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Type Iinterferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in
host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only
act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IEN stimulated genes are
well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this
review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as
reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize
the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in
resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral
replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.

1. Introduction

Type I interferons (IFN-I) are members from a large family
of signaling proteins known for their potent antiviral activity.
IFN-I were discovered in 1957 by Lindenmann and Isaacs
and received their names based on the ability to interfere with
influenza virus replication in chick cell culture [1-3]. In
recent years, the knowledge about the mechanism of IFN-I
production has quickly expanded.

IFN-I are produced by most cell types, the best known
members of this group are IFN-a and IFN-f, and it also
includes IFN-o, IFN-8, IFN-x, IFN-¢, IFN-7, and IFN-w
[4, 5], which directly mediate a potent antiviral response.
IFN-« includes 13 partially homologous members, encoded
by chromosome 9, while IFN-f is composed by a single
member and the gene is located on chromosome 12 [4].

IFN-I production occurs primarily when pattern recogni-
tion receptors (PRRs) present on the cell surface or in the
cytosolic compartment of virtually all cell types are stimu-

lated by pathogen-associated molecular patterns (PAMPs)
[6-8]. The most widely studied PRRs are Toll-like receptors
(TLRs). Ten different TLRs have been identified in humans,
all of which detect PAMPs either on the cell surface or the
lumen of intracellular vesicles, such as endosomes or lyso-
somes, and are involved in the recognition of a particular
type of PAMP [6]. TLRs recognize different pathogen
components, including double-stranded RNA (dsRNA)
(TLR-3), single-stranded RNA (ssRNA) (TLR-7), or CpG
DNA [6, 9, 10]. Other PPRs include retinoic acid-inducible
gene-I- (RIG-I-) like receptors (RLRs) and nucleotide-binding
oligomerization domain- (NOD-) like receptors (NLRs).

The recognition of TLR ligands leads to the recruitment
of adaptor molecules that contain Toll interleukin-1 recep-
tors (TIR) such as TIR-domain-containing adapter (TRIF),
TRIF-related adaptor molecule (TRAM), Myeloid differenti-
ation primary response gene 88 (MyD88), or TIR-domain-
containing adaptor protein (TIRAP), leading the activation
of molecular cascades that finally promote the activation of
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nuclear transcription factors such as nuclear factor xB
(NF-%B), IFN regulatory factor 3 (IRF-3), and 7 (IRF-7)
[11, 12], which leads to the induction of genes encoding
IFN-I (Figure 1(a)).

Both IFN-a and IFN-f use the same receptor, IFN-a/f3
receptor (IFNAR), which is expressed on a vast variety of cell
types [5] (Figure 1(b)). This receptor is associated with Janus
kinase 1 (JAK1) and Tyrosine kinase 2 (TYK2). IFN-a/IFN-
binding to IFNAR activates JAK1 and TYK2, which subse-
quently phosphorylate the transcription factor signal trans-
ducer and activator of transcription 1 (STAT1) and STAT2
[13], among other less characterized transcription factors
such as STAT3, STAT4, and STAT5. Once phosphorylated,
these factors associate with IRF-9 to form the IFN-stimulated
gene factor 3 complex (ISGF3). In the nucleus, this complex
binds specific DNA sequences containing IFN-stimulated
response elements (ISRE) that promote the transcription of
hundreds of IFN-stimulated genes (ISGs) including IRF-1,
IRF-7, IRF-8, and IRF-9, whose function is to inhibit viral
replication and induce an antiviral response in the area of
the infected cell [13-15]. Some ISGs have been widely
studied; the best known members include IFN dsRNA-
dependent protein kinase R (PKR), 2'-5'oligoadenilate
synthetase (OAS), IFN-inducible transmembrane proteins
(IFITM), dsRNA-specific adenosine deaminase (ADAR), and
Myxovirus resistance protein A (MxA) and B (MxB) [16, 17].

The viral infectious cycle involves several steps, and ISGs
target different stages of the viral cycle. For example, PKR,
which was among the first ISG described, is a PRR that
recognizes dsRNA, inducing IFN production and further
ISG production [18]. PKR inactivates eIF-2q«, leading to a
global translation blockage of both viral and cellular
mRNA [19]. OAS is also activated by cytoplasmic dsRNA
and is subsequently involved in the degradation of RNA
(through RNAse L), contributing to the inhibition of protein
synthesis and therefore viral replication [20]. In the case of
IFITM, the four members (IFITM-1, IFITM-2, IFITM-3,
and IFITM-5) are present in endosomes and lysosomes and
have a critical role in the inhibition of viruses that require
vesicles for effective infection [21]. ADAR is a nucleic acid
editing enzyme that disrupts base pairing. ADAR catalyzes
the deamination of adenosine (A) to produce inosine (I) in
dsRNA, inducing the replacement of the AU base pair by
IU, which produces dsRNA destabilization [22]. On the other
hand, MxA and MxB play a critical role during viral entry;
while MxA acts in the early stages of infection once the virus
has traversed the plasmatic membrane, MxB acts at the
nuclear stage, inhibiting nuclear entrance [23, 24].

Dendritic cells (DCs) play a key role in the production of
IFN-I. Although both myeloid DC (mDC) and plasmacytoid
DC (pDC) produce IEN, the latter express specialized TLR-7
and TLR-9 and has a high constitutive expression of IRF-7
that allow them to respond to viruses with rapid and extremely
robust IFN-« production [25-27]. Upon activation and pro-
duction of IFN, pDCs mature into antigen-presenting cells
(APC) serving as a key link between the innate and adaptive
immune responses [28]. In addition, DCs produce IL-12,
which drives naive T cells into Th1-type responses, as well as
IFN-a, which increases the frequency of IFN-y producing
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CD4" T cells [29]. Moreover, IFN-I also boost natural killer
(NK) and CD8" T cell responses, promoting both survival
and clonal expansion of the latter [30-32]. IFN-« and IFN-
lead to an immediate innate antiviral response and stimulate
the adaptive immune system, affecting myeloid cells, NK cells,
T cells, and B cells to mount an adequate Th1-biased immune
response [16, 33].

Since its discovery, IFN’s role as an important player of
the immune system against viral infections has become evi-
dent. Although IFN is known for its innate beneficial
response, recent studies have also linked these immune medi-
ators to pathogenesis.

This review summarizes the current knowledge of the
roles of IFN-I in respiratory virus and reemerging flavivirus
infections (Table 1) and on the strategies that different
viruses adapt to subvert IFN-I responses, mainly focusing
on studies in human cells and subjects.

2. Human IFN-I Responses to Viral Pathogens

2.1. Human Respiratory Viruses. Respiratory viruses includ-
ing influenza virus, respiratory syncytial virus (RSV), human
metapneumovirus (hMPV), parainfluenza virus (PIV),
human rhinovirus (HRV), and human coronavirus (HCoV)
are a major cause of respiratory disease and mortality in
humans [34-36]. The disease can range in severity from mild
or asymptomatic upper airway infections to severe wheezing,
bronchiolitis, pneumonia, or death. Numerous factors can
increase the risk of severe disease, including neurological
conditions, chronic lung and/or heart disease, metabolic disor-
ders, or a weakened immune system [37]. However, the major-
ity of severe cases occur in previously healthy persons [34, 35].

When a cell is infected, the viral sensing activates path-
ways that trigger host immune responses. The viral presence
is detected by several distinct PRRs including TLR-2, 3, 4, 6,
7, and 8, RLRs including RIG-I and MDA5 pathways among
others [38-40]. These signaling pathways converge on
IRF-3/IRF-7 and NF-«B that promote the induction of
IFN-I that inhibit viral replication and contribute to the
initiation of more specific adaptive immune responses [40].
IFN-a and IEN-f bind to receptor complexes, which activate
STAT1 and STAT2 phosphorylation. IRF-9 binds to
STAT1/STAT2 heterodimers forming the ISGF3 complex,
which translocates to the nucleus to induce transcription of
ISGs and to mount an antiviral state within the cell [39, 41].

Respiratory viruses, like other pathogens, target core mol-
ecules of the immune cascade to evade the host response. Like
other different viruses, one major strategy used by respiratory
viruses is to modulate, evade, or inhibit the IFN response that
allows viral replication and transmission [41-43].

