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Abstract: The coronavirus pandemic is a major public health crisis affecting global health systems
with dire socioeconomic consequences, especially in vulnerable regions such as Latin America
(LATAM). There is an urgent need for a vaccine to help control contagion, reduce mortality and
alleviate social costs. In this study, we propose a rational multi-epitope candidate vaccine against
SARS-CoV-2. Using bioinformatics, we constructed a library of potential vaccine peptides, based on
the affinity of the most common major human histocompatibility complex (HLA) I and II molecules
in the LATAM population to predict immunological complexes among antigenic, non-toxic and
non-allergenic peptides extracted from the conserved regions of 92 proteomes. Although HLA-C, had
the greatest antigenic peptide capacity from SARS-CoV-2, HLA-B and HLA-A, could be more relevant
based on COVID-19 risk of infection in LATAM countries. We also used three-dimensional structures
of SARS-CoV-2 proteins to identify potential regions for antibody production. The best HLA-I
and II predictions (with increased coverage in common alleles and regions evoking B lymphocyte
responses) were grouped into an optimized final multi-epitope construct containing the adjuvants
Beta defensin-3, TpD, and PADRE, which are recognized for invoking a safe and specific immune
response. Finally, we used Molecular Dynamics to identify the multi-epitope construct which may
be a stable target for TLR-4/MD-2. This would prove to be safe and provide the physicochemical
requirements for conducting experimental tests around the world.

Keywords: SARS-CoV-2; vaccine; LATAM; in silico

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pathogen that
emerged towards the end of 2019, primarily affects the respiratory tract. It is transmitted
from person to person via respiratory droplets, aerosols containing viral particles, and
direct contact of the mucosa with contaminated surfaces [1,2].

The first infected patient was identified in Wuhan, Hubei Province, China. The origin
of the virus is thought to be the Wuhan seafood market, although some cases had no
connection to this location. The virus spread rapidly through Wuhan and shortly thereafter
to the rest of China’s provinces [1,3]. By 20 February 2020, 19 countries had reported cases
and mortalities caused by coronavirus disease 2019 (COVID-19). In March of 2020, the
World Health Organization (WHO) declared SARS-CoV-2 the etiologic agent of the first
pandemic caused by a coronavirus [3,4].

In Latin America (LATAM), COVID-19 was first reported in Sao Paulo, Brazil, on Febru-
ary 25, 2020 with the case of a 61-year-old male who has traveled to Italy [5]. Subsequently,
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cases were reported in other LATAM countries, including Chile [6] and Colombia [7]. Haiti
was the last LATAM country to report the arrival of COVID-19 on 19 March 2020. The
arrival of COVID-19 in LATAM presents a great challenge to a healthcare infrastructure
that is susceptible to problems, such as the lack of SARS-CoV-2 testing, personal protective
equipment, and intensive care unit beds. Additionally, mass migration facilitates contact
and spread across borders [8]. As the pandemic progressed, a lack of effective control
measures accelerated infection and death rates in comparison to other European coun-
tries [9,10]. We believe that research institutions in LATAM should come together in the
development of a universal vaccine for four fundamental reasons: (1) SARS-CoV-2 has
caused high morbidity and mortality worldwide; (2) it is highly contagious; (3) countries,
including those in LATAM, were not prepared for the pandemic, and (4) genomic variation
could occur during the pandemic, and changes to antigenic sites in vaccine formulations
may be required [5,11–13]. By the end of the first week of November 2020, about 60 million
cases were seen worldwide, with 1.2 million deaths globally [14].

COVID-19 has a broad range of clinical manifestations in patients ranging from
asymptomatic to acute respiratory distress syndrome that may lead to death. A greater
risk of mortality in patients occurs in unison with comorbidities, such as arterial hyperten-
sion, chronic obstructive pulmonary disease, diabetes, and vascular diseases, especially
cerebrovascular disease [4,15].

Studies of similar pathologies, such as severe acute respiratory syndrome (SARS),
have shown that the independent expression of type 1 interferon (IFN-1)-stimulated genes
and Toll-like receptor (TLR) 3 and 4 are associated with better outcomes in infected rats [16].
Also, individuals with a homozygous expression of the polymorphic variants of L-SIGN
are known to have a better viral binding capacity, increased viral degradation, and dimin-
ished cell to cell infection [17]. The expression of the HLA-C*15:02 and HLA-DR*03:01
alleles has also been associated with viral clearance. These alleles facilitate viral antigen
presentation and, consequently, the elimination of SARS-CoV mediated by T lymphocytes
(TLs) CD8+/CD4+ and natural killer cells [18].

From these findings, we can infer that the preservation of IFN-1 production and
some alleles of HLA-I and HLA-II may be related to asymptomatic conditions and mild
symptoms in COVID-19 patients [18]. In contrast, changes to IFN-1-producing signal
pathways (such as polymorphisms or mutations) that compromise a patient’s innate
immunity, and differential expression of sex-dependent angiotensin-converting enzyme 2
(ACE2) receptor, may be associated with non-modifiable risk factors [19].

1.1. Virology of SARS-CoV-2

SARS-CoV-2 belongs to the Coronaviridae family and is part of the β group of coro-
naviruses. It is a 29.9 kb, positive-sense, single-stranded, enveloped RNA virus. It is
similar to the etiologic agents that cause SARS and Middle East Respiratory Syndrome
(MERS), which share 79.5% and 50% of their identity with SARS-CoV-2, respectively [3,20].
Coronavirus genomes are composed of 6–11 open reading frames (ORFs) [21], with the first
ORF (ORF1a/b) containing two-thirds of the viral RNA. This ORF translates the pp1a and
pp1ab polyproteins and encodes 16 non-structural proteins (NSPs). The other ORFs encode
structural and accessory proteins. The genome contains accessory genes: two between the
spike surface glycoprotein (SP) and small envelope protein genes (ORF3a and 3b); four
between the matrix protein (MG) and nucleocapsid protein (NP) genes (6, 7a, 7b, 8), 9a,
and 9b in the NP gene; and 10 after the NP gene [3,22,23]. The genome structure is shown
in (Figure S1).

1.2. Medication for COVID-19

Currently, only Dexamethasone and Remdesivir have been shown to modify the
natural course of the disease. The “RECOVERY” randomized clinical trial (RCT) was
carried out in England. In this study, oral or intravenous Dexamethasone 6 mg/day was
associated with a reduction in the mortality of patients requiring assisted ventilation and
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patients who were in the second week of clinical diagnosis [24]. Another study, “ACTT1”,
involved 10 countries in a multicenter RCT. The trial showed that the nucleotide analogue
prodrug Remdesivir, which used a loading dose of 200 mg and a maintenance dose of
100 mg/day, significantly reduced the time it took for patients to recover from COVID-19.
Additionally, the need for supplemental oxygen after 10 days of intravenous treatment
diminished [25]. However, the results of the WHO multicenter RCT “SOLIDARITY” study
on the evaluation of the effect of “off label” drugs, which included the follow-up of about
11,330 adults from 4 continents, 30 countries and 405 hospitals, did not find Remdesivir
to be associated with substantial prevention of in-hospital mortality, benefiting only a
small fraction of patients when using a loading dose and standard maintenance [26].
Currently, the Food and Drug Administration has approved the use of Remdesivir and
Dexamethasone for COVID-19, although the latter is only a temporary approval [25,27].
Other therapies have not shown improvements in mortality or recovery in patients with
COVID-19. In an RCT carried out in China, patients with severe or life-threatening COVID-
19 symptoms were studied. The findings showed that convalescent plasma did not result in
clinical improvement after 28 days of follow-up, demonstrating no superiority to standard
medical management [28]. In India, these findings were subsequently confirmed in a
national multicenter RCT titled “PLACID” [29]. This is consistent with the “TSUNAMI”
RCT, recently published from the Italian population with COVID-19, where it was not
evidenced that a high antibody titer present in convalescent plasma will result in a reduction
in mortality at 30 days, nor less need for invasive mechanical ventilation, indicating only
a marginal effect in the absence of acute respiratory distress [30]. Other “off label” drugs
are being evaluated worldwide to assess their usefulness against COVID-19. Tocilizumab,
an IL-6 receptor antagonist, is being tested in an RCT (EudraCT: No. 2020-001408-41) in
Germany to evaluate its efficacy and safety in patients with severe COVID-19 pneumonia.
In the phase III RCT results, the use of Canakinumab, an IL-1β inhibitor, evidence to reduce
the days of the hospitalization and mortality, in patients who do not require invasive
ventilatory assistance, but do require supplemental O2 [31]. On the other hand, the use
of Sarilumab, an IL-6 receptor antagonist, in patients with severity criteria, no benefit
was observed compared to placebo [32]. Another phase II RCTs involving Thalidomide
(NCT04273529), and monoclonal antibodies such as Anakinra (NCT04603742), Gimsilumab
(NCT04351243), and Ruxolitinib are ongoing (NCT04359290).

The authors hypothesize that it could slow the progression of pneumonia and inflam-
mation induced by SARS-CoV-2 [33]. On the other hand, promising results have been
observed using mesenchymal cells derived from human umbilical cords [34] in patients
with moderate and severe COVID in China. This has resulted in complete resolution of
pneumonia within two weeks of infection without mortality and serious adverse reactions.
It is currently in a non-randomized, controlled trial (NCT04288102).

