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ABSTRACT
Drug adverse events (AEs) are a major health threat to patients

seeking medical treatment and a significant barrier in drug discovery

and development. AEs are now required to be submitted during

clinical trials and can be extracted from ClinicalTrials.gov (https://

clinicaltrials.gov/), a database of clinical studies around the world.

By extracting drug and AE information from ClinicalTrials.gov and

structuring it into a database, drug-AEs could be established for

future drug development and repositioning. To our knowledge, cur-

rent AE databases contain mainly U.S. Food and Drug Administration

(FDA)-approved drugs. However, our database contains both FDA-

approved and experimental compounds extracted from Clinical-

Trials.gov. Our database contains 8,161 clinical trials of 3,102,675

patients and 713,103 reported AEs. We extracted the information

from ClinicalTrials.gov using a set of python scripts, and then used

regular expressions and a drug dictionary to process and structure

relevant information into a relational database. We performed data

mining and pattern analysis of drug-AEs in our database. Our da-

tabase can serve as a tool to assist researchers to discover drug-AE

relationships for developing, repositioning, and repurposing drugs.

Keywords: adverse events, big data mining, pattern analysis,

clinical drug trials, bioinformatics

INTRODUCTION

A
dverse events (AEs) are unintended and undesirable

effects as a result of the use of drug treatment or

other medical product in a patient. AEs represent a

significant barrier in drug development for patient

treatment. Serious drug adverse effect is the fourth leading

cause of death in the United States, with over 100,000 people

dying from this each year.1 Approximately 30% of failures in

drug clinical trials are due to the intensity of adverse side

effects.2 We hypothesize that learning about drug-related AEs

from clinical trial data will provide new insights and reveal

unexpected relationships between drugs, AEs, and drug tar-

gets for future drug development and biomedical research.

Recently, many research efforts have been focused on un-

derstanding the relationships between drug targets and AEs,

with the aim to elucidate the molecular mechanisms un-

derlying drug adverse effects for better development and re-

purposing of drugs. Two important data sources—drug target

and AE databases (AEDB)—are needed to investigate the

relationships between drugs, drug targets, and AEs. There

are many databases and repositories of drugs and target re-

lationships, such as PubChem,3 ChemBank,4 DrugBank,5

BindingDB,6 and DSigDB.7 The U.S. Food and Drug Admin-

istration (FDA) Adverse Event Reporting System (FAERS)

represents one of the most popular AEDB of FDA-approved

drugs. FAERS is designed to support the FDA’s postmarketing

safety surveillance program for drugs and therapeutic prod-

ucts. FAERS collects AEs and medication error reports

that manufacturers, healthcare professionals, and consumers

submit to the FDA. Another popular source for extracting drug

AEs is FDA package inserts for products.

Computational tools and approaches such as machine

learning and text mining have been developed and used to

construct resources and predictors of drug-AE relationships.

SIDER,8 the side effect resource, represents one of the earliest

computational approaches to extracting drug AEs from

FDA package inserts. Currently, SIDER contains 5,868 AEs,

1,430 drugs, and 139,756 drug-AE pairs.9 In contrast, the
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OFFSIDES database contains AEs not listed on the FDA’s

official drug label. Currently, this database contains 1,332

drugs, 10,097 AEs, and 438,801 drug-AE pairs, and these

information could be used for polypharmacology research.10

MetaADEDB is a database of adverse drug events and has

been recently developed by combining SIDER, OFFSIDES,

and the Comparative Toxicology Database.11 Machine

learning approaches have been used to build predictors for

drug-AEs, by using properties such as chemical structures,

drug targets, structural information, and drug–protein interaction

networks.12–15

Although research tools and resources have been developed

for predicting drug-AE relationships, knowledge and prediction

of drug-AEs are still far from perfect. One of the main limita-

tions of the current approaches is that they are limited to

FDA-approved drugs,9,10 as the primary source of AEs. Other

experimental compounds tested in clinical trials were not cap-

tured by the current approaches. These experimental compound

AEs in clinical trials represent an untapped resource, and could

potentially provide new knowledge of drug-AE relationships.