2.1.1. Influenza Virus. Influenza virus is a negative-sense,
ssRNA virus that belongs to the Orthomyxoviridae family.
This pathogen is a leading cause of respiratory illness in
humans and causes annual epidemics and pandemics of dif-
fering severity [44]. The human subpopulations most vulner-
able to influenza virus infections are children, pregnant
women, and persons over 65 years old.
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FiGure 1: Type I interferon immune response. (a) Detection of viral infection by pathogen recognition receptors and signaling cascades
resulting in the production of IFN-I. (b) IFN-I-a/f receptor (IFNAR) and activation of the JAK/STAT pathway leading to the induction

of IFN-stimulated genes.



neurologic course of the disease and
clinical improvement
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TaBLE 1: Role of IFN-I in respiratory virus and flavivirus infections.
Virus Model Effect Main finding References
Human respiratory viruses
Hospitalized subjects show enrichment for a
Human (in vivo) Protective minor IFITM3 allele that leads to reduced [70]
Influenza virus influenza virus restriction
Human (in vivo) Pathogenic High levels of IFN—aZ at enrollnllent predicted [278]
progression to severe disease
Age and premature birth were independently
Human (in vitro) Protective associated with attenuated RIG-I-dependent [89]
RSV IEN-« responses
L . Infants with severe RSV bronchiolitis have
Human (in vivo) Protective lower type-T TEN levels [90]
IFN-I contributed to disease pathogenesis
hMPV Mouse (in vivo) Pathogenic due to increased inflammatory lung disease [102]
during infection
Mean quantities of the virus in the secretions of
PIV Human (in vivo) Protective .th(.)se children with interferon was [65, 117]
significantly lower compared to those
without detectable IFN
HRV Human (1?1 vz‘tro) Protective Exogenous IFN-a, IFN-ﬁ s1gn1ﬁcantly reduce [130, 131]
Human (in vivo) HRYV replication
HCoV Human (in vivo) Pathogenic High levels of IFN correlated with early sequelae [148]
0
Human (in vivo) Protective Patients treated with IFN show clinical response [289, 290]
Emerging flaviviruses
Human (in vivo) Protective ngher level_s of I.FN-‘X are obsef'ved n [77, 190, 193-196]
patients with milder dengue disease
DENV Human (in vivo) Pathogenic Higher levels of IFN-f3 in severe vs. nonsevere [197]
dengue children
o . Higher levels of IFN-f in primary DHF patients
Human (in vivo) Pathogenic compared to those with primary DF [198]
SNP at TLR-3 that decreased IFN-I response
Human (in vivo) Protective has been associated with microcephaly in [232]
newborns
ZIKV Replication of Asian ZIKV strain Brazil 2015
o . (associated with neurodevelopmental
Human (in vitro) Protective disorders) was less sensitive to IFN-I, compared [233]
to other ZIKV strains
o . PI3K that induces IFN-I controls
Human (in vitro) Protective WNV infection [238]
L . Early activation of RLR or IFN-I signaling could
WNV Human (in vitro) Protective block WNV infection [239]
IFN-« treatment was well tolerated and might
Human (in vivo) Inconclusive have potential beneficial effects, due to [293-296]
treatment or chance
YEFV Human (in vitro) Protective/pathogenic I5Gs showp to 1n}}1b1t. or enhance [258]
viral replication
Human (in vitro) Protective IFN-« at.hlgher cogcentrat10n§ shgwed more [297]
IEV efficacy in combating the replication of JEV
Human (i vivo) Inconclusive No benefits from IFN-a2a treatment against (298]
children with JEV infection
IFN-a2b therapy for meningoencephalitis
SLEV Human (in vivo) Protective suggested a beneficial effect on the carly [299, 300]
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FiGure 2: Induction of IFN-I by influenza virus. PRRs involved in viral recognition include TLR-3, TLR-7/8, MDAS5, and RIG-I that can

detect viral products to signal IFN-a/f3 production in infected cells.

Influenza virus is primarily recognized by two different
types of PRRs: RLRs and TLRs. Regarding the RLR family,
RIG-I, LGP2, and MDAS5 sense viral RNA during viral repli-
cation in the cytoplasm [45-47]. Once activated, RIG-I and
MDAS5 interact with the mitochondrial antiviral-signaling
protein (MAVS), leading the activation of NF-xB and IRF-3
to stimulate IFN production (Figure 2). On the other hand,
LGP2 has been related to the regulation of RIG and MDA5
activation [48]. Two different TLRs are activated by influenza
virus, TLR-3 and TLR-7. The stimulation of TLR-3 in DCs
and macrophages signal through TRIF, activating IRF-3/
NF-«B, leading to IFN-f secretion. On the other hand,
TLR-7 in DCs activates MyD88, which activates IRF-7 and
produces the secretion of both IFN-« and IFN-f [49, 50].

Influenza virus NS1 suppresses IFN synthesis through
several different mechanisms [51-54] (Figure 3). First, it
limits the pretranscriptional induction of IFN by forming a
complex with RIG-I and limiting its signaling [55, 56]. Sec-
ond, it directly limits the extent of the antiviral state by inhi-
biting PKR by sequestering dsRNA and by forming a
complex with PKR avoiding its activation [57, 58]. Third, it
inhibits mRNA maturation by interfering with the effector
domain of the 3'-end processing [59]. Finally, NS1 activates
phosphatidyl-inositol-3 kinases (PI3K) which can delay apo-
ptosis of infected cells [60].

The evidence supporting the role of IFN-I during influ-
enza infection in human populations is limited. Much of
the available information focused on animal studies that have
yielded mixed results. While some studies have found a pro-
tective role of IFN-I, others found no effect or even a patho-
genic role [61-64]. Originally, Hall et al. detected that
increased IFN production in nasal washes in children
infected with influenza virus was associated with decreased

shedding of virus [65]. Subsequent studies identified the high
levels of IFN-I in breastfeeding children infected with influ-
enza virus, providing support to the hypothesis that breast-
feeding protects against respiratory viral infection [66, 67].
Additionally, a study of elderly subjects demonstrated that
IFN-« production is decreased during influenza virus infec-
tion and suggested that this impairment can produce multi-
ple defects in their innate and adaptive immune responses
that could lead to increased severity [68]. Likewise, other
studies have shown that pregnant women have an attenuated
IFN-« response to influenza virus [69].

As mentioned previously, IFITM are a family of
interferon-induced antiviral restriction factors with constitu-
tive expressions in different cell types that are known to be
induced by IFN-I. Recent evidence has shown that ISG
IFITM3 is a potent antiviral factor in restricting influenza
virus infection and a decrease in its expression results in a
higher risk of hospitalization [70, 71].

2.1.2. Respiratory Syncytial Virus (RSV). RSV is a common
virus that belongs to the Paramyxoviridae family. RSV is a
negative-sense ssRNA virus that causes a wide range of
symptoms and the severity can vary from mild to lethal dis-
ease [59]. RSV is especially severe in infants, the elderly,
and immunocompromised individuals [72, 73]. Despite years
of research, RSV is the only major etiological agent of acute
lower respiratory tract infection (ALRI) for which no vaccine
or specific treatments are available.

Several PRRs are involved in RSV recognition, including
TLRs (TLR-2, TLR-3, TLR-4, and TLR-7), RLRs (RIG-I
and MDAS), and NLRs (NOD-2). IFN-I production dur-
ing RSV infection is activated by different mechanisms
(Figure 4). TLR-3 detects dsRNA during viral replication
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FiGure 3: Evasion and inhibition of respiratory virus-induced IFN-I signaling. Many respiratory viruses can inhibit and modulate their
detection using diverse strategies, thereby inhibiting the IFN-I production. Circular boxes in black background represent the viral protein
involved in the pathway inhibition. Abbreviations: NS: nonstructural protein; V: V protein; C: C protein; SH: small hydrophobic protein.
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FIGURE 4: Induction of IFN-I by RSV. RSV is detected by different PRRs that include TLR-2, TLR-4, TLR-3, TLR-7/8, MDA5, and RIG-I and
leads to the IFN-I pathway activation.

and signals through TRIF, which activates IFN-« production ~ which leads to the activation of IRF-7 and IRF-3 through
through NF-xB and IRF-3 pathway [74]. Other important ~ NF-«xB [75]. Together, these IRFs stimulate ISRE sequences
PRRs for IFN-I production are RIG-I and MDA5 which sub-  that promote IFN-I production [76, 77]. NLRs also play a
sequently link MAVS. This recruits TRAF2/6 and TRAF3  role in activating the IFN-I pathway. NOD-2 can recognize
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RSV ssRNA, thus, mediating IRF-3 and NF-«B activation
pathways and leading to the IFN- 3 production [78].

