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Abstract: The ductus arteriosus (DA) connects the main pulmonary artery and the aorta in fetal
circulation and closes spontaneously within days after birth in normal infants. Abnormal patent
DA (PDA) causes morbidities and mortality, especially in preterm infants. Closure of the DA is
a complex interactive process involving two events: functional and anatomic closure. Functional
closure by smooth muscle contraction was achieved through the regulatory factors of vaso-reactivity.
These factors include oxygen sensing system, glutamate, osmolality, prostaglandin E2, nitric
oxide, and carbon monoxide. Anatomic closure by vascular remodeling involved several vascular
components including endothelium, extracellular matrix, smooth muscle cells, and intraluminal
blood cells. Despite advances in understanding of PDA pathogenesis, the molecular mechanism
for regulation of DA closure is complex and not fully understood. In this article we review recent
evidence regarding the molecular mechanisms of DA closure.

Keywords: ductus arteriosus; endothelial cells; extracellular matrix; smooth muscle cells;
vascular remodeling

1. Introduction

The ductus arteriosus (DA) is a vital vessel that connects pulmonary circulation and systemic
circulation in the fetus. Closure of the DA is mostly completed within three days of life in healthy
term newborns. The incidence of an isolated patent DA (PDA) ranges from 3 to 8 per 10,000 live
births among term infants [1] and is estimated at up to 30 percent in very low birth weight infants
(birth weight below 1500 g) [2]. The PDA is a hemodynamic burden in preterm infants and is also the
leading cause of mortality and morbidity among these infants [3]. However, maintaining the patency
of the DA is life-saving in infants with ductus-dependent congenital heart diseases. Therefore, proper
manipulation of DA patency is essential in neonatal intensive care and investigation of its molecular
mechanisms is an important field in vascular biology and pediatrics.

Generally, DA closure involves two phases: functional and anatomical closure. Functional closure
occurring within hours after birth is caused by DA constriction and the following anatomical closure
is mediated mainly by vascular remodeling. After birth, increased oxygen tension and declined
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prostaglandin E2 (PGE2) are two major factors for DA constriction [4]. Subsequent DA remodeling
is associated with several histological changes: internal elastic lamina (IEL) disruption, lifting and
ingrowth of endothelial cells (ECs), subendothelial edema due to deposition of extracellular matrix
(ECM), migration and proliferation of the SMCs into the subendothelial space [5–7]. These histological
changes result in intimal cushion for permanent closure of the DA. In this article, we review both
mechanisms of functional and anatomical closure of the DA.

2. Functional Closure

During fetal life, intrauterine hypoxia works synergistically with high circulating PGE2 to maintain
DA patency. After birth, the DA constricts in response to elevated oxygen tension and declined PGE2

level [8,9]. However, the preterm infants often have hypoxic events such as respiratory distress
syndrome or bronchopulmonary dysplasia, resulting higher incidence of PDA. There are many factors
controlling the DA vascular tone (Table 1). Figure 1 shows complex pathways mediating functional
closure of the DA.

Table 1. Factors mediating functional closure of the ductus arteriosus.

Vasoconstrictors References Vasodilators References

Oxygen sensing Prostaglandin E2 [10–13]
Mitochondria [14–17] Nitric oxide [18–20]

Cytochrome P450 [21,22] Natriuretic peptides [23]
Retinoic acid [24,25] Carbon monoxide [26,27]

Glutamate [28] Hydrogen sulfide [29,30]
Hypoosmolality [31]

Bradykinin [32]
Corticosteroid [33,34]
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2.1. Vasoconstriction

2.1.1. Oxygen Pathways

Several mechanisms were found recently to underlie the vasoconstrictive response of high oxygen
tension in DA. Archer et al. demonstrated that DA smooth muscle cells (DASMCs) can sense oxygen
via dynamic mitochondrial network [35]. They showed O2-induced DA constriction was initiated by
inhibition of a voltage-gated potassium channel, which caused membrane depolarization, activation
of L-type calcium channels and increment in intracellular calcium (Ca2+) [14]. H2O2 produced by
mitochondrial electron transport chain complex served as an oxygen mediator to inhibit potassium
channels [15]. Through mitochondrial fission, elevated oxygen tension increased reactive oxygen
species (ROS) levels and mitochondrial complex I activity [16]. In brief, oxygen-induced increment of
ROS (e.g., H2O2) inhibits potassium channel and subsequent membrane depolarization causes Ca2+