Collections of trials data and results are now available in

various clinical trials registries, such as ClinicalTrials.gov.

ClinicalTrial.gov provides completed results for approved and

experimental drugs tested in multiple medical conditions across

various trial phases. Thus, ClinicalTrials.gov offers a unique

opportunity to perform unbiased exploration and learning of

drug-AE relationships.

To understand the patterns of AEs reported in clinical

trials, we performed ‘‘big data mining’’ on the published re-

sults from the ClinicalTrials.gov website. We developed and

implemented data extraction and text mining programs to

automatically retrieve clinical trials with AEs. We developed

a novel AE relational database that links between clinical

trials, drugs, and AEs. We parsed the data extracted from

the ClinicalTrials.gov website into our database. Then, we

performed data mining, pattern analysis, and data visuali-

zation on the reported AEs. To illustrate one application

of our database, we utilized the proportional reporting

ratio (PRR) for comparing selected small molecule kinase

inhibitors and AEs.

MATERIALS AND METHODS
ClinicalTrials.gov and HTML Contents

ClinicalTrials.gov is a registry and results database of both

publicly and privately supported clinical studies of human

participants around the world (https://clinicaltrials.gov). The

goal of a clinical trial is to determine if an intervention, in

comparison to other available interventions (or no interven-

tion), will be helpful for a condition and safe for patients. The

ClinicalTrials.gov results database was launched in September

2008 after the FDA Amendments Act of 2007 required the

submission of basic results of certain clinical trials. In 2009,

the submission of AE information was required. In this study,

we focus on clinical trials where the intervention is a drug or

drug combinations.

Data Extraction and Text Mining
To extract AEs and other related trial information from the

ClinicalTrials.gov website, we implemented a Python script

that utilizes Beautiful Soup.16 Beautiful Soup is a Python li-

brary for navigating and searching a parse tree, which is used

in concordance with the html5lib Python parser for extracting

data from websites. The list of Clinical Trial IDs included in

this database version is from October 5, 2015 or earlier. We

also developed a set of Python scripts for postprocessing and

uploading the data into MySQL tables. The postprocessing

steps include regular expressions, text mining, and a

dictionary-based approach for extracting certain fields as in-

formation was entered in various formats in the ClinicalTrials

.gov published results. We used MySQL version 5.7.11, which

is an open source database. To insert the data into the MySQL

tables, we used PyMySQL, a pure Python MySQL driver

compatible with Python 3, which allows the execution of

MySQL statements. Using the Python scripts, we extracted the

cohort information from the Reporting Group table. We

grouped both the Serious AEs table and Other AEs table, which

included the AE name, category, the number of patients af-

fected in the cohort, and the total number of patients in the

cohort. The workflow of this data extraction and text mining

is illustrated in Figure 1A.

Drug List
We extracted drug information from the clinical trial results

using a drug dictionary. This not only results in fewer false-

positive drug identifications in the cohort descriptions but

also restricts drug and AE relationships to a list of known drug

names for further analysis. In this study, we used the FDA-

approved drugs and experimental compounds obtained from

DSigDB.7 DSigDB currently holds 17,389 unique compounds

and 19,531 drug target genes, and is freely available at http://

tanlab.ucdenver.edu/DSigDB

AE Database, Analysis and Visualization
The extracted drugs and AEs were uploaded to our adverse

event database (AEDB). Our AEDB contains nine tables, fo-

cusing on drugs, AEs, cohorts, and drug targets. The AEDB

schema is illustrated in Figure 2. The AEDB was developed

using the open source database MySQL.
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PRR Analysis
We used the PRR that summarizes the extent to which a

certain AE is reported for patients taking a particular drug

compared with the frequency at which the same AE is reported

in other drugs.17 The PRR has been used to find signal in AEs

for safety reporting in drugs.10,17,18 A PRR greater than one

implies that the drug of interest had a higher reported fre-

quency of the AE than the rest of the drugs.

