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Abstract: The latest SARS-CoV-2 variant of concern (VOC), Omicron (B.1.1.529), has diversified into
more than 300 sublineages. With an expanding number of newly emerging sublineages, the mutation
profile is also becoming complicated. There exist mutually exclusive and revertant mutations in
different sublineages. Omicron sublineages share some common mutations with previous VOCs
(Alpha, Beta, Gamma, and Delta), indicating an evolutionary relationship between these VOCs. A
diverse mutation profile at the spike–antibody interface, flexibility of the regions harboring mutations,
mutation types, and coexisting mutations suggest that SARS-CoV-2’s evolution is far from over.

Keywords: variant of concern (VOC); Omicron sublineages; revertant mutations; structural flexibility;
molecular dynamics; mutant modeling

1. Introduction

Severe acute respiratory coronavirus 2 (SARS-CoV-2) has been evolving into different
variants since its emergence in December 2019. To date, five official variants of concern
(VOCs)—Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron
(B.1.1.529)—have been reported. The latest VOC, Omicron (B.1.1.529), was reported in late
November 2021 [1]. It has diversified into more than 300 sublineages to date, and new
sublineages continue to emerge. The ultimate sources and the timing of the evolution of
these variants remain largely unknown [2,3]. In fact, some sublineages—such as BA.1,
BA.1.1, BA.2, and BA.3—appear to have evolved around the same time [3–5] or even before
the discovery of Omicron itself.

Several factors, including persistent viral infection in immunocompromised individ-
uals, alternate hosts, pressure of antibodies induced by prior infections or vaccination,
and the function of restrictive factors such as APOBEC (apolipoprotein B mRNA editing
enzyme, catalytic polypeptide) and ADARs (adenosine deaminases acting on RNAs), can
lead to the acquisition of new mutations [6–8], which can potentially weaken the immune-
mediated neutralization [9–12]. It remains unclear whether any of these factors contributed
to the evolution of Omicron.

2. Materials and Methods
2.1. Flowchart of the Study

A flowchart of the analyses conducted in this study is shown in Figure 1. Briefly, the
sequences of Omicron and its sublineages, along with the Alpha, Beta, Gamma, and Delta
VOCs, were obtained from GISAID [13]. The mutations were then identified using an in-
house R script that was based on the API provided by outbreak.info [14]. Where available,
the structures of the spike receptor-binding domain (S-RBD/ACE2 or S-RBD/monoclonal
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antibody (mAb) were retrieved from the Protein Data Bank (www.rcsb.org, accessed on 6
August 2022). Structures were aligned using the structure of the S-RBD/ACE2 complex
reported by Lan et al. [15], using the ‘align’ function of PyMOL (Schrodinger LLC, New
York, NY, USA). Mutant modeling and molecular dynamics simulations were conducted as
described in the following sections. The interactions between residues were determined
using either PyMOL or Maestro (Schrodinger LLC, New York, NY, USA). Functional
implications were drawn from the structure/sequence analyses.
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Figure 1. Flowchart of the analyses conducted in this study.

2.2. Sequence Acquisition and Analysis

The prevalence of each mutation in BA.1, BA.1.1, BA.2, BA.2.1.1, BA.3, BA.3.1, BA.4,
and BA.5 was calculated using an R script that was based on the API (application pro-
gramming interface) available at outbreak.info. This API has an interface with the GISAID
repository [13] of SARS-CoV-2 sequences. The modified R script rearranges the occurrence
of the order of Omicron sublineages or other VOCs. The details of the API can be found
on the GitHub page https://github.com/outbreak-info/R-outbreak-info accessed on 6
August 2022.

2.3. Structural Analysis

The structures of the S-RBD/ACE2 and S-RBD/mAb complexes were retrieved from
the Protein Data Bank (www.rcsb.org, accessed on 6 August 2022). Mutations at specific
positions were generated using the ‘Mutagenesis’ wizard of PyMOL (Schrodinger LLC,
New York, NY, USA). The structures were aligned using the ‘align’ tool of PyMOL. All
distance measurements were carried out in PyMOL. The interface residues were identified
using the R package Bio3D [16]. The chord diagram was generated using an in-house R
script. All scripts used here are available upon request after fulfilment of requirements by
the University of Missouri.

