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Abstract Traumatic brain injury (TBI) is a major cause

of mortality and morbidity, placing a significant financial

burden on the healthcare system worldwide. Non-invasive

neuroimaging technologies have been playing a pivotal

role in the study of TBI, providing important information

for surgical planning and patient management. Advances in

understanding the basic mechanisms and pathophysiology

of the brain following TBI are hindered by a lack of reli-

able image analysis methods for accurate quantitative

assessment of TBI-induced structural and pathophysiolog-

ical changes seen on anatomical and functional images

obtained from multiple imaging modalities. Conventional

region-of-interest (ROI) analysis based on manual labeling

of brain regions is time-consuming and the results could be

inconsistent within and among investigators. In this study,

we propose a workflow solution framework that combined

the use of non-linear spatial normalization of structural

brain images and template-based anatomical labeling to

automate the ROI analysis process. The proposed workflow

solution is applied to dynamic PET scanning with

15O-water (0–10 min) and 18F-FDDNP (0–6 min) for

measuring cerebral blood flow in patients with TBI.

Keywords Traumatic brain injury (TBI) � Cerebral blood
flow (CBF) � Magnetic resonance imaging (MRI) �
15O-water � 18F-FDDNP � Positron emission tomography

(PET) � Spatial normalization

1 Introduction

Traumatic brain injury (TBI) is an important public health

and socio-economic problem throughout the world. It is

one of the most common causes of death and long-term

disability in adolescents, young adults, and the elderly. In

the United States, it was estimated that 1.7 million people

sustain a TBI annually [1]. Of these people, approximately

81 % were treated in and released from emergency

departments, about 16 % were hospitalized and discharged,

and approximately 3 % died [1]. However, these numbers

underestimate the real prevalence of TBI as they do not

account for those people who did not seek for medical care,

had non-fatal (mild or moderate) TBI and presented in

outpatient settings such as physician’s offices, or those who

received medical care from federal, military, or Veterans

Affairs hospitals [1].

Non-invasive neuroimaging technologies have been

playing a pivotal role in the study of TBI, providing

important information for anatomic localization, surgical

planning, staging and monitoring the therapeutic responses,

and predicting the recovery outcomes that could improve

the survival and change management in patients under

acute and chronic conditions. Survivors of TBI typically

live with varying degrees of physical disability and suffer

from significant cognitive deficits (e.g., impaired attention
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and poor executive function) and psychological health

issues (e.g., depression and elevated impulsivity), all of

which require long-term or lifelong medical care and

support. Advances in understanding the basic mechanisms

and pathophysiology of the brain following TBI are

somewhat limited due to lack of reliable image analysis

methods that allow accurate quantitative assessment of

TBI-induced structural and pathophysiological changes

seen on anatomical and functional images obtained from

multiple imaging modalities. The use of multimodal neu-

roimaging technologies has the advantages to overcome the

limitations of any individual imaging modality and to

aggregate clinical characteristics and features obtained

from different imaging techniques for knowledge mining

and for guiding medical diagnosis and decision making [2].

Some state-of-the-art methods of multimodal imaging and

their uses in brain research can be found in the following

review articles [3, 4]. While conventional region-of-inter-

est (ROI) analysis enables quantitation of regional changes

and serves as the basis for comparing data between indi-

viduals both within and across imaging modalities [5],

delineation of brain regions through manual ROI drawing

is labor-intensive and time-consuming, and is also prone to

reproducibility errors [2, 6, 7]. The complexity level of

ROI analysis increases tremendously by the complicated

nature of TBI that generally involves a combination of

focal and diffuse injury mechanisms. Depending on the

cause and severity of the brain injury, variability of indi-

vidual TBI brains is increased, particularly in the presence

of focal lesions (e.g., contusion and hemorrhage) and large

deformations within the brain (e.g., swelling and enlarge-

ment/shrinkage of ventricular space). This adds significant

difficulties to conduct group-level analysis (such as statis-

tical parametric mapping, SPM [8]) and poses technical

challenges to perform atlas-based anatomical labeling and

ROI analysis [9, 10] with minimal or no human interven-

tion. The gist of the problem lies in the use of spatial

normalization that integrates brain images obtained from

different modalities for the same individuals to establish a

one-to-one correspondence mapping between voxels of

individual brains and a standard brain template in a com-

mon stereotaxic space.

A number of non-linear image registration methods have

been proposed for spatial normalization. Some of these

methods use a linear combination of trigonometric func-

tions [11] or polynomials [12] as the transformation model.