RESULTS

Summary of the AEs Extracted from ClinicalTrials.gov1
We downloaded 18,567 trials with results reported in the

ClinicalTrials.gov database as of October 5, 2015. The work-

flow of extracting the drug AEs for this study is illustrated in

Figure 1B. We selected clinical trials that had ‘‘Drug’’ in the

Intervention type. This generates a list of 12,548 ‘‘Drug’’ trials

Fig. 1. Overview of the research strategy. (A) The workflow for extracting and data mining clinical drug trial data from ClinicalTrials.gov.
(B) The flow chart of filtering clinical trials used in this study. Color images available online at www.liebertpub.com/adt

Fig. 2. Entity-relationship model of the AEDB. AEDB, adverse event database.
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from the total number of trials in the results list. Then, we

filtered 330 observational studies, and we further filtered

1,434 trials with no AEs reported in the results. We matched

the drugs from the 10,784 trials that have at least one reported

AE using a list of FDA-approved drugs, small molecules, and

monoclonal antibodies with known targets. Using this drug

list, we extracted drug-AE relationships from 8,161 trials. We

also extracted placebo-related AEs from this list of trials.

Table 1 provides some examples of data extracted from

these trials.

Table 2 summarizes the statistics of the data in our AEDB. We

have extracted 8,161 trials from ClinicalTrials.gov, in which

more than 3 million patients participated. Among the 1,248

drugs that were extracted from these trials, 634 were FDA-

approved drugs. Placebo was used in 3,404 trials, representing

42% of the clinical trials in this study. The 3 million patients

were tested in 20,739 cohorts across these trials. A total number

of 31,267 AEs were extracted from these trials that span across

26 AE categories. A total number of 713,103 AEs are reported in

our study. There are more than 3,000 medical conditions tested

in these trials. The AEDB contains a unique data set collected

from clinical trials, which provide an opportunity to study

drug-AE relationships. The AEDB data set is different from the

other existing databases based on FAERS. Supplementary

Figure S1 (Supplementary Data are available online at

www.liebertpub.com/adt) shows a Venn diagram of drugs in

AEDB, SIDER, and OFFSIDES. As shown, AEDB has 539 drugs

or experimental compounds that are currently not included in

SIDER or OFFSIDES. Supplementary Figure S2 illustrates the

summary statistics of drugs and AEs in AEDB.

Statistics of the AEs
We extracted and grouped the AEs from ClinicalTrials.gov

into 26 unique AE categories (Fig. 3A). The top three most

common AE categories were gastrointestinal disorders, in-

fections and infestations, and nervous system disorders. The

least common AE category was social circumstances (Fig. 3A).

Although the AE names reported across the clinical trials did

not follow a dictionary, the 26 unique AE categories comply

with the National Cancer Institute Common Terminology

Criteria for Adverse Events (CTCAE v4.0). The 10 most com-

mon AEs found in these clinical trials were headache, nausea,

dizziness, vomiting, fatigue, constipation, diarrhea, back pain,

nasopharyngitis (common cold), and cough (Fig. 3B). These

AEs were found in various medical conditions. We observed

an increased number of AEs per patient reported in recent

years, potentially due to the requirement to report AE results

in the ClinicalTrials.gov repository (Supplementary Fig. S3).

Table 1. Data Extracted from ClinicalTrials.gov

Data Extracted Data Examples

Clinical trials NCT00860743

NCT00718770

NCT01909141

Drugs Bevacizumab

Carboplatin

Metformin

Cohorts ‘‘Cohort 1, healthy adults’’

‘‘Cohort 1, adolescents 12

to 17 years old, 4060 mg’’

‘‘Cohort 2, children 6

to 12 years old, 2060 mg’’

Adverse event names ‘‘Fever’’

‘‘Vomiting’’

‘‘Nausea’’

Adverse event categories ‘‘Nervous system disorders’’

‘‘Vascular disorders’’