Although RSV can lead to IFN-I production through
multiple pathways, it has been established that this virus in
particular is a poor stimulator of IEN-I. Unlike other respira-
tory viruses, studies have shown a limited role for IFNs in
response to RSV infection [65, 79, 80]. Thereby, NS1 and
NS2 (2 proteins encoded by RSV) appear to interact (and
interfere) with multiple molecules of the IFN pathway
(RIG-I, TRAF3, and IRF-3), which then interfere with IFN
synthesis [81-84] (Figure 3). Studies of RSV NS1 and NS2
proteins have demonstrated that they are crucial for virus
replication in vitro, however, through IFN-I antagonism,
they contribute to adequate RSV replication in vivo (and
in vitro) [85]. Using interference RNA that allowed the
inhibition of NS1, the expression of IFN-a and IFN-f3 was
augmented and this increase was associated with a reduction
in viral titer [86]. On the other hand, NS2 has been shown to
be the main IFN-I antagonist related to the STAT-2 pathway
[82, 87], thus, inhibiting IFN-« and IFN-f3 responses through
JAK/STAT signaling [82, 88].

One interesting study by Marr et al. showed that RSV-
induced IFN-a expression by primary pDCs exposed to
RSV is strongly correlated with age, observing higher IFN-«
expression in healthy adults, followed by preschool children
and little to no expression in healthy full-term infants [89].
This analysis of developmental innate immunity associated
with poor IFN-I production during the first year of life sug-
gests a role for IFN-I in RSV pathogenesis. Deficits in MAVS
or RIG-I signaling events could explain this deficit. Further-
more, infants with severe bronchiolitis have less IFN-I levels
when compared to those with moderate disease [90]. Taken
together, these results suggest a critical role for IFN-I in
RSV infection.

2.1.3. Human Metapneumovirus (hMPV). h(MPV is a mem-
ber of the Paramyxoviridae family, genus Metapneumovirus
[91]. Isolated in 2001 [91], hMPV is a nonsegmented
negative-strand RNA virus [92] and has been associated with
the upper and lower respiratory tract infections with symp-
toms ranging from colds to pneumonia. hMPV particularly
affects children, the elderly, and immunocompromised indi-
viduals [93]. Worldwide, hMPV is recognized as the second
most common cause of bronchiolitis and pneumonia in chil-
dren under 5 years old [94]. Despite the fact that hMPV is a
clinically relevant pathogen, no vaccine is currently available.

Similar to RSV, two major pathways for the secretion of
IFN-I during hMPV infection have been described. Each
pathway involves different types of PRRs, one utilizes RLRs
and the other TLRs. The former is primarily activated by
RIG-T and MDAS5, whereas the latter involves TLR-3 and
TLR-7. RIG-I- and MDA5-mediated signal transduction
begins when viral RNA is sensed in the cytosol. This recogni-
tion leads to the activation of IRF-3 and IRF-7 through the
MAVS pathway [75, 95, 96]. TLR-3 activates the IFN path-
way through IRF-3 and TLR-7 via IRF-7.

It is worth noting that the vast majority of cells express
IRF-7 only after the activation of IRF-3 (which is expressed
constitutively and is activated essentially by the RIG-I/MAVS

pathway) or in response to IFNs. Importantly, TLR-7 is the
main PRR that participates in sensing hMPV by pDCs,
whereas MDA5-MAVS is the major pathway mediating
hMPYV sensing in conventional DCs [75].

Similar to other respiratory viruses, evidence suggests
that hMPV has mechanisms for evading IFN-I production
through interference in TLR- and RLR-dependent surveil-
lance pathways. Early studies published by Dinwiddie et al.
showed that hMPV can inhibit the IFN-a pathway in A549
cells. Therefore, this virus abolished the IFN-a pathway and
downstream ISG signaling through mechanisms that regulate
STAT1 activation [97]. One study supporting this informa-
tion found that hMPV suppressed IFN-I responses through
mechanisms involving the regulation of STATI, STAT2,
JAK1, TYK2, and the surface expression of IFNARI [98].
hMPV proteins impair the activation of PPRs through sev-
eral different mechanisms. hMPV M2-2 protein interferes
with MyD88 adaptor, a critical component for the activation
of proinflammatory genes. This protein also interacts with
MAVS, altering the production of IFN-f and also prevents
IRF-3 phosphorylation [99]. In addition, h(MPV G protein
alters the recognition by RIG-I thereby influencing the secre-
tion of IFNs, and the small hydrophobic protein can inhibit
NEF-«B, which is an important component in the IFN path-
way [100]. Finally, the hMPV phosphoprotein Bl interferes
with RIG-I recognition [75].

Studies describing the role of IFN-I in hMPV infections
in humans are very limited. One study has shown that
IFN- was induced after h(MPV infection in children [101].
In addition, a deleterious effect of IFN-I was reported in a
murine model, in which IFN-I contributed to disease patho-
genesis due to increased inflammatory lung disease during
infection [102].

2.1.4. Parainfluenza Viruses (PIVs). PIVs are a group of
nonenveloped, negative-sense, ssRNA viruses that belong to
the Paramyxoviridae family. First isolated in the 1950s, PIVs
are composed of five different (antigenic and genetic) types,
PIV-1, PIV-2, PIV-3, and PIV-4 with two subtypes PIV-4a
and PIV-4b [59, 103]. The virus was named Parainfluenza
because it produces influenza-like disease and has a lipid
envelope and hemagglutination and neuraminidase activities
[59]. Worldwide, PIVs are important causes of upper and
lower respiratory tract illnesses. Although PIV infections
are generally self-limiting, some patients require hospitaliza-
tion and the disease may lead to mortality, especially in chil-
dren under the age of five years [104], the elderly, and the
immunocompromised individuals.

All PIVs encode 6 universal proteins, N, P, M, F, HM,
and L, and at least one additional protein from the P gene
(C, V, D, W, and I), which is not essential for viral repli-
cation [59].

The innate immune response to PIV is not well-charac-
terized, and little is known about the signaling pathways.
Unlike other respiratory viruses, TLR signaling is not
described but is thought to play a role in the IFN pathway
activation during PIV infection. Regarding RLRs, a study
showed that RIG-I is involved in IFN-I induction via IRF-3
after PIV-3 infection [105]. In addition, MDAD5 has also been



found to be activated by degraded products of RNase L from
PIV [106].

This group of viruses is known to encode proteins that
block innate immune responses to viral infections, allowing
PIV replication. As mentioned above, pathogen RNA synthe-
sis provides strong stimuli to mount an IFN immune
response. PIV-1 and PIV-3 encode C proteins, while PIV-2
encodes a V protein. Both proteins, C and V, are involved
in the blockade of IFN-I induction by preventing PKR activa-
tion [107-110]. The viral strategy in the case of PIV-1 and
PIV-3 is to avoid the IFN production. PIV-1 does not inhibit
the IFN pathway, given that the synthesis of the viral RNA
can activate IFN production. Rather, the viral C protein mod-
ulates its RNA production, preventing MDA5 activation
[109, 111]. This protein also interferes with STAT1, avoiding
signaling through this pathway and thus IFN production
[112]. The V protein of PIV-2 interferes with the IFN pro-
duction in different ways. One of the mechanisms is the inhi-
bition of MDAS5 activation [113]. In addition, the highly
conserved V protein Cys-rich domain has been shown to be
both necessary and sufficient to limit the activation of the
IFN- 8 promoter [114]. Finally, the V protein interferes with
the IFN pathway by abolishing STAT2 signaling [115]. Inter-
estingly, there is evidence that shows that this protein also
regulates viral RNA production (as PIV C protein) [116].

Overall, little is known about IFN-I response after the
PIV infection in human population studies. An early work
detected IFN-I in patients with primary PIV infection [65].
In vitro experiments have shown that PIV-2 induced IFN-«
by day 2 postinfection, PIV-3 by day 3, and that PIV-1 did
not produce this molecule. IFN-f production was shown to
be poor in all serotypes [117].

2.1.5. Human Rhinovirus (HRV). HRV is a small, nonenve-
loped, positive-sense, ssRNA virus that belongs to the Picor-
naviridae family. The family is divided into three species:
rhinovirus A, B, and C [59]. HRV is a ubiquitous seasonal
microorganism and is the most frequent cause of common
cold (causing more than 50% of upper respiratory tract infec-
tions in humans worldwide). Given that the viral genetic
diversity is huge (>160 serotypes), recurrent infections with
this virus are frequent. Although HRV infections are not
life-threatening, they can be also detected in the lower air-
ways where they can cause severe exacerbations in patients
with asthma and chronic obstructive pulmonary disease
[118, 119].

