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Introduction
Social networks have played an important role in spreading 
information, opinions, ideas, innovations, and rumors around 
the world.1 For this reason, several subjects are investigated 
through the analysis of societal networks, such as diffusion and 
influence models. One of the most widely used techniques for 
modeling diffusion processes is a cascade model. The active 
node v may attempt once to activate one of its adjacent active 
nodes with a probability of pv in cascading models beginning 
with seed nodes and continuing each step t. If it works, the new 
nodes will be launched in step (t + 1) and an identical opera-
tion shall be performed for each inactive node to activate them. 
Active nodes cannot attempt 2 activations of the same node, 
whether they are successful or not. This process will continue 
until a new node can no longer be activated.2-6

A number of social network analysis works have recently 
explored the diffusion of information. A widely prevalent basic 
probabilistic model of information propagation through net-
works is the independent cascade model (IC model). The IC 
model assumes that the activation of one node in the network 

does not influence the activation of another node, which may 
not always hold true in real-world scenarios. Moreover, the 
model assumes a fixed probability distribution for the propaga-
tion of information or influence through the network. The per-
formance of the IC model can be sensitive to the choice of 
parameters, such as the propagation probabilities or the seed 
nodes selected for activation. A set of relevant parameter values 
should be provided in advance for the IC model. However, 
knowing the likelihood of diffusion via links for a given net-
work in advance is typically difficult. It is therefore a key 
research question to identify diffusion probabilities using links 
from an observed set of data about information dissemination

Saito and colleagues have been studying the parameters of 
an independent cascade model. They used the EM algorithm 
to define the problem as a probability function and estimate 
the probability of the links.7 A timely asynchronous independ-
ent cascade model, where the diffusion probability depends on 
the timing of transport, was suggested by Guille and Hacid. 
Using machine learning methods, they were able to infer the 
diffusion probabilities based on features from Twitter’s Social 
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Network. These studies do not reveal the diffusion probability 
for each connection and model based on the user’s extracted 
features.8 Wang et al9 learned the probability of diffusion in the 
IC model by assuming that the message is spread between 5 
emotions and the diffusion probability differs from emotion to 
emotion. The issue of learning the diffusion probabilities for 
IC models is dealt with by Mashayekhi et al. They propose a 
weighted method for the estimation of diffusion probabilities, 
which takes into account an information from all previous cas-
cades within the network. Consequently, it is scalable against 
baselines, resulting in Mashayekhi et al.10

Even though there have been studies in the literature on IC 
model optimization using optimization techniques such as EM 
algorithms, diffusion probability is still tuned by a trial and error 
approach. GenIC used an IC model for the detection of cancer 
genes in colorectal cancer. In this study, diffusion probabilities 
were chosen by trial and error.2 The independent cascade model 
edge probability pv is usually selected by trial and error; but 
selecting pv properly can improve the model to get maximum 
influence in the network. Experiment design is a statistical 
method to reach the best value of variables with fewer experi-
ments.11 The underlying mechanisms of cancer, which may help 
to identify it more accurately, can be revealed in the regulatory 
network modules when analyzed quantitatively.12-14 The identi-
fication of cancer genes and their regulation is an important 
area of research in cancer systems biology.15-17 In this study, we 
try to optimize the value of pv for the independent cascade 
model. The proposed model will be applied to predict cancer 
driver genes in the regulatory network for colorectal cancer.