2.4. Molecular Dynamics (MD) Simulations

For MD simulations, we used the crystal structure of the spike receptor-binding
domain (S-RBD) in complex with human angiotensin-converting enzyme 2 (ACE2) (PDB
file 6M0J) [15]. All MD simulations were conducted in TIP3P [17], water-filled, truncated,

www.rcsb.org
https://github.com/outbreak-info/R-outbreak-info
www.rcsb.org
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isometric, octahedral periodic boxes of at least 12 Å depth on all sides of the protein surface.
Ten Na+ and ten Cl¯ ions were used to neutralize the total charge on the S-RBD/ACE2
complex and to maintain the ionic strength of 145 mM. Monovalent (Na+ and Cl¯) ion
positions were randomized at 5.0 Å from other solute atoms and 3.0 Å from one another
using different seeds to generate five model replicates. All MD simulations were run
at 300 K with a pressure of 1.013 bar for 60 ns. The MD trajectories were analyzed and
generated by VMD [18].

3. Results

The Omicron sublineages have: (i) a high number of mutations [19,20] and (ii) a re-
markably diverse mutation profile [20]. Of the total 44 mutations in the S protein, 22 are
in the S-RBD (Table 1). Of these, 16 mutations are at the S-RBD–ACE2 interface (Figure 2).
A comparison of mutations in the spike protein, as of 12 June 2022 (Figure 2), highlights
the differences in the mutation profiles of a few select Omicron sublineages. Thus, the
low-prevalence mutations T19I, L24S, and DEL25/27 in BA.1-related sublineages are present
at high prevalence in BA.2, BA.4, and BA.5 (Figure 2). Conversely, the highly prevalent mu-
tations A67V, T95I, and DEL143/145 of BA.1 are absent in BA.2, BA.4, and BA.5. Moreover,
two mutations in BA.1 and BA.3 (i.e., G446S and G496S) reverted back to the wild-type (WT,
Wuhan-Hu-1) residues (G446 and G496) in BA.2, BA.4, and BA.5 (Figure 2). Other notable
differences include inter-sublineage mutation patterns (discussed below).

Table 1. Mutations of the S-RBD in different Omicron sublineages.

Mutation Omicron Sublineage

G339D BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
R346K BA.1.1
S371L BA.1 BA.1.1
S371F BA.2 BA.2.11 BA.3 BA.4 BA.4
S373P BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
S375F BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
T376A BA.2 BA.2.11 BA.4 BA.4
D405N BA.2 BA.2.11 BA.3 BA.4 BA.4
R408S BA.2 BA.2.11 BA.4 BA.4
K417N BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
N440K BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
G446S BA.1 BA.1.1 BA.3
L452R BA.2.11 BA.4 BA.4
S477N BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
T478K BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
E484A BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
F486V BA.4 BA.4
Q493R BA.1 BA.1.1 BA.2 BA.2.11 BA.3
G496S BA.1 BA.1.1
Q498R BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
N501Y BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
Y505H BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4
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ample of the mutation patterns in different Omicron sublineages. Sublineages BA.1.1 and BA.2.11 
are included here to show that there exist inter-sublineage differences in the mutations. Sublineage 
B.1.1 has an R346K mutation that is not present in B.1 and Omicron (B.1.1.529). Similarly, BA.2.11 
has an L452R mutation that is not present in BA.2. (b) The location and interactions of F486/V486 
with ACE2. This figure was generated from PDB entry 7ZF7 [21]. The WT (Wuhan-Hu-1) S-RBD is 
shown as violet ribbons, whereas ACE2 is colored grey. The amino acid residues are rendered as 
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Figure 2. Mutations in the S-RBD of Omicron and its sublineages (see Figure 3a). The S-RBD (purple)
and ACE2 (green) are rendered as ribbons. Mutations (shown as sticks) in 8 or more sublineages are
colored purple; mutation in one sublineage is colored yellow; mutations in 2, 3, 4, 5, and 6 sublineages
are colored magenta, gray, orange, cyan, and forest green, respectively. This figure was generated
using the PDB file 6M0J [15].

The mutations K417N and K417T are signature mutations of Beta and Gamma, re-
spectively. The majority of Omicron sublineages have K417N. However, BA.2.18, BA.2.38,
BA.2.40.1, and BA.3.1 have K417T [14]. Intriguingly, K417N and K417T are mutually exclusive,
i.e., the sublineages harboring K417T do not have K417N, and vice versa [14]. L452R, a signa-
ture mutation of Delta, is highly prevalent (~90%) in BA.2.11, BA.4, and BA.5, but not in BA.2
(Figure 3a). Except for Q493R, all BA.2 mutations are present in BA.4 and BA.5 (Figure 3a),
but BA.4 and BA.5 have an additional three mutations: ∆69/70, L452R, and F486V.