Conditions Diabetes mellitus

Alzheimer’s disease

Prostate cancer

Table 2. Summary Statistics of the Database

Description Counts

Number of clinical trials 8,161

Number of patients 3,102,675

Number of drugs 1,248

Number of FDA-approved drugs 634

Number of non-FDA-approved drugs 614

Number of cohorts 20,739

Number of adverse event names 31,267

Number of adverse event categories 26

Number of reported adverse events 713,103

Number of conditions 3,279

FDA, U.S. Food and Drug Administration.
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The 10 most common conditions investigated in these clini-

cal trials were Type 2 diabetes mellitus, breast cancer, chronic

obstructive pulmonary disease, hypertension, rheumatoid ar-

thritis, asthma, schizophrenia, nonsmall cell lung cancer, hep-

atitis C, and prostate cancer (Fig. 3C). To explore the disease-AE

relationships, we performed PRR analysis on the top 20 con-

ditions. Supplementary Figure S4 shows the disease-AE rela-

tionships in a heatmap. For example, auditory hallucination is

strongly correlated with schizophrenia, major depressive dis-

order, Parkinson’s disease, epilepsy, and Alzheimer’s disease.

AEs in Different Phases
of Clinical Trials

Next, we investigate the AEs

recorded in the different phases of

clinical trials. Figure 4A shows the

breakdown of the clinical trial

phases in this study. The top three

phases with the most complete

AE results were Phase 3 (34.4%),

Phase 2 (32.6%), and Phase 4

(15.4%). We found that Phase 1/2

patients experienced the highest

number of AEs, followed by Phase

1 and Phase 2 patients. This is

not surprising as these early trial

Fig. 3. Statistics of the AEs. (A) The 26 AE categories collected in AEDB. (B) The top 20 most common AEs reported in AEDB. (C) The top
20 most common medical conditions in AEDB.

Fig. 4. AEs in different phases of clinical trials. (A) Distribution of the different phases of clinical trials.
(B) Average number of AEs per patient in different phases of clinical trials. N.S., not specified. Error bar
represents the standard error of the mean. Color images available online at www.liebertpub.com/adt
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Fig. 5. Drug-AE relationships. (A) Distribution of the drug classes collected in AEDB. (B) The top 20 most common drugs reported in
AEDB. (C) The number of AEs per FDA-approved drug. (D) The number of AEs per non-FDA-approved drug. (E) The number of AEs per kinase
inhibitor. (F) The number of AEs per monoclonal antibody. FDA, U.S. Food and Drug Administration.
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phases are enriched with experimental compounds, and

the main objective of these trials is to determine the

toxicity of these compounds in patients. Accordingly,

Phase 3 and 4 patients experienced the least number of

AEs; these trials are late-stage trials where the main ob-

jectives are the efficacy of the drugs (Phase 3) and post-

marketing surveillance of the drugs (Phase 4). Figure 4B

shows the average number of AEs per patient in these

different phases of trials.

Statistics of the Drug-AE Relationships
Next, we investigate the drug-AE re-

lationships that were extracted from

ClinicalTrials.gov and included in our

database. Using the drug list that we

compiled, we extracted 1,248 drugs from

the 8,161 clinical trials. Out of these 1,248

drugs, 634 were FDA-approved drugs.

Among the FDA-approved drugs, 18

were kinase inhibitors, 37 were monoclo-

nal antibodies, and the remaining were

small molecule drugs. In the non-FDA-

approved drugs category, 16 were kinase

inhibitors, 15 were monoclonal anti-

bodies, and 583 were other small mole-

cules. Among the 8,161 clinical trials

collected in our database, 5,981 contained

experimental compounds from the trials.

