Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 3-[(6-nitro-4-oxo-3-phenyl-3,4dihydroguinazolin-2-yl)sulfanyl]propanoate

Ibrahim A. Al-Suwaidan,^a Alaa A.-M. Abdel-Aziz,^{a,b} Adel S. El-Azab,^{a,c} C. S. Chidan Kumar^d‡ and Hoong-Kun Fun^{d,a}*§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Medicinal Chemistry., Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, ^cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 29 May 2013; accepted 10 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.064; wR factor = 0.191; data-to-parameter ratio = 12.4.

In the title compound, $C_{18}H_{15}N_3O_5S$, the approximately planar quinazoline ring system [maximum deviation = 0.097 (3) Å] forms a dihedral angle of 76.53 (19)° with the phenyl ring. The terminal -C(=O)-O-C group is disordered over two sets of sites with a site-occupancy ratio of 0.811 (17):0.189 (17). In the crystal, molecules are linked via weak $C-H \cdots O$ hydrogen bonds into sheets parallel to the ac plane.

Related literature

For background to quinazoline chemistry, see: El-Azab (2007); El-Azab et al. (2010, 2011); Alafeefy et al. (2008); Al-Suwaidan et al. (2013); El-Azab & ElTahir (2012a,b). For standard bondlength data, see: Allen et al. (1987).

Experimental

Crystal data $C_{18}H_{15}N_3O_5S$

 $M_r = 385.39$

Z = 4

Cu K α radiation

 $0.32 \times 0.26 \times 0.13 \text{ mm}$

 $\mu = 1.89 \text{ mm}^{-1}$

T = 296 K

Monoclinic, $P2_1/n$	
a = 4.9146 (3) Å	
b = 26.5065 (18) Å	
c = 14.0900 (9) Å	
$\beta = 94.645 \ (4)^{\circ}$	
V = 1829.5 (2) Å ³	

Data collection

Bruker SMART APEXII CCD	12669 measured reflections
area-detector diffractometer	3382 independent reflections
Absorption correction: multi-scan	1861 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.059$
$T_{\min} = 0.583, \ T_{\max} = 0.791$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	9 restraints
$wR(F^2) = 0.191$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
3382 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
273 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6A\cdots O2^{i}$	0.93	2.56	3.142 (5)	121
$C10-H10A\cdots O2^{n}$	0.93	2.39	3.167 (5)	140

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. CSC thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5622).

References

- Alafeefy, A. M., Kadi, A. A., El-Azab, A. S., Abdel-Hamide, S. G. & Daba, M. H. (2008). Arch. Pharm. (Weinheim), 341, 377-385.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Al-Suwaidan I. A, Alanazi, A. M. Abdel-Aziz, A. A.-M., Mohamed, M. A. & El-Azab, A. S. (2013). Bioorg. Med. Chem. Lett. 23, 3935-3941.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Azab, A. S. (2007). Phosphorus Sulfur Silicon, 182, 333-348.
- El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A., Abdel-Aziz, N. I., El-Sayed, M. A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamid, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.
- El-Azab, A. S. & ElTahir, K. H. (2012a). Bioorg. Med. Chem. Lett. 22, 327-333.
- El-Azab, A. S. & ElTahir, K. H. (2012b). Bioorg. Med. Chem. Lett. 22, 1879-1885
- El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: C-3194-2011. § Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2013). E69, o1111 [doi:10.1107/S1600536813016127]

Methyl 3-[(6-nitro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]propanoate

Ibrahim A. Al-Suwaidan, Alaa A.-M. Abdel-Aziz, Adel S. El-Azab, C. S. Chidan Kumar and Hoong-Kun Fun

Comment

Quinazolines are considered to be important chemical synthons of physiological significance and pharmaceutical utility. They possess a variety of biological effects including antimicrobial (El-Azab *et al.*, 2007), anti-inflammatory (Alafeefy *et al.*, 2008), anticonvulsant, (El-Azab *et al.*, 2011; El-Azab & ElTahir 2012*a*,*b*) and anticancer activities (El-Azab *et al.*, 2010; El-Azab & ElTahir 2012*b*; Al-Suwaidan *et al.*, 2013). These observations have been the guidelines for the development of new quinazolines which possess varied biological activities. Prompted by the potential biological activities of quinazolines, the title compound was synthesized and its crystal structure is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The quinazoline ring (C1–C8/N1–N2; maximum deviation = 0.097 (3) Å at atom N2) makes a dihedral angle of 76.53 (19)° with the attached phenyl ring (C9–C14). The terminal C17(=O1)—O5—C18 group is disordered over two positions with a site-occupancy ratio of 0.811 (17): 0.189 (17). In the crystal structure (Fig. 2), the molecules are linked *via* weak intermolecular C6—H6A···O2ⁱ and C10—H10A···O2ⁱⁱ hydrogen bonds (see Table 1 for symmetry codes) into sheets parallel to the *ac* plane.