Different PRRs are involved in HRV recognition, belong-
ing to two different families of receptors: TLRs (TLR-2, 3, 7,
and 8) and RLRs (RIG-I and MDA5). TLR-2 on the cell sur-
face recognizes the virus capsid, even without viral replica-
tion. In addition, TLR-3, TLR-7, and TLR-8 localized in
intracellular compartments are stimulated once the viral par-
ticle is internalized and the dsRNA/ssRNA is sensed [120].
The TLR stimulation leads to the activation of downstream
signaling molecules that activate IRF-3, IRF-7, and NF-«B,
triggering IFN-I secretion. The evidence regarding TLR-3 is
somewhat unclear; while one study described an important
role for this receptor in the host response against the HRV
infection [121], others found no function for this PRR
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[120]. The HRV genome is also recognized by RIG-I and
MDAS5 (both localized in the cytosol) which can recognize
ssRNA and dsRNA, respectively. The RLR stimulation leads
to the activation of MAVS and the consequent activation of
NF-«B and IRF, triggering the production of IFN-I in the air-
way cells [120, 122, 123]. Responses mediated by IFN-I
in vivo are critical for the antiviral effects that limit HRV
through the activation of NK cells [124].

Similar to other respiratory viruses, HRV seems to sup-
press IFN synthesis using multiple strategies. Even though
IFN evasion mechanisms have been well-studied in other
enteroviruses, the information for HRV is scarce. A study
showed that the MAVS adaptor is cleaved by 2A and 3C pro-
teases of HRV to stop IFN-I signal transduction [125]. Fur-
thermore, the 3C proteases have been implicated in the
cleavage of RIG-I altering IFN-I production [126]. Regarding
TLRs, despite their crucial role in viral sensing, there is no
evidence of TLR signaling evasion by HRV.

Different studies have attributed susceptibility to HRV
infection to impaired IFN-I production that leads to a higher
viral load [127, 128]. Abnormal HRV-induced IFN in asth-
matic patients was shown in peripheral blood mononuclear
cells (PBMCs) for IFN-« and in primary human bronchial
epithelial cells for IFN- [129]. In addition, in vitro studies
on epithelial cells showed that exogenous IFN-I led to
reduced viral load [130]. Furthermore, this has been con-
firmed in epithelial cells from asthmatic patients, suggesting
a role for IFN-I in limiting induced viral exacerbations
[131]. However, other groups have found no differences
between viral loads in asthmatic and control subjects during
HRV infections [132]. Further investigation regarding the
role of IFN-I during HRV infections needs to be completed.

2.1.6. Human Coronavirus (HCoV). The family Coronaviri-
dae contains two subfamilies, the Coronavirinae and the
Torovirinae. They are a large group of positive-sense ssRNA
genome viruses that can infect mammals and birds, causing a
wide variety of diseases which can lead to frequent mutations
and infections of new species. They have been divided into
four genera, two of which, alphacoronavirus and betacorona-
virus contain viruses infecting humans [133]. To date, four
HCoVs (HCoV-229E, HCoV-NL63, HCoV-OC43, and
HCoV-HKUI1) circulate globally in the human population
and contribute to approximately one-third of common cold
infections in humans [134]. HCoVs had been regarded as
mildly pathogenic until the early 2000s. At that time, a new
disease appeared in China, severe acute respiratory syndrome
(SARS), which was quickly attributed to a new HCoV, the
SARS-CoV. Following that outbreak, a related but different
HCoV producing severe respiratory disease emerged, the
Middle East respiratory syndrome coronavirus (MERS-
CoV) [135]. Recently, a novel coronavirus (2019-nCoV) has
emerged. The 2019-nCoV is causing an outbreak of unusual
viral pneumonia in patients. It initially began in Wuhan,
China and has spread to many countries worldwide [136].
Similar to previously described respiratory viruses,
HCoVs are detected by TLR-3, TLR-7, RIG-I, and MDAS5
[137]. TLR-3 activated by dsRNA stimulates TRIF that acti-
vates AP-1, NF-«B, IRF-3, and IRF-7 leading to the IFN
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production [138]. TLR-7 senses the ssRNA, leading to the
activation of IRF-7 that also stimulates IFN secretion. RIG-I
and MDADS sense viral molecules in the cytoplasm, and their
activation stimulates MAVS that induces the activation of
IRF-3 and NF-«B to finally induce the IFN production [139].

Like other viruses, HCoVs use multiple mechanisms to
evade IFN-I immune response. Evidence shows that different
viral structures can inhibit or modulate the IFN production
or activity. Thereby, NS protein-16 codified by SARS-CoV
and HCoV-229E induces the methylation of viral mRNA
cap structures that inhibit recognition by MDA5 [140, 141].
The papain-like protease (PLPRO) domain of NS protein-3
of SARS-CoV and HCoV-NL63 inhibits the activation of
IRF-3 [142, 143]. Moreover, it was demonstrated that PLPRO
encoded by MERS-CoV suppresses the induction of IFN-f
through its deubiquitinating activity [144]. Protein M of
SARS-CoV inhibits IFN-I production by impeding the for-
mation of the TRAF3-TANK-TBK1/IKKe Complex [145].
ORF9Db protein of SARS-CoV was shown to stimulate the
degradation of MAVS and TRAF6, inhibiting the IFN-I path-
way [146].

The IFN response seems to be contributing simulta-
neously to the protection against viruses and to the pathology
induced by the same viral infections. Human pDCs demon-
strate a robust IFN-I production after MERS-CoV infection,
especially IFN-a, and this response is greater than that elic-
ited by SARS-CoV [147]. High IFN-« and IFN-y have been
associated with early SARS-CoV sequelae suggesting that
unregulated IFN responses during acute-phase SARS-CoV
may be deleterious for this infection [148].

2.2. Reemerging Flaviviruses. The interplay of climatic and
environmental changes as well as the growth of the human
population and increased urbanization has triggered the
reemergence and rapid spread of arthropod-borne viruses
significant to public health. Yellow fever virus (YFV), dengue
virus (DENV), West Nile virus (WNYV), and Zika virus
(ZIKV) are mosquito-borne flaviviruses that have reemerged
in both hemispheres during recent decades. Other flavi-
viruses have emerged in specific regions of the world, includ-
ing the Japanese Encephalitis virus (JEV) and Saint Louis
encephalitis virus (SLEV), among others [149].

DENV, ZIKV, WNV, YFV, JEV, and SLEV belong to the
flavivirus genus of the Flaviviridae family, which comprises a
diverse group of enveloped, positive-sense, ssSRNA viruses
transmitted by blood-feeding mosquitoes, causing disease
in humans [150]. The flavivirus RNA genome (11 kb), which
encodes a single open reading frame flanked by highly struc-
tured 5' and 3’ untranslated regions (UTRs), is transcribed
as a single polyprotein that is proteolytically processed by
host and viral proteases to yield three structural proteins
(C, prM, and E) and seven nonstructural proteins (NSI,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5), the latter of
which regulate viral translation, transcription, and replica-
tion as well as attenuate host antiviral responses [150].

In human cells, the host responds to flavivirus infection
by recognizing viral nucleic acids through several distinct
PRRs including RLRs, TLR-3, 7, and 8, NLRs, and the cyclic
GMP-AMP synthase/stimulator of IFN genes- (cGAS-

STING-) dependent sensing pathway [151, 152] (Figure 5).
Among RLRs, RIG-I and MDAS5 are involved in the detection
of cytoplasmic dsRNA produced during viral replication
[153]. The TLRs of importance during flavivirus infections
are TLR-7 and TLR-8, which detect ssSRNA as well as TLR-
3, which identifies dsSRNA produced during viral replication
[152, 153]. Recently, it has been reported that DENV infec-
tion activates TLR-9 signaling, which is known to recognize
bacterial or viral DNA, by inducing mitochondrial DNA
(mtDNA) release in human DCs [154]. The cGAS-STING
pathway, which is known to sense DNA viruses, has also been
recently involved in restricting flavivirus infections [151]. It
has been reported that during DENV infection, mtDNA is
spilled into the cytoplasm and this subsequently activates
the cGAS/STING signaling pathway to stimulate the produc-
tion of IFN-I [155]. pDCs are a predominant source of IFN-I
during viral infection and TLR7 signaling in pDCs has been
reported to promote the contact of these cells with infected
cells in a specialized platform that enables viral RNA transfer
and antiviral responses [156]. The binding of viral ssRNA
and/or dsRNA to PRRs activates downstream signaling cas-
cades, such as the activation of transcription factors IRF-3
and IRF-7 and NF-«B, that result in the induction of IFN-«
and -B. Subsequent secretion of IFN-I and binding to IFNAR
activates JAK/STAT dependent- and independent-signaling
cascades that result in the transcription of hundreds of ISGs,
which encode proteins that inhibit flavivirus replication and
spread [151, 153, 157].