Another mutation, F486V, is only prevalent in BA.4 and BA.5 (Figure 3a). F486V
confers the loss of potency for multiple neutralizing antibodies [22]. F486 is located on
a loop and forms hydrophobic interactions with L79 and M82 of ACE2 (Figure 3b). A
simple mutant modeling helped to predict the mechanisms involved in maintaining the
hydrophobic interaction of V486-containing S proteins with ACE2, as well as antibody
evasion. The structures of the F486V spike/ACE2 or spike receptor-binding domain (S-
RBD)/ACE2 complexes and any mAbs are not known. Hence, the crystal structures of
the BA.2 S-RBD/ACE2 complex (PDB entry 7ZF7) and the BA.2-RBD/COVOX 150 Fab
complex (PDB entry 7ZF8) [21] were used to generate the F486V mutation with the ‘Prime’
software of Schrodinger Suite (Schrodinger LLC, New York, NY, USA) (Figure 3b,c). The
mutant modeling suggests that F486V retains the same interaction distance to L79 and M82
(both on ACE2) (green dotted lines) (Figure 3b). However, the hydrophobic interactions
between F486 (S-RBD of BA.2) and V2 and V106 (of COVOC 150) are lost upon acquisition
of the F486V (BA.4 and BA.5) mutation, as the distances from V486 to V106 and V2 (7.1 Å
and 6.5 Å, respectively) (red dotted lines) are significantly greater than the distances from
F486 to V106 and V2 (4.5 Å and 4.0, respectively) (green dotted lines) (Figure 3c).



Biomedicines 2022, 10, 2593 5 of 8

Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 8 
 

Y505H BA.1 BA.1.1 BA.2 BA.2.11 BA.3 BA.4 BA.4 

 
Figure 2. Mutations in the S-RBD of Omicron and its sublineages (see Figure 3a). The S-RBD (purple) 
and ACE2 (green) are rendered as ribbons. Mutations (shown as sticks) in 8 or more sublineages are 
colored purple; mutation in one sublineage is colored yellow; mutations in 2, 3, 4, 5, and 6 subline-
ages are colored magenta, gray, orange, cyan, and forest green, respectively. This figure was gener-
ated using the PDB file 6M0J [15]. 

 
Figure 3. Prevalence of mutations in Omicron sublineages and their structural impacts: (a) An ex-
ample of the mutation patterns in different Omicron sublineages. Sublineages BA.1.1 and BA.2.11 
are included here to show that there exist inter-sublineage differences in the mutations. Sublineage 
B.1.1 has an R346K mutation that is not present in B.1 and Omicron (B.1.1.529). Similarly, BA.2.11 
has an L452R mutation that is not present in BA.2. (b) The location and interactions of F486/V486 
with ACE2. This figure was generated from PDB entry 7ZF7 [21]. The WT (Wuhan-Hu-1) S-RBD is 
shown as violet ribbons, whereas ACE2 is colored grey. The amino acid residues are rendered as 
ball-and-stick models. The carbon atoms in this and subsequent panels are colored in the same 

Figure 3. Prevalence of mutations in Omicron sublineages and their structural impacts: (a) An
example of the mutation patterns in different Omicron sublineages. Sublineages BA.1.1 and BA.2.11
are included here to show that there exist inter-sublineage differences in the mutations. Sublineage
B.1.1 has an R346K mutation that is not present in B.1 and Omicron (B.1.1.529). Similarly, BA.2.11
has an L452R mutation that is not present in BA.2. (b) The location and interactions of F486/V486
with ACE2. This figure was generated from PDB entry 7ZF7 [21]. The WT (Wuhan-Hu-1) S-RBD is
shown as violet ribbons, whereas ACE2 is colored grey. The amino acid residues are rendered as
ball-and-stick models. The carbon atoms in this and subsequent panels are colored in the same colors
as the ribbons, whereas sulfur atoms are shown in gold and nitrogen in blue. V486-containing S-RBDs
(as in BA.4 and BA.5) are shown in teal, as are the carbon atoms. The green dotted lines represent
the distance between the F486/V486 and ACE2 residues. (c) The impact of the F486V mutation on
mAb binding. This figure was generated from PDB entry 7ZF8 [21], representing the binding of
the BA.2 S-RBD with the COVOX 150 antibody. The V486 mutation is shown in teal and the amino
acid residues of COVOX 150 are shown in orange. (d) The change in the conformation of the loop
containing S371 in WT (green), L371 in BA.1 (deep blue), and F371 in BA.2 (magenta). It is clear from
the position of F374 (located on the same loop) that the loop conformation is altered significantly,
depending upon the omicron sublineage. (e) The trajectory of the root-mean-square deviation of
S-RBD Cα-atoms in WT, S371L, S371F, and F486V over 60 ns MD simulations. (f) A chord diagram
shows common mutations between selected Omicron sublineages and the Alpha, Beta, Gamma, and
Delta VOCs. The thickness of the end of the chord represents the number of mutations (two or three).