Experimental

A mixture of 3-phenyl-2-mercapto-6-nitro-quinazolin-4(3*H*)-one (2.99 g, 0.01 mol) and Et₃N (2 ml) in CH₂Cl₂ (30 ml) was stirred in an ice bath and acryloyl chloride (3.3 ml, 0.04 mol) was added dropwise over a period of 15 min. Stirring was performed in an ice bath for 1 h and then at room temperature overnight. Solvent was then removed under reduced pressure and the obtained residue was dissolved in CH_2Cl_2 and washed with 10% NaOH solution and water. The resultant was separated and dried over MgSO₄ then evaporated *in vacuo*. The obtained residue was chromatographed on silica gel using 10% EtOAc/hexane as eluant and recrystallized from hexane/CH₂Cl₂ (92%) (m.p:. 480 K) to yield X-ray quality crystals.

Refinement

The hydrogen atoms were positioned geometrically [C-H = 0.93, 0.96 and 0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $1.5U_{eq}(\text{methyl C})$. A rotating-group model was used for the methyl groups. The terminal C17(=O1)—O5—C18 group is disordered over two positions with a site-occupancy ratio of 0.811 (17): 0.189 (17). The SHELXL (Sheldrick, 2008) EXYZ (same *x*, *y* and *z* parameters) and EADP (same U_{ij} parameters) restraints were used for atoms pairs C17/C17A. The same distance restraints were applied to (C17/O1 & C17A/O1A), (C17/O5 & C17A/O5A) and (C18/O5 & C18A/O5A). The SIMU (similar U_{ij} parameters) restraint was applied to C18/C18A.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids. The minor component of disorder is shown as open bonds

Figure 2

The crystal packing of the title compound. The minor component of disorder and H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Methyl 3-[(6-nitro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]propanoate

Crystal data	
$C_{18}H_{15}N_3O_5S$	F(000) = 800
$M_r = 385.39$	$D_{\rm x} = 1.399 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 480 K
Hall symbol: -P 2yn	Cu K α radiation, $\lambda = 1.54178$ Å
a = 4.9146 (3) Å	Cell parameters from 1209 reflections
b = 26.5065 (18) Å	$\theta = 3.3 - 67.5^{\circ}$
c = 14.0900 (9) Å	$\mu = 1.89 \text{ mm}^{-1}$
$\beta = 94.645 \ (4)^{\circ}$	T = 296 K
V = 1829.5 (2) Å ³	Block, colourless
Z = 4	$0.32 \times 0.26 \times 0.13 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.583, T_{max} = 0.791$ <i>Refinement</i>	12669 measured reflections 3382 independent reflections 1861 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 69.8^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -5 \rightarrow 4$ $k = -31 \rightarrow 31$ $l = -17 \rightarrow 17$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.191$ S = 1.03 3382 reflections 273 parameters 9 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0825P)^2 + 0.1932P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.16$ e Å ⁻³ Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4} Extinction coefficient: 0.0030 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	0.3830 (2)	0.12146 (4)	0.63782 (7)	0.0880 (4)	
O2	0.8688 (6)	0.19581 (12)	0.38141 (18)	0.0982 (9)	
O3	1.5168 (8)	0.33688 (17)	0.4490 (3)	0.1442 (16)	
O4	1.6007 (9)	0.36422 (17)	0.5910 (3)	0.1520 (16)	
N1	0.7309 (6)	0.19860 (13)	0.6615 (2)	0.0790 (9)	
N2	0.6827 (6)	0.16072 (12)	0.50857 (19)	0.0741 (8)	
N3	1.4799 (8)	0.33704 (17)	0.5326 (4)	0.1094 (13)	
C1	0.6245 (7)	0.16499 (15)	0.6034 (2)	0.0738 (9)	
C2	0.8395 (7)	0.19721 (16)	0.4673 (3)	0.0786 (10)	
C3	0.9676 (7)	0.23374 (15)	0.5321 (2)	0.0760 (10)	
C4	1.1534 (8)	0.26847 (16)	0.5010 (3)	0.0849 (11)	
H4A	1.1912	0.2694	0.4374	0.102*	
C5	1.2796 (8)	0.30119 (17)	0.5656 (3)	0.0884 (11)	
C6	1.2314 (9)	0.30066 (18)	0.6598 (3)	0.0984 (13)	
H6A	1.3229	0.3229	0.7023	0.118*	

