimers, too many branches (generation) do not necessarily resulted in better binding
carbohydrate-protein interactions. This is likely due to steric hindrances between too
closely compacted sugar residues, thus, rendering lectin recognition and binding less
favorable. In addition, the intrinsic mobility of the sugar head-groups can allow lipid-raft
formation, thus ensuring the essential multivalent contacts with their cognate protein
receptors. The design of twin-mixed glycoarchitectures is particularly appealing in this
regard. Moreover, the novel dendrimersomes appeared to be more stable than their conven-
tional counterparts and do not necessitate the use of “additional stabilizing ingredients”.
Clearly, the chemical/enzymatic syntheses of arborescent neoglycolipids are much faster
and simpler when compared to that of glycodendrimers which should be favored in the
design of multivalent glyconanomaterials.
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