To facilitate propagation, flaviviruses, like other viruses,
have evolved specific strategies involving one or more viral
nonstructural proteins to either prevent IFN induction or
to inhibit IFN signaling. The inhibition of IFN-I induction
is achieved by either sequestration or modification of viral
RNA and inhibition of PRRs [151]. In addition, several flavi-
virus nonstructural proteins such as NS2A, NS2B-NS3,
NS4B, and NS5 have been shown to interfere with IFN sig-
naling pathways through different mechanisms depending
on the virus [152, 158, 159] (Figure 6). Recently, subgenomic
flavivirus RNA (sfRNA), a nongene product encoded in
3'UTR generated by incomplete degradation of viral RNA
by a cellular 5'-3" exoribonuclease, has been proposed to
play a modulatory role in the host antiviral response in mam-
malian cells by antagonizing IFN-I, as well as displaying viral
interference in insect cells [24, 160-162].

The protective role of IFN-I against flaviviruses has been
extensively demonstrated in mice since IFN-I signaling-
deficient mice are highly susceptible to infection by DENV,
ZIKV, and WNV [163-166]. The reported effects of IFN-I
in flavivirus infections in human cells and subjects are dis-
cussed in the following sections.

2.2.1. Dengue Virus (DENV). DENV is an acute febrile dis-
ease caused by four distinct antigenically related DENV sero-
types (DENV-1, -2, -3, and -4) that are transmitted to
humans by the bite of Aedes spp. mosquitoes, mainly Aedes
aegypti [167]. DENV infects an estimated 390 million people
every year of which 96 million have apparent DENV infec-
tions, with different levels of disease severity [168]. The clin-
ical manifestations of dengue can range from mild febrile
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illness with myalgia and rash (formerly known as dengue = (DHF)) leading to potentially life-threatening hypovolemic
fever (DF)) to severe forms of disease, characterized by  shock [169]. At present, several DENV vaccines are under
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several countries with high endemicity due to the limited
efficacy in naive individuals and against all four DENV
serotypes [170].

DENV has been reported to trigger a robust IFN-I
response, which has been shown to be important in control-
ling DENV infection [171]. IFN-I has been reported to
inhibit DENV infection in a variety of human cells, including
hepatoma, fibroblasts, and myeloid cells [172, 173]. RIG-I
and MDAS5 sensing of DENV has been critical in the immune
response [39], as knockdown of RIG-I and MDAS5 in Huh7
cells resulted in increased DENV replication [174]. In addi-
tion to TLR-3, 7, and 8 [151], DENV has been reported to
activate and upregulate the expression of TLR-2 and 6 in
human PBMCs [175]. NLRs have also been shown to be
activated in DENV and WNV infections leading to the
formation of the inflammasome complex with subsequent
production of inflammatory cytokines of the IL-1f family
[176]. DENV sensing by PRRs results in the secretion of
IFN-I which triggers the JAK/STAT pathway leading to the
production of ISGs with diverse antiviral properties [151].

DENYV nonstructural proteins have been involved in the
downregulation of the IFN pathway in humans, targeting
important signaling molecules downstream of PRRs, result-
ing in the inhibition of IFN-regulated gene expression
[177]. NS4B in combination with NS2A and NS4A have been
reported to block IFN-I signaling by decreasing STAT1 phos-
phorylation in human A549 cells [178]. Furthermore, the
DENV NS2B-NS3 protease complex has been involved in
the cleavage of the human adaptor molecule STING or
MITA, inhibiting IFN-I production [179, 180]. Interestingly,
DENV cleaves STING in humans but not in nonhuman pri-
mates that may serve as its sustaining reservoir in nature
[181]. In addition, the DENV NS2B-NS3 protease interacts
with the cellular IxB kinase, an important kinase involved
in the IFN-I induction, disrupting RIG-I signaling and inhi-
biting the IFN production [182]. The DENV polymerase
NS5 has also been reported as a potent and specific IFN-I
antagonist, due to its binding to human STAT2 for
ubiquitin-mediated proteasomal degradation [183, 184].
The ability of DENV NS5 to bind and degrade human but
not mouse STAT2 may be the major reason behind DENV’s
efficient replication in human but not in wild-type mouse
cells [185]. Recently, increased virulence of different type 1
DENYV isolates has been associated with a higher capacity
of NS proteins to suppress IFN signaling [186]. Likewise,
sfRNA of DENV strains that are associated with greater epi-
demic potential prevents the ubiquitination-dependent acti-
vation of RIG-I by binding to the ubiquitin ligase tripartite
motif protein 25 (TRIM25), subverting the RIG-I pathway,
and consequently impairing IFN-I induction [162].

The viral control and immune regulation exerted by
IFN-I in dengue patients and human cells infected with
DENV have been studied in several reports [172, 173,
187-189]. Even though a strong IFN-I response has been
described in dengue patients, the association of this response
with disease severity is controversial [188, 190-192]. While
some studies reported similar serum levels of IFN-« or
IFN-S in DF and DHF in Thai and Mexican patients
[188, 191], several other reports from Brazil, Mexico,
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Colombia, Taiwan, India, and Thailand showed higher levels
of IFN-« in patients with milder dengue disease [77, 190,
193-196], suggesting that a robust production of IFN-«
may be correlated with a better clinical condition with
respect to dengue infection and disease progression. Con-
versely, a recent study from Paraguay reported higher levels
of IEN-f in severe vs. nonsevere dengue children [197]. Sim-
ilarly, a study from Northeast Brazil described higher levels
of IFN-f in primary DHF patients compared to those with
primary DF [198]. Considering the preexisting immunity
of patients to DENV, several reports described higher
levels of IFN-« in patients undergoing primary infection
compared to those with secondary DENV infections [77,
190, 192, 195], while other studies observed a similar expres-
sion of IFN-« levels in both types of infections [197, 198]. Fur-
thermore, different serum levels of IFN-a and IFN-f have
been reported in DENV-infected patients [192], probably
due to the differential kinetics of IFN-I induction during
DENV infection of human cells [199, 200].

2.2.2. Zika Virus (ZIKV). ZIKV is a newly emerging flavivirus
transmitted to humans by Aedes spp. mosquitoes, including
Aedes aegypti [201]. Since the first human ZIKV infection
was reported in Uganda in 1964 [202], human ZIKV infec-
tions had remained sporadic and limited to small-scale epi-
demics in Africa and Southeast Asia for decades [203, 204],
until 2007, when a large outbreak of Zika fever was reported
on Yap Island (Micronesia) [205]. Over the next seven years,
outbreaks were reported in other Pacific Islands [206]. In
2015, the largest outbreak of ZIKV ever reported began in
Brazil, with a rapid expansion of the virus in South and
Central America [207-209]. Typically, ZIKV infections can
be asymptomatic or manifested as a self-limiting febrile
illness characterized by rash, headache, conjunctivitis,
arthralgia, and myalgia [204-207, 209]. However, recent out-
breaks in the South Pacific and Latin America reported
severe neurological complications, including Guillain-Barré
syndrome (GBS) in adults and microcephaly in newborns
[210-212]. ZIKV has been shown to cross the placental bar-
rier, disrupting brain development [213]. Recently, ZIKV
spread by sexual contact has also been documented [214].
At present, there is an urgent need for vaccines and therapeu-
tics to combat ZIKV.