1.3. Vaccine for SARS-CoV-2

A vaccine will be the most cost-effective strategy for preventing infection and reduc-
ing COVID-19-related morbidity and mortality [35]. According to a WHO report, vaccine
studies for COVID-19 are using different vaccine strategies, such as non-replicating viral
vectors, RNA, inactivated, viral-like particles, protein Subunit, peptides, and DNA ap-
proaches. To date, there are more than 100 vaccine candidates in preclinical trials [36].
Vaccine strategies and their phases are summarized in (Figure S2). In both SARS-CoV and
SARS-CoV-2, several candidates structural proteins have been studied as vaccine targets.
SP has been widely studied due to their capacity to induce neutralizing antibodies (NAb)
that prevent the virus from binding and fusing with ACE2 receptor, as well as activating
TLs. Various vaccine models have been proposed using the complete protein, SP binding
domain, virus-like particles, DNA, or viral vectors [37,38]. NP was found to be expressed
in large amounts during infection. NP is highly immunogenic and is a potential vaccine
target. It develops a memory response from TLs that remain up to 11 years after SARS-CoV
infection, detecting at the same time TLs of a specific memory, in addition to NP towards
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other structural proteins such as SP and MG [39]. NP has recently been identified as an
important virulence trait in the clinical outcome of COVID-19. In patients with moder-
ate and severe COVID-19, sC5b-9, C4d, and NP are associated with respiratory failure
(PAFI < 40 kPa) and the need for oxygen therapy. In murine models, this could be ex-
plained because NP is capable of dimerizing, activating, and cleaving MASP2 [40], a serine
protease that can induce complement activation [41]. NP, MBL, MASP-2, C4 alpha, and
C3 or C5b-9 have been observed in the lung tissue of patients with fatal COVID-19, which
could indicate new therapeutic targets [40]. Previously, in a murine model infected by
SARS-CoV and their principal structural proteins, NP alone resulted in a dysregulated
inflammatory response in addition to pulmonary infiltrate of neutrophils, eosinophils, and
lymphocytes. This led to a thickening of the pulmonary epithelium and severe pneumonia
when using NP or SARS-CoV but not SP [42]. Therefore, the full-length protein NP as a
vaccine target for SARS-CoV-2 could be considered less safe when compared to SP, since
they share a homology greater than 90% [43]. Consequently, if it is used as a vaccine target,
shorter length approaches should be chosen, since immunogenic peptides of NP have been
found capable of evoking an immune response and inhibiting viral replication in influenza
A and SARS-COV viruses [43–47].

Other experimental studies about structural proteins on SARS-CoV have identified
the SP and MG as targets to induce NAb in the serum of patients [48]. Furthermore, in
SARS-CoV-2, IgG-like NAb, which targets the receptor-binding domain (RBD) of SP, has
been observed in patients with severe COVID-19 and convalescent patients [49,50]. NAb
of NP has been related to the number of specific TLs which produce IFN-γ [50]. In SARS-
CoV, NP, MG, and E have been shown not to produce NAb; however, they are potential
antigens for antiviral cytotoxic T cells (CTL) [51]. Taking into account the above, SP, NP,
and MG proteins are the main targets for stimulating the creation of antibodies through
B lymphocytes (BLs) and TLs response when using specific peptides and incomplete
proteins. Theoretically, individuals without previous infection by SARS or COVID-19
have shown specific TLs capable of recognizing peptides from SARS-CoV-2 polyprotein 1
a/b that could stop the viral cycle at an early stage, thus avoiding an expansive immune
effect [52]. Although the impact of these findings is unknown, studies derived from other
coronaviruses could indicate greater protection from a worse clinical outcome given by
less severity of the disease [53]. However, a rational vaccine approach could include:
(1) neutralization based on structural proteins, (2) early detection of replication-related
proteins, and (3) accessory proteins involved in the formation of the mature virion, as well
as protection against the residual damage in NP.

In LATAM, the outbreak has had negative sociocultural, economic, and political effects.
Without a doubt, everyone will be affected by further outbreaks, especially vulnerable
populations. The construction of a vaccine is therefore imperative for reducing health costs
and morbimortality associated with COVID-19 [5,11–13].

Using an immunoinformatics approach, we propose a multi-epitope peptide vaccine
model based on peptide binding properties extracted from conserved regions of SARS-
CoV-2 proteomes. Moreover, we provide considerations for binding these peptides with
HLA-I and II alleles most frequently found in LATAM (Figure 1).
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Figure 1. Vaccine development pipeline: the design stages of the multi-epitope vaccine proposal
are shown. Each stage is important for meeting the objective of identifying peptides capable of
generating an immune response, taking into account the most frequent alleles in Latin America. The
important servers and cutoff values used in the process are specified.

2. Materials and Methods
2.1. SARS-CoV-2 Proteome Recovery

The proteomes of 92 SARS-CoV-2 strains were downloaded from the Assembly
database available at the National Center for Biotechnology Information (NCBI) (https:
//www.ncbi.nlm.nih.gov/assembly, accessed on 27 April 2020). The metadata was ex-
tracted manually. Origin, isolation type, and sequencing date were identified. The interac-
tions between SARS-CoV-2 proteins and the other factors studied were illustrated using
the freely available web resource BioRender.com.

2.2. Identification of Amino Acid Sequences Conserved in SARS-CoV-2 Proteomes

To exclude the potential non-synonymous substitutions in the amino acid sequences
from the recovered SARS-CoV-2 proteomes, we performed multiple alignments using
the MAFFT server v7.0 (https://mafft.cbrc.jp/alignment/server/, accessed on 29 April
2020) [54], with the genome NC_04551 as a reference. This contained structural and
accessory proteins, including the transcript ORF1a/b. The resulting preserved sequences
formed non-redundant sequences which were used for further analysis.

https://www.ncbi.nlm.nih.gov/assembly
https://www.ncbi.nlm.nih.gov/assembly
https://mafft.cbrc.jp/alignment/server/
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2.3. Identification of the Most Frequent HLA-I and HLA-II Alleles in LATAM Population

The allele frequencies for each HLA-I (HLA-A, HLA- B and HLA-C) and HLA-II
(HLA-DRB) allele for the Central and South American regions were downloaded using a
specialist search tool (http://www.allelefrequencies.net/default.asp, accessed on 10 May
2020). The phenotype percentage (PF) was calculated using Equation (1). The most frequent
phenotypes were separated. PF values greater than the Me were grouped by locus and
country. Tableau v2020.2 [55] was used to create a geographic representation of the most
frequent alleles.

PF = 1 − (1 − AlleleFrequency)2 (1)

2.4. HLA-I and HLA-II Allele Selection

Only the alleles corresponding to the DRB loci were identified for HLA-II analysis due
to the higher precision of these predictions to identify individual training and cross-training
with other HLA-II molecules in algorithms based on artificial neural networks (such as
NetMHCII and NetMHCIIpan). In general, HLA-I algorithms had a greater number of
trained molecules and produced more accurate results than those of HLA-II. DRB is highly
diverse in nature: >3000 isolates have been identified in humans [56]. This variability seems
to be caused by the rapid and diverse evolutionary response of extracellular pathogens [57].

The HLA-DQ loci were not considered due to their association with autoimmunity
and the instability of the complexes with their own epitopes. Additionally, the HLA-DP loci
were not taken into account due to their less frequent associations with pathogens, which
primarily contribute to tolerance and the proper function of innate virus response [58].

For HLA-I, the individual alleles most frequently found in LATAM at loci A, B, and C
were used instead of identifying the promiscuous alleles more likely to identify SARS-CoV-
2 proteins because the latter approach may lead to reduced precision when searching for
an effective vaccine. The HLA-I group of genes is also isolated more frequently than those
in DRB, with the B locus being the most diverse.

2.5. Prediction of T Helper Lymphocytes (HTL) Epitope

To predict TLs and CD4+ epitopes, we used conserved sequences of SARS-CoV-2
structural proteins with at least 15 mers. The algorithm NetMHCII v2.3 was used. This
approach is based on training individual molecules from complex experiments, which
gives greater accuracy [59]. The molecules available to make an agglutination prediction
were as follows: DRB1_0101,DRB1_0103 DRB1_0301,DRB1_0401,DRB1_0402,DRB1_0403,
DRB1_0404, DRB1_0405, DRB1_0701, DRB1_0801, DRB1_0802, DRB1_0901, DRB1_1001,
DRB1_1101, DRB1_1201, DRB1_1301, DRB1_1302, DRB1_1501 and DRB1_1602. For each
allele, all predictions were grouped and then filtered by <2% rank to identify probable
binders that had a greater number of predictions with <IC50 affinities. The predictions that
remained after filtering were considered to be potential HLA-II epitopes capable of being
recognized by HTL CD4+.

2.6. Prediction of the CTL Epitope

To break through the SARS-CoV-2 viral assembly at an early stage of infection, we
used structural accessories, and NSPs to predict potential epitopes for CTLs. We predicted
peptides related to HLA molecules most common in LATAM, using the sequences of
proteomes with at least 9 mers.

The two algorithms with the best experimental correlations were used, NetMHCpan
and MHCflurry [60,61]. These approaches used cross-trained and individually trained
neural networks. These approaches are based on experimental data from the Immune
Epitope Database and Analysis Resource (IEBD) database, integration of eluted peptides,
and other ligands identified by mass spectrometry.

A portable version of NetMHCpan 4.0 was used following request to the “Health
Tech” area of the Technical University of Denmark (https://services.healthtech.d-tu.dk/

http://www.allelefrequencies.net/default.asp
https://services.healthtech.d-tu.dk/cgi-bin/sw_request
https://services.healthtech.d-tu.dk/cgi-bin/sw_request
https://services.healthtech.d-tu.dk/cgi-bin/sw_request
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cgi-bin/sw_request, accessed on 3 May 2020). MHCflurry v1.6.1 was downloaded from the
author’s github repository (https://github.com/openvax/mhcflurry/releases, accessed on
3 May 2020). The results were filtered using a strong binding prediction (<2% rank) based
on the author’s recommendations and using a methodology based on binding affinity. In
MHCflurry, the sequences were filtered with an affinity identity percentile <2 and cutoff
values for predicting bond strength of up to 100 nM.

The peptide sequences resulting from the algorithms were tested for their immuno-
genicity using an immunogenicity tool that uses the position of the residues in the HLA
molecule cleft and characteristics such as their basic nature and size to predict the in-
teraction with the CD8+ CTL receptor and the initiation of an immunogenic response.
Epitopes capable of generating an immune response by CTLs were grouped by their posi-
tive score. Those with positive values were considered candidates for further evaluation of
antigenicity, allergenicity, and toxicity [62].