influx due to opening of calcium, inducing DASMCs contraction.
Recent evidence demonstrates that the role of Rho-kinase pathway to sustain DA constriction

via the mitochondrial system. The oxygen-induced increment of mitochondrial ROS activates the
Rho-kinase pathway and induces RhoB and Rho-associated protein kinase-1 expression in human
and rabbit DA [17]. The Rho-kinase pathway promotes phosphorylation of myosin phosphatase
targeting protein and this phosphorylation inhibits myosin light chain phosphatase, thereby increasing
the phosphorylation and activity of the myosin light chain, which leads to DASMC contraction.
The activation of the Rho-kinase pathway thus induces calcium sensitization, which sustains DA
constriction through a positive feedback mechanism.

There is some evidence suggesting that cytochrome P450 (CYP450) and endothelin-1 (ET-1)
also jointly participate in the mechanisms underlying oxygen-induced DA constriction. The level
of ET-1 increased in response to oxygen and acted as DA constrictor via ETA receptor [36–38].
The CYP450-based mechanism mediates the constrictive response of the DA to oxygen, possibly
by stimulating the release and synthesis of ET-1 [21,22].

Another possible oxygen sensing factor is retinoic acid, a metabolite of vitamin A. Wu et al.
found that fetal rats born from maternally vitamin A-treated group had better DA contraction induced
by oxygen but not by KCl [24]. Yokoyama et al. showed that maternally administered vitamin
A significantly upregulated the expression levels of α1G subunit of voltage-dependent calcium channel,
which is activated by oxygen-induced inhibition of potassium channel [25].

2.1.2. Pathways Unrelated to Oxygen

Glutamate, an amino acid, has been recently found to promote DA contraction through glutamate
inotropic receptor subunit 1 (GluR1)-mediated noradrenaline production. Fujita et al. showed that
glutamate increased noradrenaline production in the rat DA and subsequent glutamate-induced DA
contraction was attenuated by the GluR receptor antagonist or the adrenergic receptor α1 blocker [28].
This evidence suggests that nutritional adjustment with supply amino acid may have therapeutic
implications in newborn infants with PDA.

Recent evidence suggests that hypo-osmolality has a role in mediating DA constriction.
This mechanism is mediated by regulating Ca2+, potentially through the transient receptor potential
melastatin 3 (TRPM3) pathway. Aoki et al. found that in rats that hypo-osmotic sensor TRPM3 was
more upregulated in the DA than in the aorta [31]. They also demonstrated that rats experienced
transient hypo-osmolality after birth, which contributed to rat DA constriction.

There are other agents circulating in the blood conveying vasoconstrictive effects on DA.
For example, bradykinin shows biphasic effect at rabbit DA through two different receptors, BK-1
and BK-2 receptors. As bradykinin concentration increases, DA has predominantly constrictive
responses through BK-1 receptor [32]. Corticosteroids also induce DA constriction, in combination
with indomethacin, probably through attenuating the sensitivity of the DA to PGE2 [33,34].
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2.2. Vasodilation

2.2.1. PGE2

In current clinical settings, PGE1 administration is the only medical treatment for maintaining
DA patency in neonates with DA-dependent congenital heart diseases [39]. PGE2 is produced in both
the placenta and the DA in fetal circulation. It maintains DA patency through various PGE receptors
(EP2, EP3, and EP4) [10–12]. Activation of PGE2 receptors increases intracellular cyclic AMP (cAMP)
via adenylyl cyclases and the increased cAMP level inhibits myosin light chain kinase, subsequently
dilating DA [11,13]. After birth, the PGE2 level declines due to pulmonary catabolism of PGE2 and
the removal of the placenta [9,10]. PGE2 receptors (EP3 and EP4) also decrease in numbers after
birth [11]. Postnatal decline of PGE2 signaling has been postulated to be the fundamental mechanism
for DA closure [40]. Moreover, elevated oxygen tension can downregulate DA sensitivity to PGE2,
thus attenuating the postnatal vasodilating response [41,42].