Methods
Gene regulatory network

Gene regulatory network events are of critical importance to 
various physiological and developmental processes within cells, 
where the macromolecules, such as genes and ribonucleic acid, 
are coordinated to create operational responses to a variety of 
conditions. A disruption in the regulatory relationship between 
molecules within a cell is one of the causes of cancer. Therefore 
it is possible to identify the cause of the disturbance through 
the study of the regulatory network.18 In order to build the 
gene regulation network in colorectal cancer (Figure 1), it was 
necessary to establish interactions and gene expression data 
(Table 1). We have used the dataset that was also used in 
Akhavan-Safar et al.2

Response surface methods (RSM)

Design of Experiment (DOE) is a method that allows experi-
menters to organize their experiments and identify the rela-
tionships between causes and effects. As it cuts down on the 
number of tests needed, DOE is widely used in multidiscipli-
nary scientific fields.19

As good ways to optimize process parameters, a number of 
experimental designs have been selected. RSM designs come in 
a variety of forms, including factorial design, central composite 
design (CCD), Box Behnken Design. and D-optimal design.20

Analysis of variance (ANOVA) is necessary to verify the 
model’s relevance and fitness since it clarifies whether the 
developed quadratic model has any real-world importance. It 
looked into the impact of process parameters and how they 
interacted. The propagation of error (POE) is taken into 
account to ensure the robustness of RSM designs. In experi-
ments where uncontrollable components (noise) are assumed 

Table 1.  The characteristics of the data obtained from the 
RegNetwork.2

Number Description Element

21175 All nodes used in the 
construction of the gene 
regulatory network

Node

150202 All regulatory interactions used 
in the construction of the gene 
regulatory network

Edge

1456 Transcription factors used in 
the construction of the gene 
regulation network

TF

19719 target genes used in the 
construction of the gene 
regulation network

Gene

149841 The “TF-gene” regulations 
used in the construction of the 
gene regulation network

TF-gene

361 The “TF”-“TF gene” self-
regulations used in the 
construction of the gene 
regulation network

TF-TF

Figure 1.  Network of the colorectal cancer gene regulatory network.
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to be zero, POEs—a measurement of the standard deviation of 
transmitted variability in the output response—are caused by 
changes in key controllable process variables.21

RSM makes the assumption that, within the experimental 
region, the relationship between the input and response varia-
bles is linear and constant. The best results from RSM are 
obtained from experimental designs that have a continuous 
response variable and few input variables. For intricate systems 
with lots of interacting components, it might not be appropri-
ate. The accuracy of the fitted response surface model may be 
impacted by experimental mistakes or noise in the response 
variable, as RSM is sensitive to these factors.

The RSM experiment provides a numerical model or equa-
tion describing the reaction as an expression of individual factors 
and levels. A few key pieces of information related to the system 
under investigation can be identified within this mathematical 
equation; for example, major factors, factor interactions, and cur-
vatures that indicate whether a response is linear in nature are 
identified. Another important indicator obtained from a math-
ematical model based on RSM is the change in direction and 
magnitude of factor levels to explore an emerging area for 
improved responses. This process improvement can be achieved 
using a model based on the steepest ascent. The steepest ascent 
will allow experimental progress to be made in specific directions 
with a view to assessing the potential for improving model per-
formance. It is crucial for the experimenter to use all information 
collected in this model that describes a definite response, rather 
than relying upon suspicion or speculating about what experi-
mental conditions will be applied in the future.

The starting conditions of an area that proves to have better 
test performance in the optimization phase of response may 
not differ much from a more desirable region. An introductory 
design that is essentially 2 levels of factorial test with repeated 
focal points may be used in the case of a linear RSM first-order 
model. However, 2 factors, 2 levels of factorial with center 
points, as shown in Figure 2, are also applied to a simple 5-point 
design. If there are only 2 important factors that have an impact 
on the required response. However, as is usually the case if the 
improved response region is not close to the original starting 
conditions, the amount and indication of the direct expressions 
in the equation below can be adjusted to specify the steepest 
ascent on the route which leads to 1. If the preliminary RSM 
test’s fitted model is linear, the response area Y shall be 
improved.