2.7. Antigenicity Prediction

The intrinsic characteristics of antigens, such as the protein nature, structure, physico-
chemical and extrinsic properties, are known to be related to immune response and are
largely regulated by HLA, self-tolerance and host genetics [63]. The Vaxijen 2.0 server
(http://www.ddg-harmfac.net/vaxijen/VaxiJen/VaxiJen.html, accessed on 19 May 2020)
was used to identify non-redundant epitopes predicted to bind strongly to HLA-I and II
molecules with antigenic potential. This server uses an antigen reference database and
compares the physicochemical properties of the amino acids by cross-covariance. It con-
verts the sequences of non-redundant epitopes that result in strong agglutinations into
uniform vectors [64]. This process discriminates between probable and unlikely antigens.
Peptides with strong agglutinations and an antigenicity threshold of >0.4 were considered
to be potential immunogens.

2.8. Prediction of Allergenicity and Toxicity

To rule out probable allergic and toxic reactions caused by the interaction of peptides,
we used AllerTOP v. 2.0. (https://www.ddg-pharmfac.net/AllerTOP/, accessed on 19 May
2020) [65] and ToxinPred (http://crdd.osdd.net/raghava/toxinpred/, accessed on 19 May
2020) [66]. AllerTOP employs a similar approach to Vaxijen 2.0: it uses an auto-covariance
transformation to normalize the alignment of peptides with immunogenic potential and
includes an automatic and manual pull of cured allergenic and non-allergenic proteins.
Probable allergens are determined by several automatic machine learning techniques.
These methods have a sensitivity and specificity of 0.87 and 0.90, respectively, which
is achieved using descriptors of the allergy-related characteristics of individual amino
acids [61]. ToxinPred uses a machine vector support technique to discriminate, via amino
acid composition analysis and a quantitative matrix, the peptides with immunogenic
potential and toxic probability. The position and frequency were analyzed along with
other characteristics of the amino acids that are most abundant in toxic peptides to obtain
accuracy close to 97%. Non-toxic and non-allergenic peptides with immunogenic potential
were considered to be potential SARS-CoV-2 vaccine targets.

2.9. Allelic Promiscuity and Identification of Experimental Epitopes

Matrices containing potential vaccine epitopes of HLA-I and HLA-II molecules were
created to identify the promiscuity of each of the predictions with vaccine potential. They
were characterized as follows: peptides conserved in proteomes of 9 or 15 mer, immuno-
genic characteristics, non-toxic and non-allergenic, and a strong affinity to the most com-
mon alleles found in LATAM. These matrices were grouped by allelic HLA class to identify
possible non-redundant combinations capable of covering all the HLA molecules tested.
Peptides had equal predictions, the highest score from Vaxijen was used to decide the best
peptide candidate. The groups with the lowest number of peptides were considered to be
optimal for experimental validation as part of the rational multi-epitope construct.

https://services.healthtech.d-tu.dk/cgi-bin/sw_request
https://services.healthtech.d-tu.dk/cgi-bin/sw_request
https://github.com/openvax/mhcflurry/releases
http://www.ddg-harmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/AllerTOP/
http://crdd.osdd.net/raghava/toxinpred/
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Given that experimentally validated peptides in closely related viruses such as SARS-
CoV could also be immunogenic targets, the peptides comprising the multi-epitope con-
struct were subject to a 90% BLAST search in the Immune Epitope Database Analysis
Resource (IEDB; https://www.iedb.org/, accessed on 3 November 2020).

2.10. Flexible Peptide-Protein Docking

We estimated the conformation of complexes between peptides with vaccine po-
tential and the HLA molecules found most frequently in LATAM. These must interact
as a flexible and stable anchor that allows interaction with CD4+ and CD8+ TLs recep-
tors [67]. The CABS coupling algorithm was used to perform global molecular coupling
between proteins and peptides. This allows full flexibility of the peptide and receptor back-
bone [68]. A standalone python package of CABS v 0.9.16 was downloaded from a reposi-
tory (https://bitbucket.org/lcbio/cabsdock/downloads/, accessed on 4 July 2020).

The HLA molecules with experimental resolution found in RCSB PDB were used as
the receptors. We identified the corresponding chains, according to the HLA class (α and
β-2 globulin for HLA-I; α and β for HLA-II) while predicting the secondary structure of
the peptides by PSIPRED through the RPBS web portal (https://bioserv.rpbs.univ-paris-
diderot.fr/index.html, accessed on 4 July 2020). The default parameters were used for
all other parameters. The energy calculations of the complexes were calculated using the
Prodigy server (https://bianca.science.uu.nl/prodigy/, accessed on 4 July 2020) [69].

2.11. Prediction of the BL Epitope

To identify potential continuous epitopes capable of stimulating a BL response, we
used the artificial neural network-based ABCpred tool [70]. The cutoff threshold was
set to 0.90, which allowed for a greater specificity to be selected. To predict potential
discontinuous BL epitopes, Discotope v2.0 [71] (server version) (http://www.cbs.dtu.
dk/services/DiscoTope/, accessed on 20 July 2020) was used. The cutoff threshold and
specificity were set to −2.5 and 80%, respectively.

This prediction included both SP and NP, which were extracted from the RCSB PDB
with the following identifiers: 6lzg, 6m0j, 6vw1, 6w41, 6yla, 6yor, 6csb, 6vxx, 6vyb, 6m3m,
6vyo and 6wkp. Predictions resulting from the algorithms were considered to be potential
epitopes. The peptide with the highest ABCpred score was also chosen with a partial
or total presence in the experimental sequences identified as SARS-CoV immunological
targets in IEBD with a 90% BLAST alignment. Also, it was located in potentially immuno-
genic regions, either because they were shown in Discotope-provided areas from various
experimental structures or because they were contained in a specific protein domain. The
antigenic peptides with values >0.4 in Vaxijen that were non-toxic and non-allergenic
according to AlgPred [72] (http://crdd.osdd.net/raghava/algpred/submission.html, ac-
cessed on 25 July 2020) were chosen as potential BL epitopes and were added to the
multi-epitope construct.

2.12. Recuperation of Validated Epitopes and Identification of Post-Transcriptional Modifications

To analyze the possible post-transcriptional modifications of potential promiscuous
vaccine peptides (PPVPs), we used the NetNGlyc 1.0 server [73] (http://www.cbs.dtu.dk/
services/NetNGlyc/, accessed on 3 November 2020) with the Wuhan-Hu-1 strain being
used as a reference for the accessory proteins and NP. Regarding SP, the structure PDB:6VSB
was used for non-structural proteins, which are replicated in the cytoplasm but have some
luminal domains that are prone to N-glycosylation. UNIPROT (https://www.uniprot.org,
accessed on 3 November 2020) was used to pinpoint their cellular location.

To identify potential immunogenic regions as well as recent validations of the PPVPs,
we downloaded the epitope database available on 3 November 2020. It consisted of 822
validated epitopes for TLs and 330 for BLs from SARS-CoV-2 assays. Additionally, we
used supplementary assays as targets for the HLA molecule that comes from immunitrack
(https://www.immunitrack.com/free-coronavirus-report-for-download/, accessed on

https://www.iedb.org/
https://bitbucket.org/lcbio/cabsdock/downloads/
https://bioserv.rpbs.univ-paris-diderot.fr/index.html
https://bioserv.rpbs.univ-paris-diderot.fr/index.html
https://bianca.science.uu.nl/prodigy/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/DiscoTope/
http://crdd.osdd.net/raghava/algpred/submission.html
http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/
https: //www.uniprot. org
https://www.immunitrack.com/free-coronavirus-report-for-download/
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3 November 2020), which consists of a library of peptides tested as binders of various
HLA-I and II alleles, taking as a threshold reference stability greater than 30, according to
authors’ recommendations.

2.13. Multi-Epitope Vaccine Construct Design

To create a multi-epitope vaccine, potential HTL, CTL, and BL epitopes were linked
using GPGPG, AAG and KK linkers, respectively. For a better immunogenic response, four
adjuvants were added using the EAAAK linker, β-defensin 3, Tetanus toxin peptide and
a Diphtheria toxin peptide linked by a cathepsin cleavage site (TpD), and a universal T
helper epitope (PADRE). A peptide domain (CTGKSC) targeted by M cells was also added
to the C terminal, promoting transcytosis between enterocytes and antigenic uptake at the
intestinal level [74].

2.14. Analysis of Antigenicity and Allergenicity of the Vaccine Construct

To define whether the final design of the multi-epitope proposal was safe and viable,
its antigenic capacity was considered by predicting antigenicity with Vaxijen values with a
threshold of >0.4. Its toxicity was predicted using ToxinPred and its allergenicity using
Allergen FP [75] (http://ddg-pharmfac.net/AllergenFP/, accessed on 1 December 2020).

2.15. Analysis of the Physicochemical Properties of the Multi-Epitope Vaccine Construct

To analyze the construct’s physicochemical properties, the Expasy server and the
ProtParam tool [76] were used to determine optimal recognition by the immune system.
Negative values for the grand average of hydropathy (GRAVY) [77] and stability are espe-
cially important for adequate antigen presentation, as well as determining solubility, which
was performed using SolPro. Other parameters related to production and expression were
also considered, including the aliphatic index (related to the construct thermostability).

2.16. Vaccine Structure Prediction and Validation

The secondary structure of the multi-epitope design was predicted using SOPMA [78]
and PSI-PRED [79]. The tertiary structure was predicted using the Robetta server based
on homology [80]. An evaluation of the structure quality was carried out using the
Ramachandran diagram in the PDBsum [81] and by the ERRAT server [82]. Refinement
was performed using 3D Refine [83] and then GalaxyRefine [84].

2.17. Molecular Docking of the Multi-Epitope Construct and TLR-4

The TLR-4 receptor was selected as the ideal immunological target of the multi-
epitope construct since it is capable of inducing INF production and expressing itself in
the cell membrane of dendritic cells. We studied the resulting interactions in the stable
formation of the TLR-4/ Myeloid Differentiation Factor 2 (MD-2) complex and the multi-
epitope construct using molecular docking, performed using the Cluspro server 2.0 [85]
(https://cluspro.bu.edu/login.php, accessed on 10 December 2020). The TLR-4/MD-2
hetero-tetramer was used as a receptor (obtained from PDB RCSB database; ID: 3FXI),
and the refined multi-epitope construct was used as a ligand. The residues at the binding
interface of the resulting complex were analyzed by PDBsum and plotted by UCSF Chimera
v1.14 [86].