2.2.2. Vasodilating Factors Unrelated to PGE

Nitric oxide (NO) has been shown to be a vasodilator in DA. NO is produced by endothelial nitric
oxide synthase (eNOS) in ECs and then diffuses into adjacent SMCs to bind with soluble guanylyl
cyclase (sGC). The activated sGC causes production of cyclic guanosine monophosphate (cGMP),
which decreases Ca2+. The lowering Ca2+ relaxes the SMCs and promotes vasodilation [43]. In DA,
NO can be synthesized by eNOS in the endothelium of DA lumen and vasa vasorum [18]. Indeed,
combined use of indomethacin and NOS inhibitor was shown to have more potent constricting efficacy
in DA than indomethacin alone in premature baboons [19]. Intriguingly, indomethacin was also found
to promote vasodilatory function of NO in mouse DA [20]. These paradoxical effects could explain the
failure of indomethacin therapy in about 30% of premature neonates in clinical practice [44].

Similar with NO, another vasodilating pathway mediated through cGMP is the family of
natriuretic peptides. They are cardiac-producing peptides that can dilate vessels through the particulate
GC-cGMP pathway [45]. Atrial natriuretic peptide has been shown to dilate rat DA in vivo [23].
Our recent study demonstrated that higher B-type natriuretic peptides (BNP) convey anti-remodeling
effects in the pulmonary artery SMCs [46]. Furthermore, in the setting of neonatal intensive care unit,
plasma levels of BNP are associated with poor response to indomethacin treatment in preterm infants
with PDA [44]. Taken together, this evidence suggests the role of BNP in DA control, but this warrants
further investigation.

In addition to NO, other gases including carbon monoxide (CO) and hydrogen sulfide (H2S)
can also dilate DA. The CO-forming enzyme, heme oxygenase-1 and -2, identified in DA tissue, was
shown to produce CO in the DASMCs [26]. CO dilates DA due to inhibition of a CYP450-based
monooxygenase reaction conditioning the formation of the ET-1 [27]. Recently, Baragatti et al.
demonstrated H2S synthetic enzyme in the mice DA and confirmed the H2S-induced vasodilatory
effects of DA [29]. Interestingly, H2S was found to have biphasic effects, inducing vasoconstriction
at lower concentrations while causing vasodilation at higher concentrations [30]. However, in the
chicken DA, the vasodilatory effect was not shown [47]. The inter-species differences and dose-specific
vasoreactive mechanisms of H2S in DA are not fully understood and warrant further investigations.

3. Anatomical Closure

Remodeling of DA is essential to permanent anatomical closure to prevent re-opening. The process
is complex and not fully understood, with several mechanisms including intimal cushion formation,
SMC migration and proliferation, ECM production, EC proliferation, and blood cell interaction.
These steps interact with each other and construct an orchestrated process. Figure 2 shows the
mechanisms involved in the anatomic closure of the DA. The detailed references of mechanisms
mediating various cells for anatomical closure are shown in Table 2.
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Figure 2. The diagram of anatomical closure of the ductus arteriosus. CS: chondroitin sulfate,
EC: endothelial cells, ECM: extracellular matrix, IEL: internal elastic laminae, IL-15: Interleukin-15,
Mono: monocyte, PDGF: platelet-derived growth factor, PGE2: prostaglandin E2, PLT: platelet,
RA: retinoic acid, SMC: smooth muscle cells, TGF-β: transforming growth factor-β, VEGF: vascular
endothelial growth factor.

Table 2. Factors mediating anatomical closure of the ductus arteriosus.

Cells Mechanisms Factors Effects Reference

SMCs
Migration

PGE2 + [48]
TGF-β1 − [49]
Notch + [50]

Fibronectin & Hyaluronan + [51,52]
VEGF + [53]

Proliferation
Retinoic acid + [54]

Notch + [50]

ECM production

Hyaluronan

Retinoic acid + [55]
TGF-β + [56]
PGE2 + [51]
IL-15 − [57]

Fibronectin Retinoic acid + [55]

Chondroitin sulfate TGF-β + [56]

Elastin
PGE2 − [58]

Oxygen − [59]

ECs Proliferation VEGF + [53,60,61]

IEL Disruption Chondroitin sulfate + [62]

Blood cells
Mononuclear cells adhesion VEGF + [61]

Platelet plug PDGF + [63]

ECs: endothelial cells, ECM: extracellular matrix, IEL: internal elastic laminae, IL-15: Interleukin-15, PDGF:
platelet-derived growth factor, PGE2: prostaglandin E2, SMCs: smooth muscle cells, TGF-β: transforming growth
factor-β, VEGF: vascular endothelial growth factor.
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3.1. Factors Regulating SMC Proliferation and Migration

Similar to the vascular remodeling of other diseases such as atherosclerosis and pulmonary
hypertension, SMC migration and proliferation play important roles in DA remodeling. DA remodeling
starts with separation of the EC from the IEL resulting in creation of subendothelial space for migration
and proliferation of undifferentiated SMCs [64]. These factors include PGE2, retinoic acid, transforming
growth factor-β1 (TGF-β1), and Notch signaling.