Because of an implicit assumption of small deformations,

this class of methods would fail to normalize images with

large deformation, resulting in folding, shearing, and

tearing of neighboring structures in the original image upon

non-linear transformation. More recent research has been

geared toward the development of a large deformation

framework [13–18] which preserves the continuity of

curves and surfaces as well as the boundaries and neigh-

borhoods between structures while allowing a large degree

of transformation. Examples of this class of algorithms

include Demons [14], LDDMM [18], DARTEL [19]

available in the SPM software (http://www.fil.ion.ucl.ac.

uk/spm/), FNIRT [20] implemented in the FSL software

(http://www.fmrib.ox.ac.uk/fsl/), and symmetric image

normalization (SyN) [21, 22] implemented in an open

source software package ANTs (Advanced Normalization

Tools, [23]), which was built on an Insight Segmentation

and Registration ToolKit (ITK) framework (http://www.

itk.org/). We used SyN in this study for non-linear brain

warping as it can work with different similarity metrics and

regularization kernels [23] and has been extensively eval-

uated with 8 different performance measures using 80

manually labeled MR brain images in a recent large-scale

comparative image registration study and was ranked the

overall best among 14 non-linear brain warping algorithms

being assessed [24].

To address the technical difficulties in analyzing TBI

imaging data, we propose and develop a workflow solution

framework that combined the use of non-linear brain

warping of structural MR images and anatomical labeling

to automatically derive the regional cerebral blood flow

(CBF) parameters from multi-tracer PET studies. CBF is an

important physiological parameter for assessment of brain

function in normal and pathological conditions. Brain tis-

sues depend on CBF for delivery of nutrients and for

removal of metabolic products. Since Kety and Schmidt

developed a theory of inert-gas exchange in 1940s [25],

many methods have become available for measuring CBF

in human. Currently, PET imaging with 15O-water is con-

sidered the gold standard for non-invasive quantification of

CBF [26, 27]. Using a hydrophobic tracer, 2-(1-{6-[(2-

[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)-

malononitrile (18F-FDDNP), the initial uptake (0–6 min) of

which is perfusion-limited, it has been shown that regional

perfusion can be inferred from the relative-delivery

parameter derived by reference-tissue modeling and from

the early-summed image, and thus represent surrogate

indices of CBF [28]. The use of the proposed workflow

solution is illustrated with neuroimaging data obtained

from T1-weighted magnetic resonance (MR) imaging and

dynamic PET scanning of dual tracers (15O-water and
18F-FDDNP) on six TBI patients under acute condition.

2 Materials and methods

2.1 Subjects and study protocol

The study was approved by the UCLA Institutional Review

Board and was conducted under the auspices of the UCLA
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Brain Injury Research Center. Six patients with acute TBI

participated in this study. Written informed consent was

obtained from each patient or from their legally authorized

representative if the patients were unable to consent for

themselves. Patients were admitted to the intensive care

unit after initial stabilization or surgical evacuation of an

intracranial hematoma and were treated in accordance with

published guidelines for the management of severe head

injury [29]. Each patient underwent T1-weighted MR

imaging and a series of dynamic PET scans. Both MR and

PET imaging were performed at the earliest possible time.

Delays in PET scanning were commonly attributable to

pending informed consent, hemodynamic stability of the

patient, surgical procedures, and availability of PET

facility, or a combination of one or more aforementioned

factors. Table 1 summarizes the demographic data of the

patients.

2.2 Image acquisition

2.2.1 MR imaging

A high-resolution structural T1-weighted magnetization-

prepared rapid gradient-echo (MPRAGE) MR image was

taken for each patient using a 1.5T Siemens Sonata MRI

scanner (sagittal plane; repetition time = 1970 ms; echo

time = 4.38 ms; inversion time = 1100 ms; field of view:

512 9 512; in-plane voxel size: 0.5 9 0.5 mm2; slice

thickness = 1 mm; 160 contiguous slices; flip

angle = 15�).

2.2.2 PET scanning

Each patient underwent a single PET session that consisted

of four sequential PET scans (15O-CO, 15O-water, and 15O-

O2 followed by 18F-FDDNP) performed with the ECAT

EXACT HR? scanner (Siemens/CTI) in three-dimensional

(3D) acquisition mode. However, only the 15O-water and

18F-FDDNP PET studies are considered in this paper to

illustrate the use of the proposed workflow solution, which

is independent of the number of PET tracer studies. Prior to

tracer administration, transmission scans were acquired

with a set of 68Ge rotating rod sources to allow for atten-

uation correction. Immediately after a bolus injection of

*555 MBq of 15O-water through an indwelling venous

catheter, dynamic PET scans were acquired for 10 min,

with a scanning protocol of 6 9 5 s, 9 9 10, 6 9 30, and

5 9 60 s. Dynamic 15O-water PET scans were obtained

with concurrent blood sampling via an arterial catheter,

where arterial blood samples were taken at 15 time points

(0, 5 9 12, 3 9 20, 2 9 30, 2 9 60, and 2 9 150 s post-

injection of 15O-water). After a bolus injection of

*370 MBq of 18F-FDDNP, dynamic PET scans were

acquired for 65 min, with a scanning protocol of 6 9 30,

4 9 180, and 10 9 300 s. No blood sample was obtained

for 18F-FDDNP PET studies. Raw PET data were recon-

structed with CAPP software (Siemens/CTI) on SUN

workstations (Sun Microsystems) using a filtered back-

projection algorithm (Hann filter cutoff at 0.3 of the

Nyquist frequency) with correction for randoms, dead-

time, scatter, detector normalization, photon attenuation,

and radioactive decay.