2.18. Molecular Dynamics Simulation of the Multi-Epitope Construct and TLR-4 Complex

Coordinates of the best model of the multi-epitope construct and TLR-4 were used
to perform molecular dynamics analysis. Minimization and molecular dynamic protocols
were performed with AMBER 16 [87]. ff14SB force field parameters were used for the
amino acid residues [88]. The complex was subjected to unrestricted molecular dynamic
simulations for all atoms in an explicit solvent using the PMEMD GPU version algorithm
in Amber16 [87].

http://ddg-pharmfac.net/AllergenFP/
https://cluspro.bu.edu/login.php
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The Leap module integrated within Amber16 was used to add missing hydrogen
atoms and add Cl− ions for neutralization. The systems were immersed in an orthorhombic
box using the TIP3P [89] water model. The long-range electrostatic interactions were
calculated using the particle mesh Ewald method [90], with a direct space and a vdW
cutoff of 12 Å//. An initial minimization was applied to the solute using a potential
of 500 kcal mol−1 Å//2 for 10,000 steps using the steepest descent algorithm, followed
by 10,000 steps with the conjugate gradient method. Subsequently, 10,000 unrestricted
minimization steps were simulated using a conjugate gradient algorithm.

The heating protocol was carried out with a gradual increase in temperature from
0 to 310.15 K using a harmonic restriction of 5 kcal mol−1 Å//2 applied to the solute. A
Langevine thermostat with a collision frequency of 1 ps−1 was used with the canonical
assembly (NVT). The complex was equilibrated at 310.15 K in an NPT assembly for 10 ns
without restriction using the Berendsen barostat to maintain the pressure at 1 bar. The
SHAKE [91] algorithm was used to restrict the bonds of all hydrogen atoms. A 2 fs time-step
was used with the precision model SPFP [92] in the molecular dynamic simulation.

Finally, 68 ns of production was simulated in an NPT assembly with a target pressure
of 1 bar and a pressure coupling constant of 2 ps. Production trajectories were analyzed
each 2 ps along the whole simulation using CPPTRAJ and PTRAJ [93].

2.19. Codon Optimization and In Silico Cloning

To propose a realistic scenario for peptide vaccine cloning, in silico analyses were
conducted to identify the best options for the expression and isolation of the multi-epitope
construct. The Escherichia coli (E. coli) K 12 expression system was selected since it is
inexpensive to grow, relatively easy to manipulate genetically, and generally produces
high levels of recombinant proteins. Also, it has an optimized lineage for overexpression
of recombinant proteins [94]. To identify the best cloning strategy, the complete protein
sequence of the multi-epitope construct was first converted into cDNA using Backtranseq
reverse translation. The resulting cDNA sequence was further optimized by adapting the
most frequently used codons of E. coli K 12 to enhance protein expression using the JCAT
server [95]. To achieve adequate protein purification, the plasmid vector pET-28a(+) was
chosen because of the possibility of labelling polyhistidine towards the N or C terminals
of the multi-epitope construct. Therefore, a complete protein was obtained by avoiding
possible truncated proteins.

Once the appropriate scheme for cloning was identified, SnapGene v5.1.2 was used to
provide enhanced flexibility for displaying and annotating sequences. For this, the HindIII
and BamHI restriction sites were used. A cut was made that enabled us to retake a closed
structure of the plasmid vector with the appropriate position of the optimized genetic
sequence of the construct.

2.20. Immune Simulation

The immunogenic behavior of the multi-epitope construct was simulated using the
C-IMMSIM server (https://kraken.iac.rm.cnr.it/C-IMMSIM/, accessed on 19 December
2020). This agent-based computer model handles a diverse number of cells representing
innate and acquired immunity. By following a set of rules obtained at an experimental
level, interactions with the vaccine construct are capable of simulating behaviors that may
suggest the probable generation of immune memory. This is achieved by combining the
mesoscopic scale of the immune system using three compartments: the bone marrow,
thymus, and lymphatic organs. In addition, it uses deep learning tools and molecular
level techniques to predict the interaction of the construct and its affinity from the matrices
of some HLA molecules. The algorithm can also identify probable linear BLs epitopes
from physicochemical parameters. The minimum inter-dose time for current vaccines is no
more than 4 weeks. For this reason, simulation values were adjusted with three injections
separated by 1, 84, and 168 time-steps, resulting in <4 weeks between doses. The simulation
was completed in up to 200 time-steps, with other predetermined values.

https://kraken.iac.rm.cnr.it/C-IMMSIM/
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To test the response capacity from the interaction between the multi-epitope construc-
tion and the immune system, a viral challenge was performed one year after the start of
the extended vaccine scheme and was simulated beyond day 460.

3. Results
3.1. Recovery of SARS-CoV-2 Proteomes

Proteomes from 92 isolates of SARS-CoV-2 were recovered in FASTA format using
the GenBank database as a reference. Metadata related to the collection date, city, host,
and source of isolation were also downloaded. Isolates were collected by nasopharyngeal
(n = 31) and oropharyngeal (n = 12) swabs, and to a lesser extent by bronchoalveolar lavage
(n = 11). Sequencing was performed from December 2019 (the Wuhan-Hu-1 strain) to
11 March 2020 (the SARS-CoV-2/human/USA/PC00101P/2020 isolate). Most sequences
came from the United States of America (n = 51) and China (n = 27). Only one isolate came
from LATAM (Brazil, February 2020). The entire metadata set of proteomes used, as well
as access identification, is shown in (Table S1).

3.2. A Vaccine for SARS-CoV-2 Must Take into Account Non-Structural Proteins

“The spike protein acts like an Early Trojan horse.”
SP plays a fundamental role in SARS-CoV-2 infection because it mediates the virus

entry into host cells through its S1 domain, which binds to the ACE2 receptor making the
subsequent cleavage of the S2 domain.

The increased glycosylation of SP allows it to evade the adaptive immune response
and protect epitopes from recognition and antibody neutralization. According to a recent
study, antibodies derived from exposure to SP could be related to the clinical outcome by
targeting surfactant proteins related to alveolar surfactant [96]. Through viral proteins
and RNA receptors, the immune response is the first line of defense against SARS-CoV-2
infection, producing cytokines and IFN-1 [97]. Therefore promoting viral clearance by
activating a systemic antiviral state.

As with SARS-CoV, SARS-CoV-2 has proteins encoded by the coronavirus genome
that are capable of interfering with the innate immune response subsequently an early
phase of infection. This affects various signaling pathways important in maintaining
immunity [98] (Figure S3). Opportunely detecting and stopping the pathway interferences
could be a more complete approach to vaccination as opposed to only neutralizing RBD
or other SP domains. SARS-CoV-2 evidently, has shown that early translated proteins
have functions beyond viral replication. They are also capable of deeply and negatively
modulating pathways related to IFN, including its synthesis [99].

For example, NSP3 possesses papain-like protease (PLP) domains. Making it is one of
the two proteases that participate in the cleavage of NSPs from polyprotein 1 a/b. PLP in
SARS-CoV-2 has a more evident dual de-ISGylation capacity than deubiquitination [100].
This impacts pathways up-regulated by IFN, including viral peptide presentation and
processing [101].

Although NSP3 is barely evidenced when compared to structural proteins in SARS-
CoV and SARS-CoV-2 [102], it is in cohesion with accessory proteins, participating in the
assembly of the mature virion [102].

NSP3, and to a lesser extent NSP2 and NSP12, have been identified as the NSPs
with the most translation in cell cultures. Other NSPs are associated with the altered
transcription and translation of proteins in the host, including IFN [99]. This is achieved by
disrupting messenger RNA (NSP16) splicing that selectively blocks translation in ribosomes.
This only allows the leading sequence of the viral subgenomic RNA to continue (NSP1)
and interrupts the passage of proteins to the membrane. This includes secretory proteins
such as IFN, cytokines, and HLA by affecting the SRP complex (NSP8-NSP9, NSP8, NSP9).
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Therefore, identifying the mechanisms of action, characteristics of structural NSPs, and
accessory transcripts within the process of recognition, entrance, invasion, and replication,
is important for finding potential vaccine targets. When given a set of proteins and knowing
their mechanism of action inside the cell, identifying the NSPs may be an early approach to
avoiding extensive immune involvement. NSPs produced at an early stage and necessary
for replication should be considered. Structural protein production is also important since
it is essential in the SARS-CoV-2 life cycle.

Figure 2. Antigenic presentation from the proposed vaccine: The assembly of peptides with vaccine
potential are recognised by cell membrane receptors capable of recognising patterns associated with
pathogens, such as TLR2 and 4 from dendritic cells. After recognition, the construct is phagocytized by
the cell together with TLR, allowing its interaction with MyD88 and the maturation of the phagosome.
From the phagosome, the peptide can take two routes: the first route is towards the proteasome,
where the peptide is degraded, internalised in the ER and assembled with HLA-I molecules; the
second route involves the internalization of the peptide in the late endosome, where it is assembled
with HLA-II molecules and subsequently presented on the cell membrane of the LT [103–105].
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The frequency and alignment of 92 proteomes were considered to identify conserved
regions. This was based on the evidence of the effect of neutralizing antibodies towards
structural proteins and the activation/recognition of TL towards structural, non-structural,
and accessory proteins from SARS and COVID-19 convalescent patients. Our findings
are shown in (Table S2). The conserved sequence blocks were used in their entirety for
the prediction of conserved epitopes. These characteristics are included in our vaccine
proposal summarized in (Figure 2).

3.3. Most Frequently Identified HLA-I and HLA-II Alleles in LATAM

HLA systems in humans are located in the most polymorphic region of the genome,
related to the continuous selection when interacting with extracellular and intracellular
pathogens. Furthermore, this diversity corresponds to the rapid adaptation to environ-
mental change, and actually, this has become a hallmark of the first migrations of various
human populations [106].