C7	1.0479 (9)	0.26718 (17)	0.6906 (3)	0.0927 (12)	
H7A	1.0117	0.2671	0.7544	0.111*	
C8	0.9117 (7)	0.23265 (15)	0.6269 (3)	0.0787 (10)	
C9	0.5906 (7)	0.11756 (17)	0.4514 (2)	0.0783 (10)	
C10	0.3811 (8)	0.1233 (2)	0.3819 (3)	0.0991 (14)	
H10A	0.2985	0.1545	0.3706	0.119*	
C11	0.2955 (11)	0.0814 (3)	0.3288 (4)	0.1243 (19)	
H11A	0.1516	0.0844	0.2820	0.149*	
C12	0.4181 (12)	0.0363 (3)	0.3440 (4)	0.1245 (19)	
H12A	0.3567	0.0084	0.3085	0.149*	
C13	0.6334 (11)	0.0314 (2)	0.4119 (4)	0.1198 (17)	
H13A	0.7208	0.0004	0.4212	0.144*	
C14	0.7186 (9)	0.07209 (18)	0.4656 (3)	0.1008 (14)	
H14A	0.8636	0.0689	0.5118	0.121*	
C15	0.3526 (9)	0.14022 (17)	0.7595 (2)	0.0889 (12)	
H15A	0.4555	0.1710	0.7724	0.107*	
H15B	0.1625	0.1473	0.7682	0.107*	
C16	0.4560 (8)	0.09993 (17)	0.8302 (3)	0.0871 (11)	
H16A	0.6427	0.0916	0.8188	0.105*	
H16B	0.4572	0.1136	0.8941	0.105*	
C17	0.2895 (9)	0.05291 (19)	0.8246 (3)	0.0925 (13)	0.811 (17)
01	0.085 (3)	0.0464 (8)	0.7732 (11)	0.107 (4)	0.811 (17)
O5	0.4116 (19)	0.0176 (3)	0.8814 (6)	0.118 (3)	0.811 (17)
C18	0.264 (3)	-0.0316 (3)	0.8826 (7)	0.157 (4)	0.811 (17)
H18A	0.3690	-0.0551	0.9223	0.235*	0.811 (17)
H18B	0.2381	-0.0447	0.8190	0.235*	0.811 (17)
H18C	0.0892	-0.0266	0.9072	0.235*	0.811 (17)
C17A	0.2895 (9)	0.05291 (19)	0.8246 (3)	0.0925 (13)	0.189 (17)
O1A	0.120 (14)	0.048 (4)	0.759 (5)	0.115 (18)	0.189 (17)
O5A	0.293 (6)	0.0223 (10)	0.9005 (15)	0.089 (7)	0.189 (17)
C18A	0.134 (10)	-0.0214 (14)	0.934 (3)	0.156 (7)	0.189 (17)
H18D	0.2131	-0.0324	0.9952	0.234*	0.189 (17)
H18E	0.1376	-0.0486	0.8893	0.234*	0.189 (17)
H18F	-0.0517	-0.0112	0.9396	0.234*	0.189 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0921 (7)	0.0934 (8)	0.0790 (6)	-0.0061 (5)	0.0095 (4)	-0.0080 (6)
O2	0.119 (2)	0.109 (3)	0.0674 (15)	0.0031 (17)	0.0072 (13)	-0.0014 (16)
O3	0.148 (3)	0.169 (4)	0.119 (3)	-0.039 (3)	0.023 (2)	0.034 (3)
O4	0.163 (4)	0.138 (4)	0.153 (3)	-0.056 (3)	-0.003 (3)	0.003 (3)
N1	0.092 (2)	0.077 (2)	0.0678 (17)	0.0000 (16)	0.0039 (14)	-0.0049 (17)
N2	0.0814 (19)	0.078 (2)	0.0622 (16)	0.0074 (15)	0.0006 (13)	-0.0056 (16)
N3	0.103 (3)	0.103 (3)	0.120 (3)	-0.006 (2)	-0.004 (2)	0.024 (3)
C1	0.080(2)	0.073 (3)	0.068 (2)	0.0073 (17)	0.0035 (15)	0.001 (2)
C2	0.086 (2)	0.083 (3)	0.066 (2)	0.012 (2)	-0.0007 (17)	0.001 (2)
C3	0.088 (2)	0.071 (3)	0.068 (2)	0.0111 (19)	0.0005 (16)	0.0045 (19)
C4	0.090 (3)	0.085 (3)	0.079 (2)	0.010 (2)	0.0033 (19)	0.013 (2)