2.3 Image analysis

2.3.1 Parametric maps of physiological parameters

Quantitative parametric map of CBF was generated by

voxel-wise fitting the one-tissue, three-parameter model to

the measured 15O-water kinetics in brain tissue described

by the following equations [26, 27]:

dCTðtÞ
dt

¼ K1CbðtÞ � k2CTðtÞ ð1Þ

CROIðtÞ ¼ CTðtÞ þ VbCbðtÞ; ð2Þ

Table 1 Demographics of the patients

Subject Gender Age (years) Initial GCS (field) Initial GCS (ER) Type of injury PET (day post-injury) Glucose at admission

(mg/dL)

1 M 26 15 13 MCA 4 124

2 M 34 6 8 MVA 13 122

3 F 54 3 6 MVA 13 152

4 M 35 3 3 MC vs. Auto 10 340

5 M 31 3 3 MVA 8 133

6 M 29 7 9 MCA 5 89

M male, F female, GCS Glasgow coma scale, ER emergency room, MCA motorcycle accident, MVA motor vehicle accident, MC vs. Auto

motorcycle vs. automobile accident
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where CT(t) is the activity concentration of 15O-water in

brain tissue, Cb(t) is the activity concentration of 15O-water

in arterial blood, CROI(t) is the total activity concentration

of 15O-water in the tissue RO) measured by PET, K1 is the

CBF, k2 is the clearance rate constant, and Vb is the vas-

cular volume within the ROI. The first-pass extraction

fraction of water was fixed at 0.85. The delay and disper-

sion of the arterial input function was corrected by mini-

mizing the residual sum-of-squared errors of model fitting

to the whole-brain time–activity curve. Noise in the para-

metric CBF image was reduced using a linear ridge

regression with spatial constraint [30].

Simplified reference-tissue model (SRTM) [31] has

been shown to provide reliable fits to 18F-FDDNP kinetics

in human brain [28]. This approach assumes that the rates

of exchange between free and non-specific compartments

are rapid so that they are kinetically indistinguishable;

both reference and target regions have the same non-

displaceable volume of distribution, and the reference

region is devoid of specific/displaceable binding and can

be described by a single compartment. Target tissue time

course can be fitted to the SRTM using non-linear

regression [31]:

CTðtÞ ¼ RICRðtÞ þ k2 �
RIk2

1þ BP

� �
CRðtÞ � e� k2= 1þBPð Þð Þt;

ð3Þ

where CT(t) is the time course of activity concentration in

the target region, CR(t) is the time course of activity con-

centration in the reference region, RI is the ratio of the

tracer delivery in the target region compared to that in the

reference region (i.e., relative perfusion between the target

and reference regions), k2 is the efflux rate constant from

the target region, BP is the binding potential, and �
denotes the convolution integral operator. A basis function

method [32] has been proposed for voxel-wise estimation

of RI, BP, and k2 by rewriting Eq. (3) as

CTðtÞ ¼ a1CRðtÞ þ a2BiðtÞ; ð4Þ

where a1 = RI, a2 = k2 - RIk2/(1 ? BP), hi = k2/

(1 ? BP), and BiðtÞ ¼ CRðtÞ � e�hit: It can be seen that

Eq. (4) can be solved using weighted linear least-squares

by choosing N discrete values for hi that determine the

basis functions Bi(t). From the N sets of solution, the one

with the lowest weighted residual sum-of-squared errors is

chosen. For 18F-FDDNP, we found 100 discrete values for

hi distributed logarithmically between 0.00636 and

1 min-1 to be sufficient. The cerebellar gray matter (CGM)

was chosen as the reference region as b-amyloid plaques

and neurofibrillary tangles have been demonstrated to be

very low [33]. The CGM region was delineated based on an

anatomically labeled atlas defined on a standardized brain

template (to be described later).

2.3.2 Multimodality image registration

The 15O-water and 18F-FDDNP PET data were integrated

over 0–10-min and 0–6-min post-injection, respectively, so

as to enhance detection of distribution boundaries and

cortical regions and to provide sufficient counts for accu-

rate co-registration with MR image. To derive spatial

mappings between structural (MR) and functional (PET)

imaging data, the integrated 15O-water and 18F-FDDNP

PET image data were separately co-registered to MR

images using a 6-parameter rigid-body transformation and

maximization of mutual information [34].