3.1.1. PGE2

PGE2 induces DASMC migration through exchange protein activated by cAMP (Epac) pathway.
Epac signaling is also regulated by cAMP but is distinctly different from the PKA pathway [65].
Serial activations of the PGE2-EP4-cAMP-Epac signaling pathway induce DASMC migration without
changing SMC proliferation and hyaluronan production [48]. PGE2 has paradoxical effects on the
functional and anatomical aspects of DA closure, that is, vasodilatation and remodeling.

3.1.2. Retinoic Acid

Retinoic acid also participates in vascular remodeling via promoting SMC and ECM proliferation.
Wu et al. showed that retinoic acid stimulated the growth of DASMCs by the stimulation
of proliferating cell nuclear antigen expression and decreased apoptosis [54]. Yokoyama et al.
demonstrated that maternally administrated vitamin A increased the production of fibronectin and
hyaluronic acid, promoting intimal thickening in the DA at preterm rats [55]. Taken together, retinoic
acid mediates both vasoconstriction and vascular remodeling.

3.1.3. TGF-β1

TGF-β1 anchors the SMC’s cytoskeleton to the ECM, making SMCs more adherent to ECM and
less migrative. TGF-β1 increases focal plaque formation in DASMCs by increasing adhesion of the
integrin with the cytoskeleton, possibly maintaining the tension necessary to sustain DA contracture
during remodeling [49,66].

3.1.4. Notch Signaling

The Notch system is highly expressed in human vasculature and regulates cell behavior, including
proliferation, migration, and angiogenesis [67]. Recent reports suggest that it has a role in DA
remodeling. Baeten et al. showed that the loss of Notch receptors in DASMCs is associated with
downregulated contractile SMC gene expression, contributing to the formation of PDA [68]. Krebs et al.
demonstrated that Notch signaling is required for contractile smooth muscle cell differentiation and
DA closure in mice [69]. Our recent study suggests a role of Notch signaling in the proliferation
and migration of DASMCs [50]. Specifically, we found that γ-secretase inhibitor DAPT, a Notch
signaling inhibitor, could prevent the angiotensin II-induced proliferation and migration of DASMCs.
These effects are potentially mediated by attenuated calcium overload, reduced ROS production, and
deactivations of ERK1/2, JNK, and Akt signal transduction through the Notch3-HES1/2/5 pathway.

3.2. Extracellular Matrix (ECM)

It has been found in many vascular proliferative diseases that the ECM can promote SMC
migration and proliferation [70]. ECM consists of hyaluronan, fibronectin, chondroitin sulfate, and
elastin, and each of them has a different role in DA remodeling.

3.2.1. Hyaluronan

Hyaluronan is important during DA remodeling due to its effects on promoting DASMC
migration. It is regulated by other factors, including TGF-β, PGE2, and interleukin-15 (IL-15).
TGF-β is produced in ECs and can promote synthesis of hyaluronan and chondroitin sulfate in
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DA [56]. PGE2 regulates hyaluronan production via the EP4-cAMP-PKA signaling pathway [71].
PGE2-mediated activation of EP4 leads to increased cAMP production and PKA signaling, leading
to increased hyaluronan synthase activity in DASMCs. Chronic EP4 can also stimulate hyaluronan
production [51]. IL-15 is predominantly expressed in the IEL in rat DA and inhibits hyaluronan
production [57].

3.2.2. Fibronectin

Fibronectin is secreted by DASMCs and can promote SMC migration into the subendothelium
in the process of intimal cushion formation. DA patency can be maintained by inhibiting
fibronectin-dependent intimal cushion formation [52]. In addition, maternally administrated vitamin
A increased fibronectin production in the DA of neonatal rats [55].

3.2.3. Chondroitin Sulfate

Chondroitin sulfate promotes DA remodeling through supporting the stability of hyaluronan
and impairing the assembly of elastin fibers. Chondroitin sulfate causes 67-kD elastin binding protein
to be released from the SMC surface, impairing elastin assembly [62]. Chondroitin sulfate promotes
SMC migration indirectly by promoting detachment of SMCs from elastin and upregulates synthesis
of fibronectin, which facilitates migration of SMCs through IEL [72].