	 Y = b0  + b1 x1 + b2 x2 + ... bk xk		  (1)

Where b-value are parameter estimates that are unaffected 
by the factors’ scaling rule and characterize the scale and direc-
tion of the effects, and xi’s represent significant factor effects 
that are coded. Alternatively, if the desired response calls for 
minimization rather than maximization, it would be necessary 
to descend the path by the steepest descent. The units of 

measurement are removed by using coded variables, facilitating 
model interpretation. The lowest and highest values of all these 
factors are set at −1 and 1 respectively to decode the variables, 
while the midpoint level is coded as a zero value.22-24

Two-factor factorial design

A custom 2-level, 2-factorial design with 5 replicated center points 
has been used to assess the absence of fit, in order to test the sur-
face response and find a first order model. The 5-point design sup-
plies information about possible curvature of the response, which 
was unable to be retrieved from a 2-level factorial.

Considering the GenIC model, we choose factor levels as 
shown in Table 2. The response variable is the F-measure for 
the cancer driver gene (CDG) that the model can detect cor-
rectly. Using R and Python, experiments have been designed, 
statistical analyses have been performed and model predictions 
have been made.

Path of steepest ascent
The first-order linear model forecast from the RSM experi-
ment, which stated the connection between the response and 
the factors, was used to create a new set of experimental steps 
for determining the factor concentration for the experiment in 

Table 2. L evels of the RSM factor (+1/−1) and the zero state at the 
center.

Regent −1 0 1

Probability 0.3 0.4 0.5

Iteration 150 200 250

Figure 2.  Utilizing the duplicated center and corner points, a simple RSM 

design. The 2 factors, probability diffusion and iteration, have high, low, 

and mid-level, respectively, and are represented by +1, −1, and 0, in that 

order. Square symbol indicates the center points.
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the steepest ascent direction. In the fitted first-order model, it 
was necessary to take stages of sizes commensurate with the 
values of the |bi| parameter to reach a more optimal position 
on the steepest ascent route, in order to respond. Direction is 
according to the sign of b values.

The distance in steps from the RSM experiment’s center 
point was defined by a proportionality constant (ρ). The value 
of ρ is chosen by the experimenter and is frequently simply set 
to 1.25,26 To prevent achieving the value outside of the range of 
the probability of diffusion (0,1) in just a few steps, in this 
investigation, it was set to 0.5.

Experimental runs through the path

The route began at the RSM design space’s center and served 
as the starting point for the test’s steepest ascent before branch-
ing off to explore the surrounding area. To create a set of exper-
imental runs with various diffusion probabilities and iterations 
of the IC model, an order of steps with equal spacing along the 
path was chosen. According to the sign of the b-value terms in 
the equation of the linear model, factors in each step grew or 
decreased. By calculating the b1 and b2 parameters in the lin-
ear model’s equation, the amount of rise and decrease of the 
factors was determined.

Results
Response surface methods (RSM)

Factor RSM design.  The 2 factors, diffusion probability and 
iteration, were varied at 3 levels (coded as −1, 0, and 1) using 
an RSM model. For each set of conditions, tests were 

randomly conducted with 3 values of diffusion probability 
(high, medium, and low; specifically, 0.3, 0.4, and 0.5) and 3 
levels of iterations (high, medium, and low; specifically, 150, 
200, and 250), resulting in a total of thirteen runs. The 
response was the F-measure for the cancer driver gene 
detected in each trial. For the fitting of models and for the 
steepest ascent, this response was analyzed at all standard lev-
els. The response values were calculated using the 2 standard 
levels of factors with 2 repetitions for each 1 plus 5 center 
points that are shown in Table 3.

The model fit assessment for the response was conducted 
using R software. The overview of the system’s results sug-
gested that a 2-factor model should be applied, based on a sig-
nificant F-statistic. The linear fit has also been deemed to be a 
simpler and more practical option when determining the 
steepest ascent. Table 4 display the analysis of variance 
(ANOVA) of the linear model, which has been proven to be 
statistically significant. A significant main effect was found for 
the probability factor and the iteration factor, with statistically 
significant P-value of .0062 and .0110 respectively, so the linear 
model is an appropriate model here.