2.3.3 Symmetric diffeomorphic normalization

SyN uses diffeomorphisms as the transformation model to

transform an image S (‘‘source’’ image) to an image T

(‘‘target’’ or ‘‘template’’ image), both defined on an image

domain X. A diffeomorphism / of domain X is a one-to-

one, differentiable, and invertible map with a differentiable

inverse [35]. Define a spatial coordinate, x, a time variable,

t 2 ½0; 1�; a diffeomorphic space with homogeneous

boundary conditions, W, and a smooth velocity field at time

t, v(x,t) on X, which is a square-integrable vector field, a

family of diffeomorphic maps /ðx; tÞ 2 W along a geodesic

connecting S and T can be constructed by integrating the

time-dependent velocity fields governed by the following

ordinary differential equation [35]:

d/ðx; tÞ
dt

¼ v /ðx; tÞ; tð Þ ð5Þ

with / x; 0ð Þ ¼ x such that for a small change in t there is a

small change in the diffeomorphism and for each t there is

a unique diffeomorphism. The distance metric for the

geodesic between / x; 0ð Þ and / x; 1ð Þ; DW / x; 0ð Þ;ð
/ x; 1ð ÞÞ; is defined by taking the infimum over all such

paths in the diffeomorphic space [17]:

DW / x; 0ð Þ;/ x; 1ð Þð Þ ¼ inf
/

Z 1

0

v x; tð Þk kLdt ð6Þ

in which the functional norm �k kL regularizes the velocity

field via a linear differential operator L in the form of

L ¼ ar2 þ bI; where a and b are constants, and I repre-

sents the identity. The geodesic distance between / x; 0ð Þ
and / x; 1ð Þ is symmetric, i.e., DW / x; 0ð Þ;/ x; 1ð Þð Þ ¼
DW / x; 1ð Þ;/ x; 0ð Þð Þ: The diffeomorphisms also allow / to

be decomposed into two transformation mappings /1 x; tð Þ
and /2 x; tð Þ traversing in opposite direction in time. Those

transformations are composed in such a way that S and

4 K.-P. Wong et al.
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T contribute equally to the geodesic, and thereby sym-

metrizing the warping between S and T so that the same

deformation is computed, regardless of the chosen simi-

larity metric and the directionality of image warping [21,

22].

Assume that x and z are spatial coordinates that repre-

sent the same position of some anatomic structure in

images S and T, respectively, we have, for all t 2
½0; 1�; /1 x; 1ð Þ ¼ /�1

2 /1 x; tð Þ; 1� tð Þ ¼ z and /2 z; 1�ð
tÞ ¼ /2 /1 x; 1ð Þ; 1� tð Þ ¼ /1 x; tð Þ for intermediate points

along the geodesic parametrized with respect to both end-

points. Define S� ¼ S /1 x;�tð Þð Þ; T� ¼ T /2 x; �tð Þð Þ; and their
local mean-subtracted images as �S xð Þ ¼ S� xð Þ � lS� xð Þ,
�T xð Þ ¼ T� xð Þ � lT� xð Þ; where lS� and lT� are computed

over a local nd window (i.e., a radius of n voxels and d is

the image dimension) centered at each voxel position x, the

following variational energy function generalized from

inexact image matching [15, 17, 18] can be derived for

optimization in diffeomorphic SyN [22]:

E S;Tð Þ ¼ inf
/1

inf
/2

Z �t

0

v1 x; tð Þk k2L þ v2 x; tð Þk k2L
h i

dt

þ
Z
X
q �S; �T ; xð ÞdX ð7Þ

subject to �t ¼ 0:5 and each /i 2 W the solution of

d/i x; tð Þ=dt ¼ vi /i x; tð Þ; tð Þ with /i x; 0ð Þ ¼ I; /�1
i /ið Þ ¼

I and /i /
�1
i

� �
¼ I: The first term on the right side of

Eq. (7) gives the squared distance metric for the geodesic

between / x; 0ð Þ and / x; 1ð Þ equivalent to that defined by

Eq. (6) but it is computed through /1 and /2 instead,

whereas the second term gives the similarity metric

between �S and �T : While several different similarity metrics

can be used with diffeomorphic SyN, localized cross-cor-

relation was selected in this study as it depends only on

estimates of the local image mean and variance and has

shown to perform well in brain image registration [22, 24,

36]. The localized (squared) cross-correlation can be cal-

culated as

q �S; �T ; xð Þ ¼
�S; �Th i2

�S; �Sh i �T; �Th i ; ð8Þ

where �; �h i denotes the inner product operation over a local

nd correlation window centered at each voxel position x.

Optimizing Eq. (7) with respect to /1 and /2 at �t ¼ 0:5

yields a set of Euler–Lagrange equations, the solutions of

which are computed iteratively at multiple levels of reso-

lution until the maximum number of iterations is reached or

the similarity metric could not be further improved [22,

23]. Upon convergence, the SyN transformation from S to

T is calculated as /1 x; 1ð Þ ¼ /�1
2 /1 x; 0:5ð Þ; 0:5ð Þ and the

inverse is given by /2 z; 1ð Þ ¼ /�1
1 /2 z; 0:5ð Þ; 0:5ð Þ:

2.3.4 Constrained cost-function masking

In the presence of a focal lesion, standard warping with

SyN may seem inappropriate as the assumption of a one-to-

one mapping between the source and the template images

is violated because of the abnormal shapes and intensity

values of the focal lesion that cause a mismatch between

both images and bias the cost function being optimized

substantially. Currently, the cost-function masking (CFM)

technique [37] is widely used to overcome difficulties

encountered when normalizing brains with focal lesions.