Another intriguing factor associated with F486V is that the sublineages containing
F486V do not have the Q493R mutation. Instead, they have the revertant mutant Q493
(as in the WT), suggesting that if there was any reduction in S-RBD–ACE2 binding, the
revertant mutation would functionally compensate by selecting Q493 (WT) in place of
R493 (as in BA.1, BA.2, BA.3, and related sublineages). The loop harboring F486 also
has another Omicron signature mutation (E484A), which abrogates the binding of the LY-
CoV555 monoclonal antibody (mAb) to S-RBD [23]. It appears that BA.4, and BA.5 evolved
with the additional F486A mutation to evade not only LY-CoV555, but also other antibodies
(such as COVOC 150) that would have neutralizing activity. It is also possible that BA.4 and
BA.5 evolved with the F486V mutation in conjunction with E484A to adopt a flexible loop
conformation that would be capable of maintaining hydrophobic interactions but reduce
the binding to antibodies [24] (Figure 3a,b). The conformational flexibility of the loops
containing mutations that may escape antibody binding is evident from the comparison of
the S-RBD structures of different VOCs. The loops harboring S371 (WT), S371L (in BA.1),
and S371F (in BA.2) have strikingly different conformations (Figure 3d), as do S-RBDs
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bound to the S304 mAb [23]. To test whether the S371L/F mutation influences the S-RBD’s
conformational flexibility, we conducted molecular dynamics (MD) simulations. The MD
simulations (Figure 3d) showed that WT stabilizes by ~12 ns, whereas the S371L and
S371F mutations take ~22 ns and ~25 ns, respectively, and the Cα fluctuations of S371L/F
remain greater than those of WT throughout the simulation. F486V was also included in
the MD simulations to examine its impact. In line with our predictions, the MD results
demonstrated that the F486V mutation also increases the flexibility of the S-RBD compared
to WT (Figure 3d).

Deletion mutations DEL69/70 and L452R are signature mutations of Alpha and Delta,
respectively. DEL69/70 is highly prevalent in all sublineages, except for BA.2 (Figure 3a).
DEL69/70 itself does not evade antibody binding, but increases infectivity [25]. L452R
evades cellular immunity and increases infectivity [26,27], and the L452R mutation in
Omicron greatly enhances its ability to infect the lung tissues of humanized ACE2 mice [27].
These examples of mutation profile differences in Omicron sublineages and phenotypes
associated with these mutations suggest that different Omicron sublineages may have
different pathogenicity.

Comparison of ~10 million sequences (outbreak.info) shows that 2–3 mutations are
common between Omicron and Alpha, Beta, Gamma, and Delta (Figure 3e). The chord
diagram (Figure 3e) shows that BA.1 shares three common mutations with Delta and
Alpha, and two with Beta and Gamma. Sublineages BA.2.11 and BA.3.1 were included
to demonstrate inter-sublineage differences. For example, BA.2.11 has three common
mutations with Delta, whereas BA.2 has only two. Similarly, BA.3.1 (the only reported
BA.3-related sublineage) shares three mutations with Gamma, whereas BA.3 has only two.
The VOCs Alpha, Beta, Gamma, and Delta have 9, 9, 12, and 10 mutations, respectively. The
presence of only 2–3 common mutations between Omicron sublineages and the previous
four VOCs, with the remainder (6–9) being the same as in the WT, suggests that the Omicron
sublineages most likely evolved independently from the WT virus and had time to diversify
before they were discovered [3].

4. Conclusions

In summary, the analyses presented above show that the Omicron sublineages have
a complex mutation profile, including mutually exclusive (i.e., K417N and K417T) and
revertant mutations (i.e., G446 and G496). The structural flexibility, types of mutations—
such as S371L (in BA.1) and S371F (in BA.2)—and the difference in mutation profile at the
interface of mAb binding, add additional complexity to the evolution of Omicron and its
sublineages. Furthermore, the emergence of recombinant Omicron viruses such as XD, XE,
XF, XL, XN, XP, XQ, XU, and XV indicates that more Omicron sublineages will emerge in the
future. In fact, the number of Omicron sublineages is increasing at an unprecedented rate,
further confirming the complex evolutionary characteristics of this variant. As of 3 August
2022, there were over 271 sublineages of Omicron, while there were only ~75 on 1 May 2022.
As of 28 September 2022, there were ~325 omicron sublineages. The complex pattern of
mutations in Omicron sublineages suggests increased resistance to various antibodies. New
variants or sublineages of existing VOCs may also emerge under a variety of physiological
and therapeutic pressures. The waning of natural and hybrid immunity to SARS-CoV-2 [28]
indicates that COVID-19 is likely to exist for a long period of time. In conclusion, it is
possible that COVID-19 may be heading towards endemicity, but the continued evolution
of SARS-CoV-2 does not appear to be ending anytime soon.
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