The induction of antiviral immune responses after ZIKV
infection of human cells has been reported in several studies
[215-219]. The innate immune response after ZIKV infec-
tion of skin cells and endometrial stromal cells was character-
ized by a strongly enhanced IFN-f3 gene expression and the
induction of ISGs, including OAS, ISG15, and MX1 [215,
216]. Moreover, the transcription of PRRs such as TLR-3,
RIG-I, and MDA5 has been reported to be induced upon
ZIKV infection of human skin cells [215]. Similar to DENV,
NLR (inflammasome) activation has also been reported in
ZIKV infection of monocytes [220]. Elevated secretion of
IFN- 8 was also reported in human lung epithelial cells, which
may delay the apoptosis exerted by ZIKV infection [217].
Schwann cells (SC), which play a central role in peripheral
nerve disease and can be the target for damage in GBS, were
susceptible to infection with ZIKV and YFV, but not DENV,
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and ZIKV infection of SC induced expression of IL-6, IFN-f3,
IFN-A, IFIT-1, TNF-« and IL-23A mRNAs, and negative reg-
ulators of IFN signaling [218]. Furthermore, ZIKV infection
of human DCs produced a strong induction of the RLR sig-
naling pathway at the RNA transcription level, but ZIKV
was able to block IFN-I signaling by targeting STAT1 and
STAT?2 phosphorylation [219].

The mechanisms by which ZIKV antagonizes IFN-I
induction and signaling in human cells, which might contrib-
ute to the broad cellular tropism and persistence of ZIKV,
have been reported in recent studies [159, 221-223]. ZIKV
NSI has been reported to interact with RIG-I and downreg-
ulate the antiviral signaling pathway [224]. In addition,
Donald et al. reported that sfRNA in ZIKV acts as the antag-
onist of RIG-I-dependent IFN production [161]. Further-
more, ZIKV NS4A impairs RLR-MAVS interaction and
subsequent induction of antiviral immune responses by
binding to the caspase activation and recruitment domain
(CARD) of MAVS and thus blocking its accessibility by RLRs
[225,226]. ZIKV NS3 has been shown to antagonize antiviral
gene induction by RIG-I and MDA-5 by binding to and
sequestering the scaffold proteins 14-3-3¢/y [227]. ZIKV
NS1, NS2A, NS2B, and NS4B have been shown to interact
directly with TANK-binding kinase 1 (TBK1), required for
the phosphorylation of IRF-3 [159, 228]. In addition, the
NS2B-NS3 protease complex of ZIKV has been reported to
impair the JAK/STAT signaling pathway by promoting the
degradation of JAK1 and to block RLR-triggered apoptotic
cell death. Furthermore, the cooperation between NSI,
NS4B, and NS2B-NS3 further attenuates antiviral immunity,
by impairing IFN-induced degradation of NS2B-NS3 [159].
Similar to DENV, ZIKV NS5 has been reported as a potent
antagonist of IFN-I responses by targeting human but not
mouse STAT?2 for ubiquitin-mediated proteasomal degrada-
tion [183, 185, 221, 222]. However, unlike DENV, ZIKV
NS5 did not require the E3 ubiquitin ligase UBR4 interaction,
exhibiting a virus-specific mechanism [222]. In addition,
ZIKV NS1 and NS5 interact with NLRP3 and promote assem-
bly of the NLRP3 inflammasome complex resulting in IL-1
production and stimulated ZIKV replication [229-231].

Recently, ZIKV microcephaly in newborns has been
associated with rs3775291 single nucleotide polymorphisms
(SNP) at TLR-3 reducing the activation of NF-xB and thus
decreasing IFN-I responses in mothers infected by ZIKV
during pregnancy [232]. Furthermore, comparative analysis
of African and Asian lineage-derived ZIKV strains revealed
pronounced differences in the activation of innate immune
signaling and inhibition of viral replication which may be
related to differential pathogenesis [233]. Compared to the
replication of other ZIKV strains, the replication of Asian
ZIKV strain Brazil Fortaleza 2015, which was associated with
neurodevelopmental disorders, was less sensitive to the anti-
viral actions of IFN-I, while infection with this strain induced
weaker and delayed innate immune responses in vitro.

2.2.3. West Nile Virus (WNV). WNV is a mosquito-borne fla-
vivirus of international health concern. WNV is maintained
in a natural cycle involving primarily Culex spp. mosquitoes
and avian hosts, but it also infects humans, horses, and other
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animals [234]. WNV is endemic in parts of Asia, Africa, and
Europe, and it was first introduced to North America in 1999
[235]. Since then, the virus has spread rapidly throughout the
United States and has been associated with over 21,000
encephalitis/meningitis cases and 1,800 deaths [236]. How-
ever, no effective prophylactic or therapeutic measures are
currently available [234]. Infection with WNV in humans
remains asymptomatic and/or subclinical in most cases and
causes symptoms in 20-30% of WNV-infected individuals.
The clinical manifestations range from a mild flu-like illness
to more severe neuroinvasive disease, associated with signif-
icant morbidity and mortality [234, 237].

The protective role of IFN-I after WNV infection has
been extensively demonstrated in mice by the marked
increase in mortality in infected IFN-a/f receptor-deficient
mice [166]. The studies of IFN-I protection after WNV
infection are more limited in human cells. Recently, the
PI3K, which play an important role in the induction of
IFN-I antiviral responses, have been shown to control West
Nile virus infection in human and mouse cells [238]. The
presence of PI3K inhibitors blocked the translocation of
IRF-7 from the cytosol to the nuclei, reduced IFN-I mRNA
and protein expression, and decreased the secretion of IFN-
I. Recently, in human monocyte-derived DCs early activation
of RLR or IFN-I signaling could block WNV infection [239].
Furthermore, in human glioblastoma cells, WNV replication
was regulated by early IFN-f induction, while in human neu-
roblastoma cells, a delayed IFN-f3 response, due to the con-
cealing of viral dsRNA in intracellular membranes, resulted
in efficient WNV replication [240]. In addition, differences
in replication and induction of IFN-I responses between
attenuated and virulent WNV strains in human monocyte-
derived DCs accounted for the differing virulence in humans
[241].

WNV NS4B and NS5 have been reported as important
IFN-I antagonists [178, 242]. Similar to DENV, NS4B inhib-
ited the JAK/STAT signaling pathway by decreasing STAT1
phosphorylation [178]. The NS5 of WNV strain NY99
blocked IFN-I responses by inhibition of STAT1 phosphory-
lation [242]. The helicase domain of WNV NS3 has been
reported to inhibit IFN-I signaling and differences in viru-
lence between the NY99 and NSW2011 strains of WNV have
been attributed to differential inhibition of the helicase
domain of NS3 [243]. Furthermore, WNV NS1 has been
demonstrated to antagonize IFN-f production by suppress-
ing RLR activation [244].

The human studies evaluating the IFN-I response to
WNV infection and its relationship with disease severity
are scarce [245]. Recently, a study with WNV-infected blood
donors revealed that symptom development was positively
correlated with early, potent IFN-a production [246]. How-
ever, this robust IFN-I response was associated with an
inability to maintain continuing immunity during WNV
infection, suggesting that an increased initial inflammation
may negatively impact the adaptive-T cell responses.

2.2.4. Yellow Fever Virus (YFV). YFV, the causative agent of
yellow fever, is endemic in the tropical regions of Africa
and the Americas and is transmitted to humans and



Journal of Immunology Research

nonhuman primates by Aedes spp. mosquitoes, including
Aedes aegypti [150]. Despite the presence of an effective vac-
cine YF17D [247], YFV infection has remained a public
health concern in restricted parts of the world, with an inci-
dence of 200,000 cases per year, leading to about 30,000
deaths [150]. In humans, YFV infection produces variable
clinical manifestations, ranging from asymptomatic infection
to mild febrile illness and to a possibly fatal disease char-
acterized by severe hepatitis, renal failure, hemorrhage,
and shock [248].

IFN-I induction has been shown in YF17D-vaccinated
human subjects [249, 250] and combined IFN-I and -III
are crucial for controlling YFV infection in mice [251].
Recently, it has been reported that cells infected with
YFV stimulated pDCs to produce IFN-I in a TLR7- and cell
contact-dependent manner. Cells producing immature parti-
cles as well as capsid-free viral RNA participated in pDC
stimulation [252].

NS4B and NS5 of YFV have been reported as IFN-I
antagonists. YFV NS4B interacts with STING, blocking
IFN-I stimulation [253]. Moreover, YEV NS5 inhibits IFN-I
signaling via binding and inhibition of STAT2 following
IFN-I-induced phosphorylation of STAT1 and requires K6
ubiquitination [254]. This IFN-induced ubiquitination of
YFV NS5 is absent in murine cells resulting in a lack of
binding of YFV NS5 and human STAT2 in murine cells,
highlighting the importance of YFV ubiquitination in deter-
mining the host cell range for YFV [255, 256].