The main idea of CFM is to remove the contribution of

focal lesions to the cost function by zeroing out all voxels

within lesions. However, this approach is limited when the

patients have large or bilateral lesions [38], which are not

uncommon in TBI patients. In this study, we used SyN in

conjunction with a constrained cost-function masking

(CCFM) approach (SyN-CCFM) [23, 39] for handling

brain warping in the presence of focal abnormality as a

missing-data problem. It takes advantage of the fact that

diffeomorphic mappings are determined by the velocity

field which is spatially smooth. Thus, the unknown velocity

field parameters within the lesion can be estimated and

inferred from the velocity field parameters near and exte-

rior to the lesion boundaries. In this way, the lesioned areas

are constrained to be smoothly deformed in the most

probable way that follows the deformation of the sur-

rounding intact brain tissues, which may have gone through

a large degree of transformation during the spatial nor-

malization process.

2.3.5 Brain template and anatomical labeling

A high-resolution (1 9 1 9 1 mm3 voxels) single-subject

T1-weighted MR brain template [40] provided by Montreal

Neurological Institute (MNI) was chosen as the common

stereotaxic space for matching all structural and functional

imaging data to facilitate comparisons across subjects,

mapping of 3D ROIs between different spaces, and

anatomical labeling. Cortical and subcortical gray matter

ROIs from the well-validated automated anatomical

labeling (AAL) atlas [10] defined on the same MR brain

template were used to examine regional physiological

parameter values from the functional PET imaging data.

Bilateral 3D ROIs were also manually drawn over the

centrum semiovale using the ITK-SNAP software (http://

www.itksnap.org/) for subcortical white matter region

(SWM), which is not available in the AAL atlas.

2.4 Data analysis

The complete workflow solution was implemented using

MATLAB (The MathWorks, Natick, MA) and an overview

A semi-automated workflow solution for multimodal neuroimaging: application to patients 5
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of it is depicted in Fig. 1. Quantitative analyses of 15O-

water and 18F-FDDNP PET imaging data were performed

with programs developed and validated in-house. The 15O-

water and 18F-FDDNP PET data were integrated over

0–10-min and 0–6-min post-injection, respectively, and

were co-registered to the subject’s MR images using a

rigid-body transformation as described before. Focal brain

lesions, if present on the individual’s MR image, were

masked by a semi-automatic active contour algorithm [41]

implemented in the ITK-SNAP software (http://www.itks

nap.org/), and the resulting masks were used in SyN-

CCFM for warping the MNI single-subject brain template

to the subject’s MR image. In the absence of brain lesion,

regular SyN warping was used for matching between the

MNI single-subject brain template and the subject’s MR

image. Both rigid-body co-registration and diffeomorphic

normalization were performed using ANTs [23] and the

procedures were fully automated with a set of parameters

(e.g., number of iterations and number of bins for his-

togram calculation, etc.) defined a priori or given by the

user. For spatial normalization using SyN or SyN-CCFM,

we chose to use four levels of resolution (from coarse to

fine) with scaling factors of 8, 4, 2, and 1, with the maxi-

mum number of iterations set to 250 for all resolution

levels. The CGM region was used as the reference-tissue

for 18F-FDDNP PET and was taken from the gray matter

areas defined over the cerebellum on the AAL atlas. It was

then transferred using the concatenated transformation

from MNI template space to PET space and projected onto

the dynamic 18F-FDDNP PET images at all time frames to

derive the volume-averaged reference-tissue TAC. Para-

metric images of CBF and RI were constructed using the

arterial input function of 15O-water and the reference-tissue

(CGM) TAC, respectively. To compare with RI derived

from 18F-FDDNP PET using SRTM, parametric CBF and

early-summed 18F-FDDNP PET (0–6 min) images were

divided by their values in CGM to create normalized CBF

(nCBF) and normalized summed 18F-FDDNP (RP) images,

respectively. Regional physiological parameters (CBF,

nCBF, RI , and RP) were extracted from 14 cortical, sub-

cortical, and white matter ROIs defined on the AAL atlas

using the combined transformations between template and

PET space. Descriptive statistical results are presented as

mean ± standard deviation (SD).

3 Results

Figure 2 shows the SyN warping results of the brain of a

TBI subject (#2), who had a right frontotemporoparietal

craniotomy with evacuation of subdural hematoma on the

day of injury. No obvious focal lesion was seen on the

Fig. 1 The complete schematics for the proposed workflow solution.