Equations (2) and (3) show the predicted response 
F-measure of the detected cancer driver gene, coded in and 
without code forms as a function of x1 and x2. The factors 
may consist of a wide range of measurement units, and the 
codes make it possible to easily compare coefficients accord-
ing to their scale These factors have low and high levels 
denoted by −1 and +1. The coefficients are simply converted 
into their natural units by the no-code form.

In terms of the coded factors, the final equation:

Table 3.  The 2-factor RSM experiment’s findings. R software was used to create a customized RSM design that altered probability diffusion and 
iteration at 3 different levels (−1, 0, +1). Calculation of the target value for the F-measure.

Run Coded Uncoded F

Probability Iteration Probability Iteration

1 0 0 0.4 200 0.2122

2 1 1 0.5 250 0.2128

3 0 0 0.4 200 0.2118

4 −1 −1 0.3 150 0.2113

5 −1 −1 0.3 150 0.2120

6 1 1 0.5 250 0.2113

7 −1 1 0.3 250 0.2097

8 0 0 0.4 200 0.2121

9 1 −1 0.5 150 0.2142

10 1 −1 0.5 150 0.2152

11 −1 1 0.3 250 0.2041

12 0 0 0.4 200 0.2140

13 0 0 0.4 200 0.2125
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	 y = 0.2118 + 0.0020x1 - 0.0019x2	 (2)

As regards no coded factors, the final equation:

	 y = 0.2110 + 0.0205ζ1 - 0.00004ζ2	 (3)

The IC model probability and iteration numbers are shown 
in coded form as x1 and x2. The probability needed to be 
increased in order to maximize response F, as demonstrated by 
the rising b-value for x1 (0.0020). due to the negative x2 b-value 
(−0.0019), the number of iterations would be reduced in order to 
maximize the response. According to the higher b-value for that 
phrase, the probability had the largest impact on the target.

Calculate the path of the steepest ascent.  The steepest ascent path, 
with the slope b2/b1, represents a track that runs from the 
center point of the RSM design space. The experiment needs 
to shift positively by 0.00020 units with each 0.0019 unit mov-
ing in a negative direction, resulting in an expected improve-
ment of response for the linear model’s coded variables. The 
proportionality constant, ρ, is usually set to 1 for one of the 
variables, and commonly, it is the variable with the biggest 
b-value parameter. Since x1 has a larger parameter estimate in 
this scenario, the step sizes of other variables are determined in 
relation to x1, as demonstrated in equation (4).

	 �
�

x
b

b xj
j

i i
�

/
  j =1.2 . . . . .k. i ≠ j	 (4)

If ρ = 1, then x2 (iteration) is altered by b2/b1 units for every 
unit of change in x1 (probability). In other words, if the step 
length of probability in coded units is 1, then the associated 
iteration step size in coded unit is Δx2= 1.03. In this case, how-
ever, it was warranted to have a smaller step size than 1 in order 
to derive the appropriate coordinate values along the path due 
to the probability’s linearity between 0 and 1.

For shorter step lengths the proportionality coefficient was 
lowered to 0.5, which is as follows:

	 �x� � 0.5	 (5)
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* 0.5 = 0.51	 (6)

It is appropriate to revert to no-code units for the calcula-
tion of the real value that will be used in the highest climb test. 
Since the step sizes applicable for both x1 and x2 have been 
known in the RSM study, it is possible to calculate the likeli-
hood of using coating and detector reagent by way of this 
method:

		  ∆ζ1 =∆x1*c = 0.5*0.1 = 0.05	 (7)

		  ∆ζ2 = ∆x2*d = 0.51*50 ≈ 26	 (8)

These RSM experiments currently operate under the fol-
lowing operating conditions. “c” refers to the step size for diffu-
sion probability from a central point. “d” indicates, at the central 
point of the current RSM experiment operation, the step size 
for iteration number.

In other words, during the steepest ascent, with the RSM 
experiment’s origin as the starting point, the probability should 
be raised by 0.05 for each step, and the iteration should be 
reduced by 26 as a result.