When identifying vaccine targets for SARS-CoV-2 and other emerging pathogens
of probable zoonotic origin, it may be possible to generate an immunological response
memory. While this would only work in certain populations, given that it is restricted to
HLA molecules, it could occur because of the diverse affinities that HLA-I and II molecules
have for different sets of peptides that are processed from SARS-CoV-2.

Identifying people and populations with greater susceptibility to COVID-19 could
help construct effective healthcare focused on patients who are more susceptible and have
an increased risk of mortality. Theoretically, HLA capable of recognizing a greater range
of SARS-CoV-2 peptides has been found through computational algorithms, which have
been validated in clinical settings, and are associated with better results, especially in
heterozygous individuals [107].

Although we lack a precise medicine model that identifies HLA and peptide bind-
ing capacity from the SARS-CoV-2 proteome, global initiatives like HLA COVID-19 has
been launched to find relevant translational strategies. Additionally, other authors have
proposed routine HLA typing in patients with COVID-19 [108].

We identified 168 of the most frequent HLA-I alleles in 17 countries. The HLA-A*02:01
allele was found at an above-average frequency in Argentina, Brazil, Chile, Colombia,
Cuba, Ecuador, Nicaragua, Peru, and Venezuela. The alleles A*24:02 and B*40:02 were
identified above the 80th percentile; they rank first in frequency in most countries. Some
countries had missing data and small sample sizes, e.g., Guatemala (where only the B*53:01
allele was found above the mean) and Trinidad and Tobago (where the only available allele,
C*16:02, was used for complementary analyses).

As shown in (Table S3), the frequencies found between the HLA-I loci were A (n = 126),
B (n = 264), and C (n = 64); those alleles above the mean frequencies were A (n = 48), B
(n = 91) and C (n = 27).

For HLA-II, none of the countries shared an allele higher than the Median (Me) per
country. DRB1*03:01 allele was found with greater frequency in at least 14 countries, except
for 3: Mexico, Venezuela, and Paraguay. The HLA-II alleles above the 90th percentile were
correlated with most of the allelic groups recovered, except for DRB1*10 and DRB1*12
allelic groups, which were not represented by alleles. DRB1 * 14: 02 was the most frequent
allele and was isolated mainly from the Colombian, Brazil, and Argentina populations.
The allelic groups and the most frequent alleles found in 18 countries are attached in
(Table S4). All DRB1 alleles listed by NetMHC 3.2, spanning 18 countries, had above
average frequencies. (Figures S4 and S5) shows the distribution of the main alleles and
allelic groups by country according to HLA-I and HLA-II.
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3.4. Potential Epitopes of TLs, CD4+, CD8+, and BLs are Contained in the Conserved Sequences of
92 SARS-CoV-2 Proteomes
3.4.1. HLA-II

To identify and select the potential HLA-II epitopes, we used 19 HLA-II molecules
from the available DRB gene alleles to perform an agglutination prediction using NetMHCII
2.3. We excluded the conserved sequences that were <15 mers from SP, NP, and MG proteins.
In total, 199 peptides with strong binding capacities and antigens were identified. The
proteins with the highest number of agglutinations was SP (n = 114), followed by MG
(n = 62) and NP (n = 23). The origin of predictions from the conserved sequence and the
199 antigenic peptides are included in (Table S5).

Table S6 summarizes the conserved sequences present in the SP binding domain of
interest. DRB1*01:01, DRB1*04:05, DRB1*10:01, and DRB1*16:02 alleles were found to be
promiscuous in this domain (predicted to be strong binders). The allele DRB1*16:02 is
found more frequently in LATAM; therefore, it may be related to clinical outcomes and
deserves to be studied in more detail.

The 15 predicted mers, with antigenic and strong binding characteristics, were evalu-
ated for allergenic and toxic traits using AllerTOP and ToxinPred, respectively.

3.4.2. HLA-I

To achieve a more precise identification of strong binders from the 167 most frequent
HLA-I molecules in LATAM, we used two algorithms based on artificial neural networks
identified as the most accurate by IEBD (as of 15 March 2019).

A set of 944 peptides were classified as strong binders and antigens. These were the
result of a consensus from the two algorithms. The proteins with the highest number of
predictions in order of frequency were as follows: ORF1 transcript (n = 573), SP (n = 163),
MG (n = 51), ORF-3a transcript (n = 43), and NP (n = 34). The contribution made by each
conserved sequence to these proteins and the binders are included in (Table S7).

A prediction was not possible for the HLA-B*51:10 allele because it was unavailable
in the list. In addition to the antigenicity and strong binding characteristics of these groups,
we also considered those with vaccine and immunogenic potential, non-allergenic traits,
and non-toxic characteristics on our list. Adaptive immunity protection is now known to
change the natural course of the disease by neutralizing SARS-CoV-2 [109].

3.4.3. BLs

The most recent experimental structures of the SP and NP proteins found in RCSB PDB
(https://www.rcsb.org/, accessed on 14 July 2020) with the following IDs were used: 6lzg,
6m0j, 6vw1, 6w41, 6yla, 6yor, 6csb, 6vxx, 6vyb, 6m3m, 6vyo, and 6wkp. These structures
have special characteristics, such as binding to ACE2 receptor, an antibody extracted from
a convalescent SARS patient named CR3022 [110], and conformational pre-fusion in the
open and closed state. Analyses were performed using the Discotope 2.0 server adjusted to
80% specificity.

Using the specific SP or NP chains, we implemented the prediction algorithm on
all proteins based on their available 3D structure. The predictions, characteristics of the
complexes, intervals, and frequency with which probable epitopes were identified in each
structure are shown in (Table S8). For SP, we have indicated three possible continuous
epitopes and one discontinuous region that may be important due to the extracellular
access. The areas between residues 443-450, 487-494, 496-506, and discontinuous 454-
459-460-469-471 seem to be more frequently related to probable interactions with BL. A
principal feature of these predictions is the absence of glycosylation in the residues.

For NP, we identified five regions of possible continuous epitopes and two discontinu-
ous ones for the RNA binding domain. On average, the intervals are longer than SP. The
regions comprise the intervals in the residues: 59–64, 91–106, 120–130, 136–148, 150–156
and discontinuous between different intervals in the residues 66–82, 115–130, 163–171. The

https://www.rcsb.org/
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NP and SP with linear and discontinuous epitopes zones described above are illustrated in
(Figure S6).

The linear epitope intervals of SP and NP described in the previous structural approach
were taken into account, to identify longer sequences (>15 mers), which would be capable of
evoking a response mediated by the BL receptor. For this approach, we used the ABCpred
server and adjusted specificity to 90%.

Other filters were used to identify two vaccine peptide candidates for BLs, within of
SP and NP proteins from SARS-CoV-2, that are presented in (Table S9). The filters included
predicting epitopes in the functional domains using RDB for SP or the RNA binding site
for NP, antigenicity, non-toxicity, non-allergenicity, and the identification of conserved
sequences in SARS-CoV with experimental immunological evidence available at IEBD.
After the filters were applied, the best options were selected to choose the linear epitopes
candidates for BL to be incorporated into the multi-epitope construction. These sequences
are summarized in (Table S10).

3.5. SARS-CoV-2 MG and SP Contain Conserved Sequences Capable of Interacting with a Large
Number of HLA-II Molecules

For HLA-II molecules, a Me of 8 agglutinations was found in the 18 molecules ana-
lyzed. The five main alleles that were found to be more capable of recognizing peptides in
at least 15 mers were: DRB1*04: 02 (n = 50), DRB1*09: 01 (n = 35), DRB1*08: 01-DRB1*16: 02
(n = 33), DRB1*04: 03 (n = 30), which only appear in their entirety in Chile and Brazil. The
DRB1*16: 02 and DRB1*04: 03 alleles were more frequent in the Chile, Brazil, and Colombia
populations respectively, which could be related to a better clinical outcome. Although
Argentina had these alleles, the frequency in its population is low compared to DRB1*08:
02, which resulted in a lower ability to recognize peptides (n = 13). It should be noted
that this allele was found more frequently in other countries such as Brazil, Colombia,
and Peru, which could be related to an unfavorable clinical outcome. The alleles with the
highest promiscuity in HLA-II molecules were SFRLFARTRSMWSFN (n = 7), a peptide
that comes from the MG protein of SARS-CoV-2 and is partially conserved in SARS-CoV.
QSIIAYTMSLGAENS (n = 4) and VLSFELLHAPATVCG (n = 4) from the SARS-CoV 2 SP
protein followed. The agglutinations between the 199 antigenic peptides from the SP, NP,
and MG proteins against HLA-II are shown in (Table S5).

3.6. Most Frequent HLA-1 in LATAM and Recognition of Peptides of Conserved
SARS-CoV-2 Regions

The peptide with the highest promiscuity in HLA-I molecules was MPYFFTLLL
(n = 66), which was found in the ORF1 transcript obtained from the SARS-CoV-2 proteome.
Other peptides included FAMQMAYRF (n = 58), found in SP, and FLLNKEMYL (n = 42),
which was located in the ORF1 transcript.

The alleles with the highest promiscuity for all the conserved proteins in SARS-CoV-2
proteomes (restricted to 9 mers) were preferentially found in the C locus, with a Me of
82 agglutinations and 18.2 σ. The molecules were HLA-C*08:03 (n = 98) with the highest
agglutination, and HLA-C*04:01 (n = 42) with the lowest agglutination. Locus A follows
with a Me of 47 agglutinations and 10 σ. With the molecules HLA-A*34:02, HLA-A*68:02
(n = 62), and HLA-A*36:01 (n = 22) with the highest and lowest agglutination, respectively.

Finally, the B locus with an Me of 40 agglutinations and 15.5 σ. With the molecules
HLA-B*35:17, HLA-B*35:20, HLA-B*35:30 (n = 73), and HLA-B*27:05 (n = 8) with the
highest agglutination and lowest agglutination, respectively.