Summed PET data were used for rigid-body co-registration with the

structural MR image, which was spatially normalized to a standard

brain template in the MNI space using SyN (and SyN-CCFM in the

presence of focal lesion). Once the spatial correspondence was

established, a set of ROIs taken from the AAL atlas defined in the

MNI space was mapped back to the PET space to extract the

cerebellar gray matter (for 18F-FDDNP). Parametric images of 15O-

water PET (CBF and nCBF, 0–10 min) and 18F-FDDNP PET [RI and

RP (0–6 min)] data were constructed using the corresponding methods

(see Sect. 2). The same set of ROIs was applied to the CBF and

relative-perfusion (RI and RP) images to derive the associated regional

values using the combined transformation between template and PET

space
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brain from the MR image. SyN was thus performed without

using CCFM and the warping of the original brain to the

template brain was almost perfect, as the ventricular space

and much of the cortical and subcortical regions were well

aligned, with the exception of the occipital lobe, where the

shape and appearance of gyri were very difficult to capture

because of their highly idiosyncrasy in that area. Moreover,

SyN was able to provide a decent matching of the subject’s

whole-head to the template despite the differences in shape

and thickness of the skull.

Figure 3 illustrates the use of SyN and SyN-CCFM in

normalizing the brain of a TBI subject (#1), who had

undergone surgical procedures for evacuation of bilateral

frontal epidural and subdural hematomas as well as intra-

parenchymal hematoma on the day of injury. Focal lesions

were observed in the frontal region and near the eyeballs

based on the MR image. With SyN alone, the region with

atypically high voxel intensity was ‘‘pushed’’ and extended

to the orbital gyrus and the more superior portion of the

frontal region. This is likely because of the dispropor-

tionately high intensity for voxels within the focal lesion

which causes the optimization algorithm to attempt further

reduction of the cost function by minimizing the mismatch

between the original and the template images at the site of

the lesion, even though other areas have already been

aligned well. In contrast, SyN-CCFM gave reasonable

warped results due to the use of a lesion mask, the voxels

within which were treated as missing-data by the

optimization algorithm and the deformation field within the

mask was estimated and inferred from that given by the

surrounding tissues. The overall shape and appearance of

the brain, gyri, and ventricular space are well matched to

that of the template brain. Figure 4 illustrates another case

of comparison between SyN with and without CCFM for

brain warping of subject #3 who had a large lesion that

occupied a significant portion of right frontal lobe and a

moderate-sized lesion in the left lateral temporal area.

Again, the warping results favor the use of SyN-CCFM for

normalizing injured brain with focal gross pathology.

Regional CBF and their variability are shown in Fig. 5.

Because the patients were sedated during PET scanning,

CBF was reduced globally. Mean CBF in whole-brain gray

matter was 33.1 ± 5.1 mL/100 g/min and was calculated

by averaging CBF in 13 cortical and subcortical gray

matter ROIs extracted from the AAL atlas. Averaged CBF

was 38.4 ± 5.4 mL/100 g/min in cerebellar gray matter

and 20.5 ± 4.1 mL/100 g/min in SWM (centrum semio-

vale). Coefficient of variation in CBF was similar among

different regions, ranging from 14 to 23 %, with a mean of

17 %. The whole-brain-averaged gray/white ratio was

1.65 ± 0.3 (n = 6). Figure 6 shows the Bland–Altman

plots of difference, showing the limits of agreement

between RP and RI versus nCBF over all regions and

patients. As can be seen from the plots, majority of data

points lie within the 95 % confidence interval for the dif-

ference (mean ± 1.96 SD), and the mean biases were close

Fig. 2 Comparison of the original image (top row), template (bottom row), and the warped original image to the template (middle row). Images

are displayed in radiological convention. No focal lesion was observed in this subject (#2) based on the MR image
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to zero, suggesting that there were good overall agreements

between nCBF, RP and RI.

4 Discussion

The ultimate goal of the workflow solution is to establish

spatial correspondences between imaging data obtained

with different modalities and a high-resolution brain tem-

plate chosen by the user with no (or minimal) human

intervention throughout the processing of the imaging data,

and subsequently facilitating anatomic labeling and group

analysis. Central to the workflow solution is the capability

to closely normalize an individual’s brain to a standard

brain template defined in a common space while main-

taining the integrity of brain structures. In general, spatial

normalization seeks to estimate an optimal transformation

map / that brings an image S closest to an image T by

minimizing a cost function that describes the similarity

between the images under certain matching criteria. Ide-

ally, the transformation mapping / should be one-to-one

correspondence, smooth, differentiable, and symmetric

(i.e., independent of the directionality between S and T).

The idea of inverse consistency was first put forward by

Thirion [14] and was generalized by Christensen and

Johnson [42] in their inverse consistent image registration

(ICIR) method, where symmetry is approximated by

including a variational penalty term in the optimization

algorithm. However, the inverses for traversing between

S and T are not guaranteed to exist as the optimization is

not performed in diffeomorphic space. In contrast, SyN

was formulated using diffeomorphism and guarantees that

identical results are obtained regardless of the input order

between S and T and that exact inverse transformations

exist [21, 22].