This demonstrates that there are a signifi-

cant number of experimental compounds

published with AEs that are not included in

the databases that contain only FDA-

approved drugs. Figure 5A summarizes the

distributions of the drugs in AEDB. Met-

formin, an FDA-approved drug for the

treatment of type 2 diabetes mellitus, is the

most commonly used drug in these clinical

trials. The other top 10 commonly used

drugs were bevacizumab, insulin, carbo-

platin, paclitaxel, docetaxel, gemcitabine,

dexamethasone, cyclophosphamide, and

rituximab. Figure 5B shows the top 20

commonly used drugs in AEDB. Figure 5C

and D illustrate the number of AEs due to

FDA-approved and non-FDA-approved

drugs, respectively. Figure 5E and F show

the number of AEs associated with kinase

inhibitors and monoclonal antibodies,

respectively. We found that kinase in-

hibitors have a slightly higher number of

AEs, compared with monoclonal antibodies, suggesting that

kinase inhibitors might have more ‘‘off-targets.’’

Case Study: Kinase Inhibitor-AE Relationships
To illustrate one application of AEDB, we performed PRR

for comparing selected small molecule kinase inhibitors and

AEs. Protein kinases play a key role as regulators and trans-

ducers of signaling in eukaryotic cells, and represent the

largest and well-studied ‘‘druggable’’ families in the human

Fig. 6. Kinase inhibitor-AE relationships. Heatmap of the PRR of the top 10 AEs of
imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and placebo. The PRR is normalized
per AE, where red and blue colors indicate high and low frequencies, respectively.
PRR, proportional reporting ratio. Color images available online at www.liebertpub
.com/adt
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genome.19 Many kinases are mutated in cancer genomes, and

cancer cells depend on these mutated kinases for proliferation,

growth, and survival signaling. Therefore, small molecule

inhibitors that inhibit kinases either in wild-type or mutated

forms are actively studied in the pharmaceutical industry and

academia. However, due to the conserved sequence similarity

between kinases, many kinase inhibitors have off-target ef-

fects, which can ultimately lead to AEs in patients.

The majority of chronic myelogenous leukemia (CML) cases

are driven by the oncogenic kinase fusion of BCR-ABL. Im-

atinib is a small molecule kinase inhibitor that specifically

inhibits the activity of BCR-ABL, and dramatically improves

the survival of CML patients.20 Imatinib represents the first

FDA-approved kinase inhibitor in treating CML; additional

four kinase inhibitors (dasatinib, nilotinib, bosutinib, and

ponatinib) are also approved by FDA for this disease. How-

ever, these newer kinase inhibitors cause more serious AEs. To

study these AEs, we focused on the five kinase inhibitors

approved for the treatment of CML: imatinib, nilotinib, da-

satinib, bosutinib, and ponatinib. We used PRR to evaluate

AEs reported for each of the kinase inhibitors. Figure 6 shows

the top 10 AEs found in each kinase inhibitor in the database

compared to placebo. From this heatmap, it is clear that po-

natinib has more AEs and a different AE profile compared to

the other kinase inhibitors.

We further investigated the selected vascular-related AEs

associated with these kinase inhibitors. These vascular AEs

have emerged as a serious consequence of the treatment of

kinase inhibitors.21,22 From the analysis, we found that these

kinase inhibitors have a higher PRR score in peripheral arterial

occlusive disease, embolism, hypertension, platelet dysfunc-

tion, hyperglycemia, and hair loss, compared with the other

drugs in the database (Table 3). Specifically, ponatinib has the

highest PRR score in peripheral arterial occlusive disease. This

finding is supported by the FDA warnings for ponatinib, which

include serious AEs related to life-threatening blood clots

and severe narrowing of the blood vessels. As a result, the FDA

issued a temporary marketing suspension of ponatinib in

October 2013 and began to require extra safety measures for

ponatinib in December 2013, before the company resumed

marketing.23,24 This suggests that performing data mining

on our database may reveal new knowledge about drug-AE

relationships.

DISCUSSION
We have performed ‘‘big data’’ mining and pattern analysis

of drug AEs in ClinicalTrials.gov. We extracted drug-AE re-

lationships from 8,161 clinical trials, in which more than 3

million individuals participated. A total of 1,248 drugs and a

total of 31,267 AEs were extracted from these trials. The AEs

extracted from these trials span across 26 AE categories. To

facilitate data analysis, we have developed AEDB to store and

manage the drugs and AEs extracted from ClinicalTrials.gov.