In (Table S7), the total number of antigenic alleles and peptides with a strong binding
affinity for HLA-I peptides obtained from the entire SARS proteome-CoV-2 are shown. For
a more in-depth analysis of the HLA-I predictions, the alleles are classified from highest to
lowest according to their theoretical ability to recognize HLA-I peptides. The proportions
refer to allele frequency and locus found in LATAM countries (Tables S11 and S12).
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For Locus A, the BRA-CHL-COL-CRI-VEN countries have populations that carry
HLA-A alleles with a greater ability to recognize HLA-I peptides, while ARG-CUB-ECU-
MTQ-NIC-PER has the lower capacity (Table S12-Locus A). For Locus B, we found that
no country had a greater frequency for HLA-B alleles. Rather, LATAM showed a greater
ability to recognize HLA-I peptides. The ARG-BRA-CHL-COL-CRI-CUB-NIC-PER coun-
tries presented a lower capacity to recognize HLA-B alleles, especially in VEN and CRI.
(Table S12-Locus B).

Regarding Locus C, we had the least amount of data on HLA per country. Neverthe-
less, it showed a greater consistency, which resulted in a greater ability to recognize HLA-I
peptides in BRA-COL-CRI-NIC-PER-TTO. In the case of CHL, HLA-C alleles had a lower
capacity to recognize HLA-I peptides. (Table S12-Locus C).

There could be more susceptibility to mortality and morbidity due to SARS-CoV-2,
especially in countries that share more than one locus with less capacity to recognize HLA-I
peptides. Such is this case with ARG-CHL-CUB-NIC. The alleles most frequently found in
LATAM included HLA-A*02:01, HLA-A*24:02 and, HLA-B*40:02. Based on their capacity
to recognize peptides derived from SARS-CoV-2, these alleles were ranked 81st, 119th and,
154th, respectively.

3.7. Vaccine Candidates, Post-Translational Modifications, and Experimentally Validated Peptides

Matrices with vaccine potential were constructed to identify peptides associated with
the most frequent HLA-I and HLA-II molecules in LATAM. The least number of peptides
found to cover the most frequent LATAM alleles is summarized in Table 1.

Table 1. Potential promiscuous vaccine peptides for the most frequent HLA-I and HLA-II alleles in LATAM. Position: Refers to the first
and last amino acid residue in the range occupied by the peptide in the source protein. Source protein: Refers to the proteins identified
from the proteomes obtained from NCBI. Vaxijen: Antigenicity described by a threshold greater than 0.4. AllerTOP: Prediction of
whether the peptide is a probable allergen. HLA: Experimental database referenced in methodology as Immunitrack, in which the
stable coupling of the peptide with at least one HLA molecule is evidenced. IEBD: Refers to the identification of peptides at the base
of IEBD specifying if the peptide is found as a ligand of HLA, BL, or TL or if it is contained in an immunogenic region validated
experimentally by any assay. * Peptide is conserved in SARS-CoV-2 and SARS-CoV.

Number of Peptide Peptide Positions Protein of Origin Vaxijen AllerTOP HLA IEBD

1 AAAYYVGYLQPRTFL 262–276 SP 0.48 Non-Allergen n/a Validated region
2 DDSEPVLKGVKLHYT * 1259–1273 SP 1.18 Non-Allergen n/a Validated peptide—Assay in BLs
3 LVIGAVILRGHLRIA 138–152 MG 0.88 Non-Allergen n/a n/a
4 QSIIAYTMSLGAENS 690–704 SP 0.57 Non-Allergen n/a Validated region
5 QSLLIVNNATNVVIK 115–129 SP 0.43 Non-Allergen n/a Validated region
6 SFRLFARTRSMWSFN 99–113 MG 0.80 Non-Allergen n/a n/a
7 VLSFELLHAPATVCG 512–526 SP 0.48 Non-Allergen n/a Validated region
8 CISTKHFYW 3147–3155 ORF1-NSP4 1.90 Non-Allergen n/a n/a
9 FAMQMAYRF 898–906 SP 1.03 Non-Allergen n/a Validated region

10 FLLNKEMYL * 3183–3191 ORF1-NSP4 0.44 Non-Allergen HLA-A*02:01 Validated peptide—Assay in TLs.
11 GYKSVNITF 835–843 ORF1-NSP3 2.37 Non-Allergen n/a n/a
12 ITLCFTLKR 110–118 ORF7a 2.02 Non-Allergen n/a n/a
13 KRAKVTSAM 4022–4030 ORF1-NSP8 0.76 Non-Allergen n/a n/a
14 KVKYLYFIK * 4225–4233 ORF1-NSP9 1.06 Non-Allergen HLA-A*11:01 Validated peptide—Assay in TLs.
15 LEMELTPVV 1012–1020 ORF1-NSP3 1.97 Non-Allergen n/a n/a
16 MPYFFTLLL 2169–2177 ORF1-NSP3 0.49 Non-Allergen n/a n/a
17 VMYASAVVL 3684–3692 ORF1-NSP6 0.48 Non-Allergen n/a n/a
18 WTAGAAAYY 258–266 SP 0.63 Non-Allergen HLA-A*01:01 Validated region

These PPVPs share characteristics for the construction of multi-epitopes, including
being antigenic, non-toxic and, non-allergenic. The first 7 peptides come from structural
proteins that are directed towards HLA-II. The remaining 11 come from NSP, except for
P9 and P12 that come from SP and ORF7a, respectively, and are directed towards HLA-I.
From the SARS-CoV-2 dataset available in IEBD, the “Experimental evidence available”
column highlights P10 as recently validated in three patients convalescing from COVID-19
(https://www.iedb.org/assay/12156798, accessed on 3 November 2020). Furthermore,
peptides P1, P4, P5, P7, and P9 were harboured in linear epitopes of TLs validated experi-
mentally. P10, P14, and P18 have recently been validated in other HLA restricted studies

https://www.iedb.org/assay/12156798
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(https://www.immunitrack.com/free-coronavirus-report-for-download/, accessed on 3
November 2020), Since SARS-CoV-2 can share conserved regions with SARS-CoV and
takes longer to study, we investigated whether these PPVPs have been experimentally
tested on TLs, HLA, or BLs ligands. With a Blast of 90% in IEBD, peptides P2, P10, and
P14 are also conserved in SARS-CoV and have experimental validation. P2 was both HLA
and BLs validated. recognized linear epitopes. So far, no specific immunogenic regions
or experimental assays have been identified that validate T, B, or HLA cell ligands in
the experimental information recovered. On the other hand, P3, P6, and P12 were only
partially found in immunogenic regions in experimental SARS-CoV-2 assays. Since they
have immunogenic characteristics indicated in the other experimentally validated peptides,
these may be PPVPs that could delimit broader regions. Regarding the post-translational
modifications, only P5 was found with an N-glycosylation evidenced experimentally in
the PDB 6VSB crystallized structure. However, this epitope was completely harboured
in a linear epitope in IEBD (test code 8160608), which is capable of being recognized by
TLs from convalescent COVID-19 patients. Taking into account that P5 is found in an
experimentally validated immunogenic region, it is tentative to think that it is capable of
being presented by HLA. As a result of this, it was entered into the construct. In the SP of
SARS-CoV-2, we did not identify glycan shields with densities that limit probable antibody
recognition [111]. However, its interaction with innate immunity remains unknown. With
these modifications, HLA may be able to recognize and present the peptides derived from
antigenic processes when they are captured by dendritic cells [112]. These have been most
frequently studied in cancer, evidenced in T and BLs primers, which are in some cases
even more immunogenic [113–115]. Because they are naturally recognized as epitopes,
their in-vitro recognition can be included in complementary studies. It quickly identifies
the immunogenic regions susceptible to being glycosylated and therefore optimizes the
potential vaccine formulations. Finally, in (Tables S5 and S7), the HLA-I and II alleles are
shown to be strong binders of the PPVPs.

3.8. Flexible Peptide-Protein Coupling Signals Favourable Energy and Anchorage Residues to
HLA Molecules

To estimate the conformation of the complexes, we used the following allele experi-
mental structures as receptors: DRB1_0401, DRB1_1101, HLA-B*35:01 and HLA-C*07:02
(IDs in RCSB-PDB: 5NI9, 6CPN, 1XH3 and 5VGE, respectively). As peptide ligands, we
used SFRLFARTRSMWSFN and FAMQMAYRF.

The best models were those contained in clusters with the highest density, according
to the average root-mean-square deviation (RMSD) obtained from each simulation and
their adequate position in the HLA cleft. The results are shown in Figure 3.

A map of the contacts between peptides and HLA-I molecules is shown with residues
found to more frequently interact in the clusters (functioning as an anchor and generally
located in the first and last residues). They also display interactions with β-2 globulin that
stabilize the α1 and α2 chains, where the binding groove is formed, and facilitate peptide
bonding [67].

In HLA-II, the regions that most frequently interact as anchors are FARTRSMWS for
DRB1_0401 and FRLFARTRS for DRB1_1101 (although they differ from the core sequence
of the prediction). The residues 4, 5 and 7 most frequently interact, giving a greater number
of anchors than those in HLA-I; this results in flanking regions with small deviations in the
peptide backbone and differing HLA cleft accommodation.

https://www.immunitrack.com/free-coronavirus-report-for-download/
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Figure 3. Estimation of flexible molecular protein-peptide coupling: In the complexes (upper panels) are two non-redundant
HLA-I molecules most frequently found in the Latin American population coupled with a peptide with vaccine potential
from SP, namely FAMQMAYRF. (a), Cluster 1, density of 239, ∆G of −5.2. (b), Cluster 1, density of 355, ∆G of −4.9. In
the complexes (lower panels) are two non-redundant HLA-II molecules most frequently found in the Latin American
population coupled with a peptide with vaccine potential from MG, namely SFRLFARTRSMWSFN. (c), Cluster 1, density of
138, ∆G of −4.6. (d), Cluster 2, density of 168, ∆G of −4.4.