While pre-processing the structural imaging data such as

brain extraction (or skull-stripping) [43], tissue classifica-

tion [44], and bias-field correction [45] is essential to

Fig. 3 Comparison of warping between the original image (top row)

of subject #1 and the template (bottom row). Shown also are the

warped original image to the template with SyN only (second row)

and with SyN-CCFM (third row). Images are displayed in radiolog-

ical convention. Lesions that require masking are indicated by white

arrow and pink arrowhead. Region with higher intensity values near

the eyeballs (pink arrowhead) was pushed to the frontal area when

SyN-CCFM was not used, but was well contained by the use of SyN-

CCFM. (Color figure online)
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facilitate accurate image analysis, it is important to rec-

ognize that fully automatic procedures could not be applied

routinely without quality check by human experts,

regardless of how sophisticated the pre-processing algo-

rithm is. Different from spatial normalization of normal

brains and atrophied brains caused by neurodegenerative

disorders, patients with TBI typically presented with a

combination of diffuse axonal injury and gross brain

pathologies, and the injured locations vary among patients

having different causes of injury and degrees of brain

damage. Thus, brain extraction and tissue classification

become a challenging task and require some level of user

Fig. 4 Comparison of warping between the original image (top row)

of subject #3 and the template (bottom row). Shown also are the

warped original image to the template with SyN only (second row)

and with SyN-CCFM (third row). Images are displayed in

radiological convention. A large lesion (white arrow) was found on

the right frontal lobe and extended to the left frontal lobe along with a

shrunken lateral ventricle. A smaller lesion was also seen on the left

lateral temporal area (pink arrowhead). (Color figure online)

Fig. 5 Mean regional CBF obtained using 15O-water PET (n = 6).

Error bars represent 1 SD. AMY amygdala, HIPP hippocampus,

PHIP parahippocampus, CAU caudate nucleus, PUT putamen, PALL

pallidum, THAL thalamus, INS insula, FRT frontal, PAR parietal,

TEMP temporal, OCC occipital, CGM cerebellar gray matter, SWM

subcortical white matter (centrum semiovale), WBGM whole-brain-

averaged gray matter
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supervision to guide identification, localization, and isola-

tion of abnormalities in the image. Although the general

consensus of Klein et al. [24] suggested that image regis-

tration methods would perform better on properly skull-

stripped images than on whole-head images, no study has

yet been published that made this comparison. In this work,

we did not apply skull-stripping to the individual MR

image or the brain template as we observed that larger

distortion and mismatch usually occur along the brain

surface in the absence of skull in either set of image (data

not shown). This is likely because of the missing ‘‘infor-

mation’’ outside of the brain surface that would have been

incorporated by the warping algorithm as parts of the

similarity metric for matching and as boundary conditions

imposed on the brain surface for constraining its defor-

mation, if the non-brain regions were not removed. In line

with recent findings [22, 24, 36], our results also show

that the local cross-correlation, which depends only on

local image mean and variance and can be calculated

rapidly and accurately with relatively few samples, allows

for robust matching between the brain template and the

subject’s brain MR image with morphological brain

changes or in the presence of intensity inhomogeneity

caused by magnetic field imperfections that degrade both

image quality and tissue classification accuracy, thereby

obviating the need of bias-field correction and tissue

classification as pre-processing steps required by other

image normalization methods such as DARTEL [19] and

FNIRT [20]. As such, the proposed workflow solution can

be used in studies where only non-T1-weighted MR

images are available.

It is important to note that rigid-body co-registration

(between functional PET data and individual MR brain)

and spatial normalization (between individual MR brains

and the brain template) are independent processes. If the

transformations from template to PET space (or vice versa)

were performed in the most straightforward way by gen-

erating the intermediate data in the individual’s MR space,

subtle errors could be introduced through reslicing and

interpolation of image volumes with different resolutions.

In this study, the forward and inverse transformations

between template and PET spaces were composed by

concatenating a series of transformations prior to trans-

forming the image. In this way, interpolation error due to

reslicing and resampling of image volume is minimized,

whereas the storage space for saving intermediate data is

not required. Composition of transformations by concate-

nation can easily be generalized and applied to cases where

more steps of image co-registration and/or non-linear

warping are added to the workflow. For example, if one

had computed all the transformations to a given template

but another template image was later added, one would

have to perform the non-linear warping to the new template

and discard the warping results to the original template.

With the concatenation of transformations, one would need

to establish the transformation between the original tem-

plate and the newly added template image, thereby saving

significant amount of time and effort. Given that SyN

consistently ranked the best for all error measures tests and

for all label sets [24], we expect that the results obtained

indirectly by concatenating a series of transformations

would only be marginally different from those obtained by

a direct warp to the new template, although more work will

need to be conducted to evaluate the error bounds between

these approaches.