3.2.4. Elastin

Elastin confers elasticity of blood vessels and contributes to maintaining PA patency. The loss of
elastin-binding protein and the production of elastin peptides can enhance DASMC migration [73].
Intriguingly, the production of elastin is regulated by PGE2 and oxygen. A recent study indicates that
PGE2 can inhibit elastogenesis via the EP4 receptor and such attenuated elastin formation promotes
vascular collapse and subsequent DA closure after birth [58]. In addition, oxygenation reduces elastin
secretion in DASMCs [59]. Thus, from the perspective of elastogenesis, both PGE2 and oxygen play a
role in anti-remodeling.

3.3. Factors Affecting Endothelial Cells (ECs)

In the process of DA remodeling, ECs separates from IEL to create a subendothelial space for the
further migration of SMCs and ECs. The migration of ECs is influenced by integrins and VEGF.

Integrins are transmembrane receptors that create traction with surrounding ECM and provide
signals for cytoskeleton rearrangement and initiation of cytoplasmic flow. Both ECs and SMCs
experience an increase in their integrin supply during intimal cushion formation. Indeed, preterm
infants with PDA were found to have downregulation of integrin expression [74]. Thus, integrin may
participate in the interaction between ECM and ECs during DA remodeling, as it does between ECM
and SMCs [75].

Vascular endothelial cell growth factor (VEGF) is a hypoxia-induced growth factor and can
stimulate EC proliferation and migration. VEGF regulates DA remodeling by stimulating EC
proliferation and SMC migration and is induced by tissue hypoxia [53]. Clyman et al. proposed
an important role of VEGF in DA remodeling [60]. They demonstrated that initial functional
vasoconstriction causes a loss of luminal blood flow, producing a hypoxic zone in the DA muscle
media layer. They also found that distribution of VEGF is closely associated with the area of hypoxia
in the constricting DA. In addition, anti-VEGF antibody was found to inhibit mononuclear cells from
adhering to the DA lumen and decreases intimal cushion expansion [61].

3.4. Blood Cells’ Interaction

Circulating blood cells adhering to DA lumen have essential roles during DA remodeling.
Mononuclear cells activated by inflammatory responses-induced vascular wall ischemia have recently
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been postulated as necessary for DA remodeling. After DA constriction, VLA4+ mononuclear cells
(monocytes and macrophages) adhere to the ductus lumen via vascular cell adhesion molecule-1
expressed in the luminal cells [76]. The degree of mononuclear cells adhesion is correlated with the
extent of intimal cushion formation [61].

Platelets also have a central role in permanent DA closure. Echtler et al. demonstrated that,
during DA constriction, ECs become detached and trigger the recruitment of platelets passing through
the constricted DA [77]. The formation of a platelet plug seals the residual lumen of the constricted
DA and facilitates luminal remodeling. Engur et al. reported that platelet-derived growth factor
levels were lower in infants who had persistent PDA after birth [63]. Emerging evidence shows the
relationships between thrombocytopenia and the failure of spontaneous closure of DA [78,79].

4. Pharmacological Agents for Management of DA Patency

Current medications for the management of DA patency mainly convey physiological effects on
vascular tone by vasodilation or vasoconstriction, rather than a remodeling effect. Table 3 summarizes
the currently used or experimental agents to close or open DA.

Table 3. Clinical and experimental agents for management of ductus arteriosus.

Ductus Closure References Ductus Patency References

Indomethacin * [80] Notch inhibitor [50]
Ibuprofen * [80] Prostaglandin E1 * [81]

Acetaminophen [82–86] Milrinone [87]
Enalapril [88]

Endothelin receptor antagonist [89]
Nitric oxide [90]

* Currently used drugs in patients.

4.1. Agents for Closing the DA

Drugs for closing the DA involve inhibition of prostaglandin (PG) production. In current clinical
settings, indomethacin or ibuprofen is administrated for closing the DA in preterm newborn with
DA-induced heart failure. Indomethacin and ibuprofen inhibit cyclooxygenase-1 and cyclooxygenase-2,
which convert arachidonic acid to PGG2 for further production of various PGs. Among the PGs, PGE2

is the most potent vasodilator to open DA [91]. Indomethacin and ibuprofen both inhibit PGE2

production and are effective in closing the PDA in preterm infants. Oral ibuprofen may be the
preferred agent due to feasibility and fewer side effects [80]. Recently, acetaminophen has been found
to achieve DA closure in preterm infants [82]. Acetaminophen reduces PG production, probably
through affecting peroxidase segment of cyclooxygenase [83]. Although some studies showed that
acetaminophen was as effective as ibuprofen in closing the PDA [84,85], conflicting results preclude
the routine use of acetaminophen for closing the PDA so far [86]. Further clinical studies are needed to
reveal the efficacy of acetaminophen in closing the PDA.