C5	0.092 (3)	0.080 (3)	0.092 (3)	0.002 (2)	-0.002 (2)	0.012 (2)
C6	0.117 (3)	0.089 (3)	0.088 (3)	-0.016 (3)	-0.006 (2)	0.001 (3)
C7	0.116 (3)	0.091 (3)	0.071 (2)	-0.007 (2)	0.003 (2)	-0.004 (2)
C8	0.090 (2)	0.072 (3)	0.073 (2)	0.0019 (19)	0.0002 (17)	0.001 (2)
C9	0.082 (2)	0.086 (3)	0.067 (2)	0.004 (2)	0.0031 (16)	-0.007 (2)
C10	0.095 (3)	0.115 (4)	0.085 (3)	0.009 (2)	-0.010 (2)	-0.016 (3)
C11	0.111 (4)	0.161 (6)	0.098 (3)	-0.008 (4)	-0.015 (3)	-0.030 (4)
C12	0.129 (4)	0.137 (6)	0.108 (4)	-0.031 (4)	0.012 (3)	-0.049 (4)
C13	0.136 (4)	0.095 (4)	0.130 (4)	0.000 (3)	0.016 (3)	-0.038 (3)
C14	0.104 (3)	0.095 (4)	0.100 (3)	0.006 (3)	-0.008 (2)	-0.026 (3)
C15	0.100 (3)	0.093 (3)	0.076 (2)	0.003 (2)	0.0171 (19)	-0.008 (2)
C16	0.082 (2)	0.094 (3)	0.085 (2)	-0.001 (2)	0.0058 (19)	-0.007 (2)
C17	0.092 (3)	0.102 (4)	0.083 (3)	-0.011 (2)	0.005 (2)	-0.009 (3)
01	0.089 (5)	0.119 (7)	0.110 (6)	-0.015 (5)	-0.006 (6)	-0.006 (5)
05	0.132 (6)	0.111 (4)	0.109 (4)	-0.017 (4)	-0.014 (4)	0.020 (3)
C18	0.229 (11)	0.110 (6)	0.130 (7)	-0.069 (7)	0.011 (6)	0.006 (5)
C17A	0.092 (3)	0.102 (4)	0.083 (3)	-0.011 (2)	0.005 (2)	-0.009 (3)
O1A	0.10 (3)	0.14 (3)	0.10(2)	-0.05 (2)	0.028 (16)	-0.02 (2)
O5A	0.083 (15)	0.101 (15)	0.082 (12)	-0.005 (11)	-0.005 (9)	0.027 (10)
C18A	0.226 (15)	0.103 (11)	0.137 (12)	-0.061 (11)	0.004 (11)	-0.006 (11)

Geometric parameters (Å, °)