These calculations, as shown in Table 5, have been applied 
to design and run a number of experimental runs within the 
route for the steepest ascent.

Figure 3 plots the F-measure for each step as well as a path 
leading to the steepest ascent. Despite the variation in the results, 
all subsequent steps resulted in a decrease in yield, with the maxi-
mum value being shown in the first step. Therefore, another first-
order model should be used in the general vicinity of that point.

Table 4.  Analysis of variance (ANOVA) for the fitted linear model.

Source df Sum sq Mean sq F 
value

P

X1 1 3.360e-5 3.360e-5 12.39 .0062

X2 1 2.758e-5 2.758e-5 10.17 .0110

X1X2 1 2.090e-6 2.090e-6 0.77 .4030

Residuals 9 2.441e-5 2.710e-6  

F-statistic 11.54 .0025

R-squared 0.6978  

Adjusted 
R-squared

0.6373  

Table 5.  A series of test runs has taken place on the steepest ascent. 
Be aware that for each step, the iteration is dropped by 26 and the 
diffusion probability is increased by from the starting point (Run 1).

Run Probability Iteration F

14 0.45 174 0.2100

15 0.50 148 0.2079

16 0.55 122 0.2068

17 0.60 96 0.2047

18 0.65 70 0.2041

19 0.70 44 0.2071

20 0.75 18 0.2057
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A new first-order model is fitted around the point (ζ1 = 0.045. 
ζ2 = 174). The region of exploration for ��  is [0.45,1). Once 
again, a 22 design with 5 center points is used. The analysis of 
variance shows that the model with a square term is significant 
(Table 6). The value of the coefficient of determination of 
model R2 was sufficient (R-Sq = 94.36%), adjusted R2 value 
was reasonably in agreement (R-Sq(Adj) = 92.94%). Hence, for 
the purpose of forecasting, a quadratic model is sufficient.

Diagnostic plots have been obtained and are given in  
Figure 4, which was used to evaluate how well the model 
matched the actual response surface. A normal distribution was 
observed in the residual probability plot, indicating that an 
acceptable model had been established for use, and there was no 
pattern when plots of residual versus fitted values were drawn. 
The Shapiro-Wilk test also shows a P-value of .027073, which 
confirms that residuals are normal.

Figure 5a depicts a contour plot of the response, and Figure 
5b display the response surface in 3 planes as a plane that occu-
pies the area between the low and high levels of the 2 factors. 
As displayed in Figure 5a, we can achieve an F-measure greater 
than 0.22 around the point (x1 = 0.2, x2 = 0.6) in the coded value. 
Computing the global optimum for F-measure gives the value 
0.222 in point (ζ1 = 0.47 ζ2 = 204).

Colorectal cancer-driven gene detection

Using RSM for tuning IC model parameters has improved it. 
The colorectal cancer gene regulatory network is the method’s 
input, and the amount of coverage for each gene is the meth-
od’s output. The number of genes in the gene regulatory net-
work that can be impacted and activated if a gene is active is 
determined by its coverage in the network. Accordingly, genes 
that have greater coverage have a higher chance of causing can-
cer. The study utilized TCGA-COAD, a free TCGA data por-
tal, to identify colorectal cancer genes, with CGC-approved 
driver genes as the gold standard for evaluation. To evaluate the 

proposed method, we used common metrics for recall, preci-
sion and f-measure performance in binary classification prob-
lems. Table 7 display the results of ExGenet for comparison 
with GenIC and 19 other models, which has a better F-measure 
as it is maximized by the RSM method. Due to the maximized 
F-measure, the number of cancer driver genes that the model 
can detect has improved.

Discussion
Our study employed response surface methods (RSM) to opti-
mize proliferation probability in an independent cascade (IC) 
model aiming to enhance the detection of cancer driver genes 
in colorectal cancer through 2-factor RSM implementation 
plan. Changes in iteration levels were allowed at 3 different 
levels The results demonstrate that RSMs are both feasible and 
effective for improving model performance, as evidenced by 
the analysis of the F-measure as a response variable.