Gene expression microarray analysis in PBMCs from
YF17D-vaccinated humans revealed an immune profile
related to antiviral IFN-I responses [249], suggesting that
IFN-I may play a role in effective protection in vaccinated
subjects. Moreover, human DCs infected with vaccine virus
YF17D and a chimeric YF17D/DENV2 produced higher
levels of IFN-« than those infected with DENV-2 [193], also
indicating an induction of IFN-I production by YF17D vac-
cine virus. Recently, it has been reported that an inherited
IFNARI deficiency resulted in life-threatening complications
of vaccination with the YF vaccine in a previously healthy
individual [257].

The dual role of IFNs in protection against and patho-
genesis of viral infections was suggested using a gene overex-
pression screening approach in human cells [258]. In this
study, several ISGs (ADAR, FAM46C, LY6E, and MCOLN?2)
were identified as inhibitors of YFV, WNV, HCV, HIV, chi-
kungunya virus (CHIKV), and Venezuelan equine encepha-
litis virus (VEEV) replication. Conversely, several ISGs were
found to enhance the replication of YFV, WNV, CHIKV,
and VEEV, highlighting the complexity of the IFN-I system.

2.2.5. Japanese Encephalitis Virus (JEV). JEV is a mosquito-
borne flavivirus causing severe neurologic disease, character-
ized by flaccid paralysis, meningitis, and encephalitis [150].
JEV is transmitted to humans by Culex spp. mosquitoes
and is maintained in a zoonotic cycle involving pigs as the
major reservoir and water birds as carriers [259]. JEV infec-
tions primarily occur in Asia, where 35,000-50,000 cases
and 10,000-15,000 deaths are reported annually [150].
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JEV infection of human microglial cells has been shown
to induce an innate immune response characterized by the
production of IFN-f via IRF-3 activation and phosphoryla-
tion. The overexpression of the ubiquitin ligase TRIM21,
which interacts with IRF-3 negatively, regulated this innate
immune response by targeting IRF-3-mediated IFN-f pro-
duction [260]. Recently, neuronal transcriptomic responses
to JEV infection showed the upregulation of RIG-I and
MDADS, suggesting that neuronal cells play a significant role
in immunity against JEV [261].

The antagonist activity of JEV NS5 in IFN-I responses
has been reported. The JEV NS5 has been shown to block
IFN-I signaling by reducing the phosphorylation of TYK2
and STATI and subsequently inhibiting STAT1 nuclear
localization [262, 263]. Furthermore, JEV NS5 inhibited the
nuclear translocation of IRF-3 and NF-«B by binding to
nuclear transport proteins KPNA3 and KPNA4, impairing
the production of IFN-f [264].

The IFN-I response during JEV infection in humans has
not been fully characterized. A study of proinflammatory
profile in humans with JE revealed that nonsurviving patients
with JE showed higher levels of IFN-« in cerebrospinal fluid
than those from survivors during the first days of illness, sug-
gesting that it may be associated with higher viral load [265].

2.2.6. Saint Louis Encephalitis Virus (SLEV). SLEV is a
mosquito-borne flavivirus transmitted to humans by Culex
spp. mosquitoes, first discovered in 1933 when a large epi-
demic of encephalitis occurred in St. Louis, Missouri [150].
SLEV distribution ranges from Canada to Argentina and
across North America [266]. SLEV produces a mild febrile
disease in children and young adults and severe neurologic
manifestations that are more frequently observed in elderly
and immunocompromised patients.

Information about IFN-I induction and signaling as well
as IFN-I evasion by viral proteins after SLEV infection in
human cells is currently very limited. Former studies have
shown a variable effect of human IFN in primary human fetal
glial cell cultures [267]. Similar to DENV, ZIKV, and WNV,
the protective role of IFN-I against SLEV has been demon-
strated in mice since IFN signaling-deficient mice are more
susceptible to infection by SLEV than in immunocompetent
mice [268]. Specifically, the protective effects of IFN-« have
been shown in mice by reducing mortality from SLEV deliv-
ered by the aerosol and subcutaneous routes [269].

3. IFN-I Therapy and Pathogenic Effects

IFNs are increasingly recognized as therapeutic agents. Three
different types of human IFN («, 3, and y) are widely used for
the treatment of various diseases due to their immunomodu-
lating, antiviral, and antiproliferative properties [270, 271].
However, the optimal dose and duration of IFN’s as therapeu-
tic agents have not been established [272]. This is important
since IFNs administered in pharmacological doses produce
considerable toxicity that is dose-related and that may require
cessation of therapy. Common side effects due to IFN-«
include flu-like symptoms (fatigue, fever, myalgias, and
headaches), pulmonary toxicity, gastrointestinal symptoms,
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neurotoxicity, and depression [273-275]. Lethal toxicity asso-
ciated with IFN-« regimen is rare and severe toxicity due to
IFN-« is manageable if recognized expeditiously [276, 277].

The role of endogenous and/or exogenous IFN in the
viral infections discussed in this review has been partially
explored in human cell lines, animal models, and clinical
studies. Depending on the virus, the model used, and the
time of infection, IFNs can be either beneficial or deleterious
(Table 1).

Regarding influenza disease, a pathogenic role for endog-
enous IFN-I has been suggested in children with influenza
infection, in whom clinical disease severity was associated
with an increased level of IFN-a [278]. In agreement with
this, another study associated severity with epithelial cell
damage mediated by TNF-a related apoptosis-inducing
ligand (TRAIL) [279] whose expression can be induced by
IFN-« and IFN-f [280]. Moreover, recent evidence showed
that the upregulation of TRAIL expression by monocytes
and death receptor 5 (DR5) expression by epithelial cells con-
tributed to the pathogenic mechanism induced by IFN-
/3, where enhanced production of this molecule can con-
tribute to immunopathology in severe infections [64].

Concerning RSV infections, intranasal administration of
recombinant IFN to infants with RSV infection has shown
to be safe and to decrease the duration of symptoms without
affecting the time of viral shedding [281-283].

During the 1980s, different studies showed that the use of
high doses of intranasal IFN-« were useful in the prevention
of HRV infection [284-286]. However, it was also found that
the use of this molecule (in high doses) was associated with
the occurrence of undesirable effects, as described above.
Although low-dose treatment has proven to be better toler-
ated, it has been ineffective as postexposure prophylaxis
[287]. Further investigation regarding the role of IFN-I dur-
ing HRV infections needs to be completed.

Dual effects of IFN-I have been observed in HCoV infec-
tions, as mentioned previously. A series of case studies
describing moderate and severe MERS-CoV infections in
adults found that moderate cases had no IFN-« response,
while severe cases had wvariable levels of IFN-« [288].
However, other studies have shown that MERS-CoV and
SARS-CoV patients improved with IFN-« therapy [289, 290].

Regarding DENV infections, the studies evaluating the
association of IFN-I response with disease severity in humans
have yielded mixed results [188, 190-192], as described pre-
viously. Recent studies in dengue patients in South America
have suggested that high levels of IFN- 3 might accompany
a worsened progression of the disease [197, 198]. In addition,
monocytes of individuals with past severe dengue (SD)
exhibited a significant upregulation of IFNB-1, RIG-I,
and NLRP3 genes compared to those with past non-SD
that was accompanied with higher viral loads, suggesting
that initial innate immune responses may influence disease
outcome [291].

With regard to ZIKV, IFN-I treatment has not been
described in ZIKV patients. A recent murine model of
ZIKV infection using dexamethasone-immunosuppressed
mice showed that IFN-I treatment improved clinical out-
comes, reducing viral load and inflammation in different
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visceral organs including testicles, suggesting the consider-
ation for evaluating the effects of recombinant IFN treat-
ment in patients at high risk for ZIKV-associated
complications [292].

Concerning WNV-infected patients, the use of IFN-« is
limited to case reports of meningoencephalitis, where differ-
ent outcomes have been described [293-296]. IFN-« treat-
ment was well tolerated and might have potential beneficial
effects. However, the dynamic course of WNV neuroinvasive
disease prevented the determination of whether the beneficial
effects were due to the experimental therapy or to chance.
Further randomized, double-blinded, placebo-controlled
clinical trials are needed to define the role of IFN-« treatment
in WNV-infected patients.

The antiviral effects of IFN-a against JEV have been orig-
inally described in cell cultures [297]. In humans, IFN-a2a
treatment against JE was also evaluated in a randomized
double-blind placebo-controlled trial in Vietnamese children
with JEV infection [298]. Intramuscular IFN-« administra-
tion did not show beneficial effects on hospital death or
severe sequelae at discharge, suggesting that higher doses,
alternative administration routes, or combination with other
antiviral drugs might be needed.