4.2. Agents for Opening the DA

Several agents are found to maintain DA patency through conveying vasodilatory effect in
clinical practice or animal studies. Clinically, PGE1 (Alprostadil) is administered in infants with
ductus-dependent congenital heart diseases to maintain DA patency. PGE1 binds to the EP4 receptor
and then increases intracellular cAMP levels, which inhibit myosin light-chain kinase, resulting in the
relaxation of the DA [81]. Milrinone, a phosphodiesterase 3 inhibitor, can dilate the rat DA through
increasing cAMP levels [87]. Enalapril, an angiotensin-converting enzyme inhibitor, can also delay DA
closure when given during caesarean delivery and can reopen the closed DA temporarily when given
at 180 min of life in newborn rats [88]. A nonselective endothelin receptor antagonist (ERA), TAK-044,
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was found to inhibit DA construction in rats [89]. NO regulates the patency of the DA through the
NO-cGMP pathway [90]. We have recently found that inhibition of the Notch pathway may convey
anti-remodeling effects on DASMCs, suggesting its potential role in DA control [50]. Our ongoing
study shows that BNP, an activator of PKG-cGMP, can prevent postnatal DA closure. Therefore, the
cGMP pathway may be a potential research target in regulating DA patency.

5. Conclusions

DA closure consists of complex interactive processes involving vascular tone and vascular
remodeling. The current clinical pharmacological strategy of regulating DA is based on the PG pathway
and has some adverse effects and limitations. However, many other agents with vasodilatory or
anti-remodeling effects through non-PG pathways have been shown with potential roles in maintaining
DA patency, such as the NO, BNP, or Notch pathways. However, these agents require more animal or
clinical studies to confirm their efficacy. Therefore, future research targeting a new pharmacological
strategy of DA is essential in the fields of vascular biology and pediatrics.

Author Contributions: Y.-C.H. contributed to manuscript writing. J.-L.Y. contributed to editing of the tables,
figures, and references. J.-H.H. contributed to study design and manuscript writing.

Acknowledgments: This study was supported in part by research grants from the Ministry of Science and
Technology (MOST 106-2314-B-037-081-MY2 and MOST 106-2320-B-037-010-MY3).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reller, M.D.; Strickland, M.J.; Riehle-Colarusso, T.; Mahle, W.T.; Correa, A. Prevalence of congenital heart
defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 2008, 153, 807–813. [CrossRef] [PubMed]

2. Lemons, J.A.; Bauer, C.R.; Oh, W.; Korones, S.B.; Papile, L.A.; Stoll, B.J.; Verter, J.; Temprosa, M.; Wright, L.L.;
Ehrenkranz, R.A.; et al. Very low birth weight outcomes of the National Institute of Child Health and Human
Development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research
Network. Pediatrics 2001, 107, E1. [CrossRef] [PubMed]

3. Noori, S.; McCoy, M.; Friedlich, P.; Bright, B.; Gottipati, V.; Seri, I.; Sekar, K. Failure of ductus arteriosus
closure is associated with increased mortality in preterm infants. Pediatrics 2009, 123, e138–e144. [CrossRef]
[PubMed]

4. Heymann, M.A.; Rudolph, A.M. Control of the ductus arteriosus. Physiol. Rev. 1975, 55, 62–78. [CrossRef]
[PubMed]

5. Gittenberger-de Groot, A.C. Persistent ductus arteriosus: Most probably a primary congenital malformation.
Br. Heart J. 1977, 39, 610–618. [CrossRef] [PubMed]

6. Gittenberger-de Groot, A.C.; van Ertbruggen, I.; Moulaert, A.J.; Harinck, E. The ductus arteriosus in the
preterm infant: Histologic and clinical observations. J. Pediatr. 1980, 96, 88–93. [CrossRef]

7. De Reeder, E.; Girard, N.; Poelmann, R.; Van Munsteren, J.; Patterson, D.; Gittenberger-De Groot, A.
Hyaluronic acid accumulation and endothelial cell detachment in intimal thickening of the vessel wall.
The normal and genetically defective ductus arteriosus. Am. J. Pathol. 1988, 132, 574–585. [PubMed]
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