3.9. Molecular Docking, Interactions with Heterodimer TLR-4/MD-2

In the N terminal, β-defensins have a range of immune responses related to cell
maturation that mediate innate immunity, such as dendritic cells, TLs, and antiviral activi-
ties [116,117]. Another adjuvant used was the universal memory TLs helper peptide TpD,
an auxiliary peptide that can aid memory generation as a target of TLs CD4+ [118]. The
adjuvant Pan DR T helper epitope PADRE was also attached to the construct. It is relevant
in multi-epitope constructs given its ability to potently stimulate the innate and humoral
immune systems through high and specific IgG titer generation. It can also overcome
barriers, indicated by the high diversity among HLA molecules; hence, it reaches a larger
population and is safe [119,120]. Towards the C terminal, a peptide domain, CTGKSC,
capable of interacting with M cells and mediating up to an 8-fold increase in intestinal
absorption, was added [74]. CTGKSC has been formulated in oral multi-epitope vaccine
candidates [74], acting as a transporter towards the M cells of the epithelium associated
with the follicle in the Peyer’s patches of the intestine in humans, where it can promote a
specific immune response.

The linkers used as spacers between HTL GPGPG and AYY epitopes are suitable
and facilitate antigen presentation by directly interacting with transport and assembly
mediators to HLA molecules [121]. The di-lysine KK that separates epitopes from BLs
is located close to the C terminal. Among the adjuvants used were the EAAAK linkers:
efficient separators between the domains present in the multi-epitope construct [122]. The
following linkers were used in the vaccine, which contained 510 amino acids: 6 EAAK, 6
GPGPG, 11 AAY, and 5 KK. The proposed construct order is presented in Figure 4.
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Figure 4. Construction of the Proposed Multi-Epitope Vaccine. Structure of the multi-epitope
construct: three-dimensional diagrammatic structure of the multi-epitope construct showing (a), the
separators, origin of the peptides and adjuvants used; (b), the location of the adjuvants PADRE, TpD
and M cell ligand; and (c), the location of the epitope’s cytotoxic T lymphocytes (CTLs), T helper
lymphocytes (HTLs) and B lymphocytes (BLs). (d), Ribbon diagram of the multiepitope construct.

3.10. The Physicochemical Properties of the Multi-Epitope Construct Are Consistent with the
Requirements for Generating an Immune Response in an Experimental Model

To generate a safe, stable, and capable construct able to evoke an immune response;
the antigenic, non-allergenic, and non-toxic properties of the multi-epitope construct
were established using Vaxijen 2.0, Allergen FP 1.0, and ToxinPred. The physicochemical
characteristics of the multi-epitope construct, along with special consideration for the final
CTGKSC peptide, are shown in Table 2.
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Table 2. Physicochemical characteristics of the multi-epitope construct. The default thresholds for
ToxinPred, Vaxijen > 0.4, and allergen FP were chosen to be the best balance between specificity,
sensitivity, and precision while taking account of linear and non-linear reasons in the results. Besides,
the physicochemical characteristics, construct, antigenic, non-allergenic, non-toxic, soluble, and stable
characteristics are demonstrated suggesting that interaction with the immune system can allow and
maintain recognition by the innate immune system, as well as by BL.

Peptide C Terminal CTGKSC+ CTGKSC-

Vaxijen V2.0 0.6419 0.6455
AllerToP V2.0 Non-Allergenic Non-Allergenic

Allergen FP V1.0 Non-Allergenic Non-Allergenic
ToxinPred Non-Toxic Non-Toxic

Physicochemical Parameters
GRAVY −0.038 −0.033

Molecular Weight 55.67 kDa 54.62 kDa
Stability 33.76 (<40) 33.47 (<40)

Solubility 72% 65%
Half-Life (reticulocytes) 30 h 30 h

Aliphatic index 81.81 82.62
Size (amino acids) 510 499

In addition to generating a safe construct, it was necessary to identify a thermostable
multi-epitope construct, indicated by the aliphatic index for laboratory testing. Solubility
and thermostability are associated with adequate overexpression in (E. coli) which is the
bacteria most commonly used to produce recombinant proteins [123].

Given the parameters from the primary structure of the multi-epitope construct,
adequate production in vitro can be inferred because of overexpression in E. coli and
observed safety in immunological studies.

3.11. Three-Dimensional Structure Modeling and Validation of the Multi-Epitope
Vaccine Construct

The predicted structural conformation of our construct can be correlated with func-
tional annotation and other multi-epitope constructs. The secondary structure was analyzed
using the SOPMA and PSIPRED servers, which revealed the presence of 43% α-helix, 21%
β-foil, 30% coils, and 6% β- in the vaccine construction (Figures S7 and S8). A reliable
approximation of the three-dimensional structure of the construct can be used for further
in-depth studies. Molecular dynamics can be used to analyze coupling stability with
immunological targets in innate recognition of viral elements as membrane TLR receptors
with the production capacity of IFN-1. Therefore, we approximated the tertiary structure
using the Robetta server, based on homology models, and we used the Ramachandran
diagram and ERRAT to validate the quality of this approach. The results are summarized
in (Figure S9).

By using the ClusPro 2.0 server to simulate molecular docking between the vaccine
construct and TLR-4, 30 models were generated (Table S13). These were classified by cluster
size according to their representative position. The lowest energy −1192.6 (Figure S10) was
found in the sixth cluster with 22 members. The first cluster contained 35 members, which
indicates an acceptable probability for the native pose of the complex. The cluster with a
balanced adjustment was chosen given that it was closer than adjustments 2 and 3, which
were related to a majority of hydrophobic and electrostatic interfaces [124].

This model positions the N terminal of the multi-epitope construct and larger interface
area towards the concave side of TLR-4, where its ectodomain forms mostly hydrogen and
salt bridges. The free convex side is broken into the N terminal of TLR-4, which indicates
the formation of hydrogen and salt bridges resulting from interactions with C-terminal of
the multi-epitope construct.
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Also, interactions are present in the internal part and run towards MD-2; these are mostly
hydrogen and saline bridges. The latter is maintained primarily by the ARG 157 and ARG
159 residues of the SFRLFARTRSMWSFN peptide. These are illustrated in (Figures S10–S12).

3.12. Molecular Dynamics

The root mean square deviation RMSD for the vaccine-receptor complex was evaluated
during the complete simulation time (Figure 5a). The RMSD plot showed a considerable
increase until it stabilized at around 20 ns, with an average of about 0.8 nm for the rest
of the simulation time. These changes indicate that the vaccine attempts to find the best
position based on its receptor. After 20 ns from the beginning of the simulation, it remained
stable, which is an indicator that the vaccine reaches the best conformation to form a
stable complex. Also, the root-mean-square-fluctuation (RMSF) of the vaccine and its
receptor was evaluated. Residues from the vaccine start at GLY-1483 and finalize at residue
CYS-1992 (Figure 5b). The RMSF showed a stable conformation from residue GLY-1483 to
LYS1683 from the vaccine segment, which are part of the β-defensin 3 to TpD of the vaccine
construct, Figure 4a. This stabilization is made due to the salt bridges formed in the residue
ASP-1424:ARG1639, ASP-756:ARG-1641, GLU-1180:ARG-1524, GLU-1183:ARG1520, and
GLU-1556:ARG930, which showed regular contact during the entire simulation (Figure S13).
On the other hand, a segment of the vaccine, which corresponds to residue PHE-1684 to
CYS-1992 (Figure 5b), showed a higher RMSF, displaying a pronounced motion compared
with the GLY-1483 to LYS1683 segment, while the TLR-4 receptor remained stable. Apart
from this motion, the complex remained stable during the 68 ns of simulation.

The radius of gyration (Rg) was calculated to determine the compactness of the
vaccine-receptor complex system during the simulation (Figure 5c). It did not show a
significant change. The complex exhibits a compact folded structure during the simulation,
with an average Rg of approximately 4.8 nm. This folded complex structure is stabilized
on average by around 9 H-bonds (Figure 5d) and 5 salt bridges, which were described
above. Thus, the Vaccine-TLR4 complex showed a stable conformation during the 68 ns
of simulation.

3.13. Optimization of cDNA from the Vaccine Construct for Optimal Expression of the
Vaccine Product

For insertion of the vaccine construct into a plasmid vector, the CTGKSC+ protein
sequence of 510 amino acids was inversely translated to a cDNA of 1530 nucleotides in
length. The host system of expression varies, and the cDNA must adapt according to the use
of the host codon. For optimal expression of the multi-epitope construct in the E. coli K 12
host, the resulting cDNA was codon-optimized according to the JCAT server. Furthermore,
optimization of the rho-independent transcription terminator and prokaryotic ribosomal
binding sites in the middle of the cDNA sequence were avoided to generate optimal and
complete protein expression. To insert the construct into the pET28a(+) cloning vector, the
BamHI and HindIII cleavage sites were also avoided. The results are shown in (Figure S14).
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Figure 5. Analysis of trajectory. (a), Root mean square deviation (RMSD) Cα atoms. (b), Root
mean square fluctuation for Cα atoms (RMSF), TLR-4 receptor initialize at amino acid 1 and goes
to amino acid number 1482, and the vaccine from amino acid number 1483 to 1992. (c), Rg plot;
vaccine construct is stable in its compact form during the simulation time. (d), Changes in the
number of hydrogen bonds between the TLR-4 receptor and multi-epitope vaccine molecule during
MD simulation.

3.14. Expression of the Multi-Epitope Vaccine Construct in E. coli K 12 by In Silico Cloning

The E. coli K 12 strain was selected as the cloning organism since multiple-epitope
vaccines are expressed and purified more easily in this bacterium. For this purpose, the
expression vector pET28a(+) was used and excised with the restriction enzymes BamHI
and HindIII. The optimized cDNA was then inserted near the ribosome binding site using
Snapgene (Figure S14).