Similar to WNV and JEV, the use of IFN-« was evaluated
in human subjects with SLEV severe neurologic disease. A
nonrandomized, unblinded, interventional pilot study evalu-
ated IFN-a2b therapy for meningoencephalitis produced by
SLEV and suggested a beneficial effect on the early neurologic
course of the disease, indicating that two weeks of treatment
were well tolerated [299]. A subsequent study in solid organ
transplant recipients with SLEV meningoencephalitis
showed that even with delayed administration, the combina-
tion treatment with IFN-a2b and intravenous immunoglob-
ulin G was associated with a potential clinical improvement
[300]. These studies support the conduction of a subsequent
randomized, double-blinded, placebo-controlled trial of IFN-
a2a therapy for SLEV meningoencephalitis.

4. Therapeutic Potential of ISG Effector
Mechanisms in Human Viral
Infectious Diseases

Upon recognition of viral infection, the cell, through PRRs,
mediates the production of IFN-I leading to the transcription
of hundreds of ISGs by the JAK/STAT pathway [301]. ISGs
are the effectors of cell-autonomous antiviral defense and
have been shown to be very effective at resisting and control-
ling pathogens. ISGs are induced to vastly different levels
during viral infection or IFN treatment, and expression levels
are often dependent on time, dose, and cell type. They act at
different stages of the viral life cycle, from entry, replication,
assembly, and release, providing adequate cellular immunity
against both RNA and DNA viruses [302]. Microarray stud-
ies have identified between 50-1000 ISGs, with 200-500
genes typical of many cell types. Representative and well-
studied ISG members with specific or broad antiviral activi-
ties include IRF1, IRF3, IRF7, IRF9, IFITM3, ISG15, and
OASL. The products of these ISGs exert numerous antiviral



Journal of Immunology Research 15
TaBLE 2: Some interferon-stimulated genes that inhibit respiratory virus and flavivirus infections.
ISG Viruses shown to be susceptible Mechanism/component of innate immune References
system augmented by ISG
Respiratory viruses
Viperin InﬂuerIiIZIi\j; i TLR-7/9 (IRAK1/TRAF6) [305, 306]
RSV NF-xB1/p50, AP-1
ZAP Influenza A virus RIG-1 [307]
Influenza A and B viruses
TRIM56 HCoV OC43 STING, TLR-3/TRIF [308, 309]
TRIM21 HRV cGAS, RIG-], [310]
1SG20 Influenza A and B viruses Nucleoprotein blockade [311, 312]
TDRD7 ;R)%\// Autophagy inhibition [313]
Flaviviruses
IFITM2/3 DENV Entry and/or uncoating disruption (314, 316]
WNV
Restriction of early DENV RNA
Viperin DENV production/accumulation, via interaction [315]
with DENV NS3 and replication complexes
Interference with DENV translation via
RyDEN DENV interaction with viral RNA and cellular [317]
mRNA-binding proteins
OAS DENV Blockade in DENV replication [318]
DENV
ZIKV s . "
ISG15 WNV Inhibition of viral replication [321-324]
JEV
YFV Prevention of virus-induced ER membrane
IFI6 WNV invaginations formation, that house [320]
DENV replication machinery
DENV NS3 ubiquitination and degradation,
TRIMG9 DENV thus interrupting DENV replication [319]
WNV . s _ .
Schlafen 11 DENV Viral replication restriction by regulating [325]
ZIKV tRNA abundance

effector functions, many of which are still not fully described.
However, as the mechanisms of more IFN effectors are
uncovered, it is likely that their modes of action will collec-
tively span the majority of virus life cycle stages [303]. In
addition to having potent antiviral activity, ISGs also aug-
ment the innate immune response to viral infection, thereby
strengthening this response [304]. This has driven special
attention in the attempt to advance novel therapeutics to
control viral infection and their pathogenesis.

Currently, there are vaccines for influenza virus, YFV and
JEV; however, neither effective vaccines nor specific therapies
are available for RSV, hMPV, PIV, HRV, HCoV, DENV,
ZIKV, WNV, or SLEV. Although several vaccines are under
diverse phases of development for these viruses, there is a
need for alternative antiviral therapeutic approaches.

Several ISGs have been described in the setting of respira-
tory viruses (Table 2). Recent work has shown that the egress
of the influenza virus is also targeted by an ISG. Viperin
interacts with the cellular enzyme farnesyl diphosphate-

synthase to perturb lipid rafts, resulting in inhibition of influ-
enza and rhinovirus release [305, 306]. In addition, ZAP,
which can be upregulated independently from IFN produc-
tion, limits influenza virus replication via the enhancement
of RIG-I [307]. TRIM56 is another ISG with broad antiviral
activity. Although its upregulation is dependent on IFN-I, it
abrogates influenza virus A and B and HCoV infection
through STING and TLR-3/TRIF [308, 309]. TRIM21 has
shown activity against rhinovirus by intercepting incoming
antibody-opsonized virions during cellular infection, mediat-
ing efficient postentry neutralization [310]. A new human
IFN-induced gene that we have termed ISG20 codes for a 3’
to 5’ exonuclease with specificity for single-stranded RNA
and, to a lesser extent, for DNA. ISG20-overexpressing HeLa
cells showed resistance to infections by the influenza virus.
The mechanism has been shown to be related to the impair-
ment of the polymerase activity, inhibiting both the replica-
tion and transcription [311, 312]. Finally, TDRD7 (tudor
domain containing 7) has shown activity against several
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paramyxoviruses, such as HPIV3 and RSV by interfering with
the activation of AMP-dependent kinase (AMPK). The acti-
vation of AMPK is required for efficient replication. TDRD7
interferes with the activation of AMPXK, limiting viral replica-
tion [313].

Several ISGs have been reported to inhibit flavivirus
infection through different mechanisms (Table 2). The
expression of IFN-I inducible ISGs such as IFITM2/3,
viperin, ISG15, ISG20, OAS, BST2, RyDEN, TRIM69, and
IFI6 has been shown to block DENV infection [314-320] at
multiple steps of the viral cycle. IFITM2 and IFITM3
disrupted the early steps (entry and/or uncoating) of
DENV and WNYV infection [314, 316]. In contrast, three
IFN-induced cellular enzymes, viperin, ISG20, and dsRNA-
activated protein kinase, inhibited the steps of the DENV
and WNV cycle in viral proteins and/or RNA biosynthesis
[314]. DENV infection-induced viperin which has antiviral
properties residing in the C-terminal region of the protein
that acts to restrict early DENV RNA production/accumula-
tion, potentially via the interaction of viperin with DENV
NS3 and replication complexes [315]. The expression of the
Repressor of yield of DENV (RyDEN) conferred resistance
to all serotypes of DENV in human cells. RyDEN is likely
to interfere with the translation of DENV via interaction with
viral RNA and cellular mRNA-binding proteins, resulting in
the inhibition of virus replication in infected cells [317]. OAS
and its downstream effector RNase L have been reported to
block DENV replication and likely contributed to host
defense against DENV infection playing a role in determin-
ing the outcomes of DENV disease severity [318]. ZIKV
has been reported to induce the expression of ISG15 in pri-
mary human corneal epithelial cells, and the silencing of
ISG15 increased ZIKV infectivity [321]. ISG15 has also
inhibited the replication of several flaviviruses, including
DENV, WNV, and JEV [322-324]. IFN-a-inducible protein
6 (IFI6), an endoplasmic reticulum- (ER-) localized integral
membrane effector, prophylactically protected uninfected
cells by preventing the formation of virus-induced ER mem-
brane invaginations that house flavivirus (YFV, WNV, and
DENV) replication machinery [320]. TRIM69 interacts with
DENV NS3 directly and mediates its ubiquitination and deg-
radation, thus, interrupting DENV replication [319].
Recently, Schlafen 11, an ISG that controls the synthesis of
proteins by regulating tRNA abundance, has been reported
to restrict WNV, DENV, and ZIKV replication by impairing
viral infectivity [325].

5. Conclusions

After 60 years of research, the protective role of IFN-I has
been demonstrated from cell culture to animal models and
in human subjects. More recently, pathogenic effects of
IFN-I have been described during viral infections highlight-
ing the vast and intricate interactions of IFN-I in the immune
response. Further insights into the effector mechanisms of
individual ISGs in the complex signaling networks in human
viral diseases are needed in order to design more specific and
effective therapeutic strategies.
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