We performed data mining and analyzing drug-AE relation-

ships using AEDB.

Current drug-AEDB such as SIDER focus on only FDA-

approved drugs, as most of the AEs are obtained from

the FAERS or FDA drug labels. In contrast, AEDB extracted

both FDA-approved drugs and

experimental compounds from

clinical trial data. These ex-

perimental compounds and

AE relationships have not

been fully studied, and are an

untapped resource for mining

new drug-AE relationships.

We believe that our database

provides a unique opportunity

to learn and extract drug-AE

relationships, and it is com-

plementary to the existing

AE resources. Our database

can easily be scaled up to

capture new data deposited to

ClinicalTrials.gov. We plan to

periodically update the da-

tabase with new results from

ClinicalTrials.gov.

Table 3. Vascular Event Proportional Reporting Ratios for the Five Kinase Inhibitors
Commonly Used to Treat Chronic Myelogenous Leukemia Patients

Kinase

Inhibitors

Vascular Adverse Events

Peripheral

Arterial

Occlusive

Disease Embolism Hypertension

Platelet

Dysfunction Hyperglycemia

Hair Loss

Alopecia

Vascular

Disorders

Imatinib 7.416 4.874 4.550 10.929 4.944 4.398 5.481

Dasatinib NA 2.959 8.161 17.624 10.720 4.427 4.263

Nilotinib 31.497 2.070 10.541 11.604 14.998 4.239 4.810

Bosutinib NA 5.457 7.719 10.197 5.272 4.443 3.719

Ponatinib 374.810 NA 41.811 69.044 NA 7.486 9.158

Placebo 2.065 1.861 1.957 0.326 1.404 0.000 1.836

NA, not applicable due to no data.
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Trial data reported in ClinicalTrials.gov are a new source of

big data for biomedical research, as ClinicalTrials.gov cur-

rently holds more than 217,000 studies in its registry. How-

ever, several challenges exist in extracting data from this data

source. First, the lack of standards in clinical trial data ele-

ments makes it more difficult to extract and map data. Second,

no standard drug names or dictionary were used in the re-

pository, and manual inspection is required to correctly map

the drug names. Third, different ontologies were used in re-

porting AEs, and manual inspection is required to map and

consolidate the name of AEs. Finally, typos in data entry re-

quire manual inspection and correction. Two recent studies

have explored the data in ClinicalTrials.gov. One study fo-

cuses on learning disease relationships from clinical drug

trials,25 and the other focuses on extracting genetic alteration

information for personalized cancer therapy.26 Both studies

used text mining approaches to extract the trial information

from ClinicalTrials.gov.

In the future, we would like to investigate the drug target-

AE relationships in our database to elucidate the molecular

mechanisms of drug actions and improve personalized med-

icine using previously published methodologies.12–15,27 We

would like to use AEs for predicting novel drug–target inter-

actions for drug repurposing and repositioning. We would

also like to develop an interactive web portal such as8,9,28,29

that users can utilize to query, retrieve, and analyze data

collected in this database. The database would be searchable

by drug, drug target, AE, condition, and/or clinical trial. Our

study has the limitation of not considering the different drug

dosages and their related AEs, which we plan to address in our

future work.

In conclusion, we have extracted clinical drug trial data

from ClinicalTrials.gov and structured it into a database for

mining, predicting, and visualizing AEs. We developed and

implemented data extraction and text mining programs to

automatically retrieve clinical trials with AEs. We developed

a novel AE relational database that links between clinical

trials, drugs, and AEs. We illustrated the application of the

database by performing the PRRs for comparing the AEs of

five common kinase inhibitors with those of other drugs in

the database. We found that the signal in the AEs with higher

frequencies and the results were corroborated by published

studies. Our database can serve as a tool to assist researchers

discover drug-AE relationships for developing, reposition-

ing, and repurposing drugs.
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