S1—C1	1.752 (4)	C10—H10A	0.9300	
S1—C15	1.803 (4)	C11—C12	1.348 (7)	
O2—C2	1.231 (4)	C11—H11A	0.9300	
O3—N3	1.207 (5)	C12—C13	1.374 (7)	
O4—N3	1.212 (5)	C12—H12A	0.9300	
N1C1	1.291 (4)	C13—C14	1.364 (6)	
N1—C8	1.382 (5)	C13—H13A	0.9300	
N2—C2	1.393 (5)	C14—H14A	0.9300	
N2C1	1.394 (4)	C15—C16	1.519 (5)	
N2—C9	1.451 (5)	C15—H15A	0.9700	
N3—C5	1.470 (6)	C15—H15B	0.9700	
C2—C3	1.440 (5)	C16—C17	1.489 (6)	
C3—C8	1.386 (5)	C16—H16A	0.9700	
C3—C4	1.393 (5)	C16—H16B	0.9700	
C4—C5	1.369 (5)	C17—O1	1.204 (7)	
C4—H4A	0.9300	C17—O5	1.342 (6)	
C5—C6	1.367 (6)	O5—C18	1.494 (8)	
C6—C7	1.361 (6)	C18—H18A	0.9600	
C6—H6A	0.9300	C18—H18B	0.9600	
С7—С8	1.412 (5)	C18—H18C	0.9600	
С7—Н7А	0.9300	O5A—C18A	1.496 (9)	
C9—C14	1.367 (6)	C18A—H18D	0.9600	
C9—C10	1.371 (5)	C18A—H18E	0.9600	
C10—C11	1.385 (7)	C18A—H18F	0.9600	
C1—S1—C15	101.0 (2)	C12—C11—H11A	119.6	
C1—N1—C8	117.8 (3)	C10—C11—H11A	119.6	

$C^{2}-N^{2}-C^{1}$	120 5 (3)	C11 - C12 - C13	120 3 (5)
$C_2 = N_2 = C_1$	120.3(3) 118.3(3)	C_{11} C_{12} H_{12}	110.9
$C_1 = N_2 = C_3$	110.3(3)	$C_{11} = C_{12} = H_{12} \Lambda$	110.0
03_N3_04	121.2(5) 1241(5)	C13 - C12 - C12	119.7 (5)
03 - N3 - 04	124.1(5) 117.6(5)	C14 - C13 - C12 C14 - C13 - H13A	120.1
04 N3 C5	117.0(5) 118.3(5)	$C_{14} = C_{13} = H_{13A}$	120.1
$N_1 = N_2$	118.3(3) 124.0(4)	C_{12} C_{13} C_{14} C_{9}	120.1 120.0(4)
N1 = C1 = N2	124.0(4) 1210(3)	C_{13} C_{14} H_{14A}	120.0 (4)
$N_2 C_1 S_1$	121.9(3) 114.1(3)	C_{13} C_{14} H_{14A}	120.0
$N_2 = C_1 = S_1$ $O_2 = C_2 = N_2$	114.1(3) 1201(4)	C_{3} C_{14} C_{14} C_{14} C_{15} C_{15} C_{15} C_{16} C_{15} C_{16} C_{15} C_{16} C_{15} C_{16} $C_$	120.0 112.3(3)
02 - 02 - 02	120.1(4) 124.2(4)	$C_{10} - C_{15} - S_{15}$	112.3 (3)
$N_2 = C_2 = C_3$	124.3(4) 1155(2)	S1 C15 H15A	109.1
$N_2 = C_2 = C_3$	113.3(3) 120.2(4)	SI = CIS = HISA	109.1
$C_{8} = C_{3} = C_{4}$	120.5 (4)	CIO-CIS-HISB	109.1
$C_8 - C_2 - C_2$	119.1 (4)	SI-CIS-HISB	109.1
C4 - C3 - C2	120.6 (3)	HISA—CIS—HISB	107.9
C5-C4-C3	118.9 (4)		113.6 (4)
C5—C4—H4A	120.6	C17— $C16$ — $H16A$	108.8
C3—C4—H4A	120.6	C15—C16—H16A	108.8
C6—C5—C4	122.3 (4)	C17—C16—H16B	108.8
C6—C5—N3	119.1 (4)	C15—C16—H16B	108.8
C4—C5—N3	118.6 (4)	H16A—C16—H16B	107.7
C7—C6—C5	119.2 (4)	01—C17—O5	124.8 (11)
С7—С6—Н6А	120.4	O1—C17—C16	125.5 (11)
С5—С6—Н6А	120.4	O5—C17—C16	109.6 (5)
C6—C7—C8	120.8 (4)	C17—O5—C18	114.9 (7)
С6—С7—Н7А	119.6	O5—C18—H18A	109.5
С8—С7—Н7А	119.6	O5—C18—H18B	109.5
N1—C8—C3	122.4 (3)	H18A—C18—H18B	109.5
N1—C8—C7	119.0 (3)	O5—C18—H18C	109.5
C3—C8—C7	118.6 (4)	H18A—C18—H18C	109.5
C14—C9—C10	120.8 (4)	H18B—C18—H18C	109.5
C14—C9—N2	119.7 (3)	O5A—C18A—H18D	109.5
C10—C9—N2	119.5 (4)	O5A—C18A—H18E	109.5
C9—C10—C11	118.4 (5)	H18D—C18A—H18E	109.5
C9—C10—H10A	120.8	O5A—C18A—H18F	109.5
C11—C10—H10A	120.8	H18D—C18A—H18F	109.5
C12-C11-C10	120.8 (5)	H18E—C18A—H18F	109.5
C8N1C1N2	0.6.(5)	$C1_N1_C8_C3$	41(6)
$C_8 = N_1 = C_1 = N_2$	-1775(3)	C1 - N1 - C8 - C7	-174.9(3)
$C_2 N_2 C_1 N_1$	-76(5)	$C_1 - N_1 - C_0 - C_7$	-179.4(3)
$C_2 = N_2 = C_1 = N_1$	7.0(3)	$C_{4} = C_{5} = C_{6} = N_{1}$	-10(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170.2(3) 170.6(3)	$C_2 - C_3 - C_0 - INI$	-0.3(6)
$C_2 - N_2 - C_1 - S_1$	-11.6(4)	$C_{+} - C_{3} - C_{0} - C_{7}$	1772(3)
$C_{2} = N_{2} = C_{1} = C_{1} = S_{1}$	11.0(4)	$C_2 - C_3 - C_0 - C_7$	177.2(3)
$C_{13} = S_{1} = C_{1} = N_{1}$	0.0(4) -1776(2)	$C_0 - C_7 - C_0 - INI$	1/0.7(4)
$C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	-1732(3)	$C_0 - C_1 - C_0 - C_3$	103.2(4)
$C_1 = 1 \sqrt{2} = C_2 = 02$	1/3.2(3)	$C_2 - N_2 - C_7 - C_{14}$	-74.6(5)
$C_{2} = N_{2} = C_{2} = C_{2}$	9.0(3)	$C_1 - N_2 - C_7 - C_{14}$	-74.0(3)
$-1 - 1 \sqrt{2} - \sqrt{2} - \sqrt{3}$	2.2 (2)	U2-IN2-U9-U10	/+.7(3)