The fit of the linear model was assessed using analysis of 
variance (ANOVA), which revealed significant statistical 
results for probability and repeat factors This indicates that the 
linear model is fitting when the response variable (F-measure) 
dependent factors are controlled. The observed relationship 
between proliferation probability, recurrence, and F-measure 
provides valuable insight into the dynamics of information dif-
fusion in genetic regulatory network.

The identification of a steep ascension path highlights the 
importance of varying the proliferation probability and repeat 
level to obtain optimal model performance Our study calcu-
lated the steepest ascension path in RSM testing to determine 
the optimal combination of proliferation probability and repeat 
for maximize the provided F-measure We evaluated the per-
formance of our proposed ExGenet method for detecting colo-
rectal cancer driver genes and compared it with other existing 
methods. The results demonstrate that ExGenet identifies a 
higher number of known driver genes and achieves a better 
F-measure, indicating its effectiveness in cancer gene discovery. 
Specifically, ExGenet outperformed the GeneIC method in 
terms of both the number of known driver genes detected and 
the F-measure. This validation highlights the importance of 
optimizing the propagation probability through RSM to 
improve the performance of the IC model.

The findings of our study hold important implications for 
cancer genomics research, particularly in the identification of 
genes causing cancer. Our approach of maximizing the 
F-measurement through RSM optimization offers a promising 
approach to improve the accuracy and reliability of cancer gene 
discovery. Furthermore, the mechanism demonstrated in this 
study may have broad applications in other cancer types and 
research areas, paving the way for further advances in cancer 
genomics Although our study focused on colorectal cancer, 
future research will investigate the generalizability of our 
approach to other cancer types and research areas. Additionally, 
further modifications and extensions of our optimization 

Figure 3.  F-measure versus steps during the path of steepest ascent.
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Table 6.  Analysis of variance (ANOVA) for the fitted quadratic model.

Source DF Sum sq Mean sq F P-value

A 1 9.1e-6 9.1e-6 3.674 .0697

B 1 4.176e-4 4.176e-4 169.477 <.001

A2 1 9.52e-5 9.52e-5 38.649 <.001

B2 1 2.952e-4 2.952e-4 119.784 <.001

AB 1 6.7e-6 6.7e-6 2.729 .1141

Residuals 20 4.93e-5 2.5e-6  

F-statistic 66.86 <0.001

R-squared 0.9436  

Adjusted R-squared 0.9294  

Figure 4.  Diagnostic plots displaying (a) the residuals’ normal probability plot and (b) the relationship between the residual and the fitted value.

Figure 5.  (a) Contour plot of the F response and (b) the response surface plane, in 3-dimensional rendition.
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method may include considering additional factors or integrat-
ing multi-omics data for more detailed analysis.

Limitation

Although valuable insights into colorectal cancer are provided 
using The Cancer Genome Atlas (TCGA) gene database, 
there are limitations to potential biases with data collection and 
its validity, and of patient group representativeness.

Furthermore, although the independent cascade (IC) model 
is widely used to model diffusion processes, it may oversimplify 
the complex dynamics of information propagation in gene reg-
ulatory networks, leading to errors possible results of predicting 
diffusion probabilities.

Conclusions
In this study, we propose an experiment design to determine 
the optimal diffusion probability in the IC model. We have 
demonstrated that RSM experiments are a feasible and effi-
cient method for quickly exploring an area, in addition to the 

established design space, by using the steepest ascent approach. 
This approach takes advantage of a mathematical model that 
allows the experimenter to map an objective response and 
improve it.

As we have seen, statistical models like RSM can be utilized 
to tune parameters and improving the model performance. 
Additionally, choosing seed nodes in the IC model is another 
challenge when applying this model. Therefore, employing sta-
tistical models to select them could be a subject for further 
future research.
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