One of the major limitations of this work is the lack of

anatomical-based evaluation with manual labeling of brain

regions which serves as the reference standard for com-

paring with the results from automated anatomical label-

ing. However, manual labeling is tedious and time-

prohibitive for analyzing even a modest number of studies,

and is subject to intra- and inter-rater variability [2, 6, 7]. In

contrast, normalizing brains to one another or to a standard

brain template for reproducible determination of

Fig. 6 Bland–Altman plots of differences, showing the limits of

agreement between nCBF and (a) RP and (b) RI over all regions and

patients. The dotted lines represent the mean difference and the

dashed lines represent the 95 % confidence interval for the difference

(mean ± 1.96 SD)
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anatomical correspondence is almost performed universally

[24] and is well accepted in the field of neuroimaging

where many tools (e.g., SPM [11] and AIR [12]) have been

developed for this purpose and for more sophisticated

statistical analyses conducted at voxel and cluster levels.

We have investigated the validity of the correspondence

between the physiological parameter extracted from the

regions defined on the common space and those defined on

the subject space for brain datasets obtained from a cohort

consisting of cognitively normal subjects and patients with

dementia or mild cognitive impairment, having moderate

to severe cortical degeneration [46]. Using the Dice

overlap statistic (j) [47], which measures spatial overlap

between two regions defined in a different way and has a

range of 0 (i.e., no spatial overlap) and 1 (i.e., complete

overlap), our results showed that j[ 0.7 for small

structures and j[ 0.9 for gray and white matter, thus

indicating excellent agreement which is generally defined

as j[ 0.7 [48]. In spite of the differences in quantitation

methodologies and patient characteristics, the whole-brain

averaged CBF derived in this study is in generally good

agreement with those published previously [49, 50]. The

main advance of this study is that CBF in various brain

regions can be quantified using the proposed workflow

solution with relative ease while removing some sources

of experimental variability. A thorough comparative

evaluation on the physiological issue and the biological

significance for regional flow measurements obtained

from 15O-water PET and 18F-FDDNP PET will be

detailed in another report.

Most of the existing software packages (e.g., 3DSlicer

and FreeSurfer) are primarily designed for processing and

analyzing structural brain MR images. To our knowledge,

no tool has yet been available for streamlining image

registration, non-linear spatial normalization, voxel-wise

kinetic analysis, and automated labeling and ROI analysis

of both structural MR images and dynamic PET datasets

from multi-tracer studies for TBI. Our workflow solution

integrates various specialized techniques for structural MR

data and dynamic PET image analysis. We showcase the

workflow solution using 15O-water PET and 18F-FDDNP

PET which are only cases in point in this study. A wide

variety of PET data analysis techniques can easily be

adopted in the workflow solution to deal with tracer studies

using different radiolabeled compound and imaging pro-

tocol. Unlike many other software packages that focus on

the user-friendliness and interactive graphical user inter-

face, we opted to implement our workflow solution in a

script-oriented program using MATLAB, which is cross-

platform and has a rich set of functions for high-perfor-

mance scientific computation. We also put emphasis on

minimal user input (to minimize as much of the operator

error as possible), applicability in a busy clinical/research

environment (where high-throughput automation and

pipeline processing of multiple studies are desirable), and

scalability (to accommodate changes in imaging protocols

such as including PET studies from the same or different

sessions, or adding functional MR studies to the workflow).

The design philosophy thus enables the workflow solution

to be portable to multiple computer platforms without the

need to worry about incompatibility and dependency of the

graphical libraries associated with different computing

systems, and gives investigators a large degree of freedom

to choose and use their favorite data visualization software

to display, view, and manipulate the intermediate and final

image results. The capability of the proposed workflow

solution to normalize brain images with focal lesions and

large deformations also allows it to process and analyze

brain images having similar characteristics seen in different

neurological diseases such as stroke and brain tumors.

However, lesion masking performed either by an investi-

gator or by a computer-aided method is needed for ana-

lyzing those cases. How precise the lesion mask is defined

has been shown not to affect the brain warping results, as

the main purpose of masking is to remove the contribution

to the cost function due to atypical voxel intensity enclosed

by the mask [37]. The time required for lesion masking can

thus be substantially reduced by using a semi-automated

masking approach based on an active contour algorithm

[41] as in this study. Fully automated algorithms would be

of great use for lesion masking, but much research is still

needed to improve tissue classification/segmentation

accuracy.

5 Conclusions

In this paper, we proposed a workflow solution framework

that combined the use of non-linear brain warping of

structural MR images and anatomical ROI labeling to

automatically derive physiological parameters from func-

tional imaging of patients having acute TBI. We presented

how we combined various image processing and para-

metric imaging approaches for analyzing structural MR

images and dynamic multi-tracer PET scans. The workflow

solution was then applied to quantify regional CBF in TBI

patients. The proposed framework offers improvement

over existing manual ROI approach (which is time-con-

suming and subject to reproducibility errors) through

automated anatomical labeling of a standard brain in a

common stereotaxic space, and is expected to be useful to a

wide variety of neuroimaging applications that requires

aggregation and regionalization of imaging data obtained

from multiple modalities as well as standardization and

automation of image processing and analysis with minimal

user intervention.
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