C9—N2—C2—C3	-168.6(3)	C1—N2—C9—C10	107.2 (4)
O2—C2—C3—C8	177.8 (4)	C14—C9—C10—C11	2.4 (7)
N2—C2—C3—C8	-4.8 (5)	N2-C9-C10-C11	-179.5 (4)
O2—C2—C3—C4	-4.7 (6)	C9-C10-C11-C12	-1.0 (8)
N2—C2—C3—C4	172.7 (3)	C10-C11-C12-C13	-1.0 (9)
C8—C3—C4—C5	0.2 (6)	C11—C12—C13—C14	1.7 (8)
C2—C3—C4—C5	-177.3 (3)	C12—C13—C14—C9	-0.3 (8)
C3—C4—C5—C6	0.6 (6)	C10-C9-C14-C13	-1.7 (7)
C3—C4—C5—N3	178.7 (3)	N2-C9-C14-C13	-179.8 (4)
O3—N3—C5—C6	-179.5 (5)	C1—S1—C15—C16	-114.3 (3)
O4—N3—C5—C6	1.7 (7)	S1—C15—C16—C17	-65.9 (4)
O3—N3—C5—C4	2.3 (6)	C15—C16—C17—O1	-3.1 (14)
O4—N3—C5—C4	-176.5 (4)	C15—C16—C17—O5	173.2 (6)
C4—C5—C6—C7	-1.3 (7)	O1-C17-O5-C18	-3.9 (15)
N3—C5—C6—C7	-179.4 (4)	C16—C17—O5—C18	179.8 (6)
C5—C6—C7—C8	1.2 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C6—H6A····O2 ⁱ	0.93	2.56	3.142 (5)	121
C10—H10A····O2 ⁱⁱ	0.93	2.39	3.167 (5)	140

Symmetry codes: (i) *x*+1/2, *-y*+1/2, *z*+1/2; (ii) *x*-1, *y*, *z*.