3.15. Immune System Simulation

To identify the immunogenic profile of the vaccine construct, we used the C-IMMSIM
immune server. As shown in Figure 6, the secondary and tertiary responses showed greater
global responses and the presence of memory T and BLs. This may have been due to the
cumulative effect of cells at the serum level that possesses a memory profile exceeding
the total in injection 3. This is also associated with decreased antigenic concentrations
and normal immunoglobulin levels. Cell-specific lineages were also stimulated, with
the general activation of CD4+ and CD8+ TLs. Also, HTL-1 cell-based immunity was
predominant. This is associated with the production of the cytokines and interleukins
IFN-1, TNF-β and IL-2, as well as the activation of professional antigen-presenting cells.
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Figure 6. Immune simulation using the multi-epitope construct. (a), BLs, (b), CD4+ TLs and (d),
CD8+ TLs were simulated, presenting a cumulative effect towards the third injection on the 56th
day of simulation. This suggests the early presence of TLs memory and a change towards the
immunoglobulin isotype, immunoglobulin G (IgG), being more predominant. While the antigenic
stimulus lasts, there is a polarization towards a certain type of response (c), HTL-1, which is consistent
with (e), the active antigenic presentation of professional antigen-presenting cells. This could be
partly stimulated by other non-presenters, as well as the production of interleukins, such as (f),
IFN γ, TGF-β and IL-2. An infection challenge, composed of a virus responding to the sequence of
SARS-CoV-2 proteins covered by the multi-epitope construct, was simulated on day 366. (g), An
indifference in immunoglobulin M (IgM) production and increased IgG response suggests favourable
conditions for viral antibody clearance in the BLs. (h), The duplication and antigenic presentation
of BLs correspond to the stimulated response by the simulated virus, which lasts beyond the viral
challenge. (i), An IgG isotype shows a substantial response to the viral challenge, with subtype IgG1
most notably responding. (j), The CD4+ TLs population is globally stimulated; the memory response
results in consolidation, which increases cell numbers and is still available over 100 days after the
viral challenge. (k), The population of memory CD8+ cells is stimulated by the viral challenge, acting
directly on viral clearance.
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These results are consistent with the construct having a natural immunogenic capacity,
which was applied without Lipopolysaccharide (LPS) in the simulation. A more extensive
immune simulation corroborates the memory formation indicated in this brief approach. It
was conducted until day 311 with 12 injections, in a step of time beyond 460 days, adjusting
the intervals that did not surpass 4 weeks, 12, 94, 178, 262, 346, 430, 514, 598, 682, 766, 850,
934 (Figure S15).

4. Discussion

In this study, we used a reverse engineering approach to design a multi-epitope
vaccine for SARS-CoV-2 based on the identification of PPVPs (Table 2) from the conserved
regions of proteins in 92 SARS-CoV-2 proteomes. Besides, we added potential epitopes
for BLs, adjuvants, and linkers seeking a specific immune response (Figure 5). By using
predictors with a higher experimental correlation against HLA-I, we can describe possible
considerations in LATAM populations according to the locus and most frequent alleles
found (Figures S4 and S5). Our approach differs from other in silico vaccine models
proposed for SARS-CoV-2 because we considered the total of structural, non-structural,
and accessory proteins to identify potential vaccine candidates. This not only aims to
neutralize the input [125] or most immunogenic proteins [126], but also those related to
replication and immune modulation. This offers broader protection without making a
large protein since we used the least number of peptides capable of covering all HLA
alleles most frequently found in 18 LATAM countries. In Table 1, P1 to P7, which targets
HTL, aims to stimulate LT and activate BL. P8 to P18 are PPVPs directed towards CTL
that result from the cleavage of polyprotein 1a/b. P8 and P18 from NSP did not result
in luminal subcellular locations resistant to post-translational modifications. In addition,
P10, P14, and P18 obtained through the similar algorithms used in this study were already
experimentally validated.

Other authors have previously identified peptides from SARS-CoV-2 using similar
bioinformatic tools similar to ours and have classified possible vaccine targets such as P9,
P7, P5, P18 (in SP), and P12 (in ORF7) [127–132]. The multi-epitope construct followed by
PPVPs in the linear epitopes of SP and NP with the capability of interacting directly with
the LB receptor is presented in (Table S10). In SP, linear epitopes were taken by consensus,
occupying the RBD and lacking N-glycosylations, thereby attempting to disrupt ACE2
coupling by stimulating specific antibodies with neutralizing capacity. However, it has been
identified that specific antibodies against RBD are not the only way to neutralize SARS-
CoV-2 [133]. The experimental evidence available in the IEBD column of Table 2 indicates
peptides with experimental validation in both SARS-CoV and SARS-CoV-2, far from RBD
such as P2. This was complemented with experimental tests on BLs and HLA. Another
peptide, P9, shares similar characteristics but is only partially conserved, delimiting only a
potential immune region. These indicate that other regions are capable of stimulating LB,
LT, and HLA shared by SARS-CoV-2 and SARS-CoV, far away from RBD, which means
that P2 could generate antibodies towards SP outside of RBD. Recently, 61 monoclonal
antibodies isolated in serum from patients with severe COVID-19 requiring mechanical
ventilation have been identified; 9 antibodies exhibited a high neutralizing capacity against
SARS-Cov-2 in vitro, 5 were directed at RBD, 3 against the N-terminal domain, and 2
against indeterminate regions of [133]. Other authors have confirmed the neutralizing
capacity of directed antibodies towards the N-terminal when isolating it from convalescent
COVID-19 patients [134]. Our study consists entirely of bioinformatic analysis, but some
PPVPs resulted from experimental evidence. Some PPVPs that were not found in the
experimental databases consulted were P3, P6, P8, P11, P12, P13, P15, P16, and P17. It is
important to gather information on these PPVPs as potential vaccine targets because they
share common immunogenic characteristics.

HTL with antigenic properties primarily comes from SP (n = 114), MG (n = 62), and
NP (n = 23). In comparison, the results for CTL were ORF1a/b (n = 573), followed by SP
(n = 63), and NP (n = 34). Most of these epitopes originated in the ORF1a/b transcript or
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from MG and SP. Compared to other proteins like accessories or other structural proteins,
these could harbour a greater number of conserved immunogenic regions because they
were found in predictions with greater agglutinations against LATAM alleles.

In this study, we corroborated NP as a relevant vaccine target. We found areas in NP
with predictions of linear and discontinuous epitopes longer than those of SP, resulting
in a greater chance of antibody production. We also highlighted the immunogenicity of
SP and identified a greater number of strong agglutination predictions in association with
more frequent HLA-II molecules in LATAM. We emphasize that the majority were found
outside the receptor-binding domain. In SP, an interval between residues 492 and 524 was
found to contain several PPVPs associated with HLA-I and II molecules. This was also
found in the most frequent phenotypes in LATAM, e.g., HLA-B*16:02. This is an important
immunogenic region that is also associated with the linear epitopes of BLs. However, it
is important to keep in mind that using the complete SP subunit could be more effective
in a vaccine formulation. It should be noted that mutations in this immunodominant
region could imply changes in antigenic recognition with loss of protective capacity [135].
Our multi-epitope construct offers a specific immune response with greater attention to
stimulating innate immunity, especially against relevant proteins in the phase of infection.
Reflecting on whether it can offer cellular protection, even if antigenic drift or natural
selection or by any SARS-CoV-2 vaccine itself throughout the pandemic or after, it may
exceed the protection offered by neutralizing antibodies against the RBD. Protection that is
not expected at least directly, when using the recombinant SP protein present in current
commercial formulations obtained from the Wuhan-Hu-1 sequence [136]. Multi-epitope
constructs, including the one proposed here, if required, can be periodically updated
specifically covering new conserved B or TLs epitopes that emerge in SARS-CoV-2 variants,
avoiding a delayed elimination of infected cells. Since by not using all the SP protein, other
epitopes of SP present in most variants can be raised, without falling into the effect of the
original antigenic sin [136–138]. Although we studied the most frequent alleles in LATAM,
we only have one SARS-CoV-2 proteome from Brazil in the sample of proteomes (this can
be considered as a drawback of the study, because of the limited amount of data to date),
that were selected for the in silico analysis described in the pipeline (Figure 1—Pipeline)
and available in (Table S1). We used a conservative approach by eliminating the non-
synonymous amino acid substitutions presented in the 92 proteomes collected between
December 2019 and 11 March 2020, from other regions of the world, mainly Asia. These
blocks of conserved non-redundant amino acids were used for immunoinformatics analysis
to avoid reformulations of the multi-epitope construct. This is due to the uncertainty about
certain variants that could become more frequent over time and occupy immunogenic
regions of SARS-CoV-2 throughout the ongoing pandemic. According to GISAID statis-
tics [139], a study in the US by Wang et al. [140], and in Uruguay by Elizondo et al. [141],
for the last week of October 2020, there was no indication of an aa-changing SNP with a
clear trend in PPVPs and for LB epitopes (Table S10) in the vaccine construct. Although
the US and Uruguay had introductions of SARS-CoV-2 from different geographical areas
of the old world [141,142], there is evidence of similarity between the aa-changing SNP
with the global ranking exposed by GISAID. The approach used remains current and
utilizes data from around the world despite coming from analysis with a reduced number
of proteomes in an early stage of the pandemic [139]. As well as being the result of the
analysis of a group of the most frequent HLA alleles in LATAM. We added catalogued
safe adjuvants to increase immunogenicity and overcome the HLA polymorphic barrier,
which is typically an obstacle to the development of epitope-based vaccines [143]. Some
HLAs and supertypes have been associated with a lack of response, e.g., the oral rotavirus
vaccine in infants [144]. PADRE has been shown to improve the immune response in
human papillomavirus vaccines by generating a robust CD8+ response and in hepatitis
B virus vaccines by improving the presentation of epitopes and thereby generating spe-
cific CTLs [145,146]. Human β-defensin 3, which activates human monocytes dependent
on TLR1/2 [147], is considered an endogenous adjuvant as it induces the maturation of
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Langerhans cells to dendritic cells and stimulates these cells to induce strong proliferation
and IFN-γ production by CD4+ TLs [148]. This approach was previously used to construct
bovine herpes 1 DNA vaccine, in which it increased the production of IFN-γ-dependent
LT CD8+ [149]. We also used TpD as an adjuvant, which has previously been studied
extensively in animal models and peripheral blood samples. This resulted in increased
TLs and the robust generation of antibodies [118]. CTGKSC theoretically increases the
water solubility of the vaccine proposal (Table 2) due to its amphiphilic properties [74]
and it could better deliver the multi-epitope construct to TLR-4/MD-2 in the M cells of the
Peyer’s patches follicles using polymeric [74,150,151]. With this alternative delivery and
validation of the vaccine proposal, a greater reach could be achieved to include remote
populations with difficult access to medical assistance.

The final construct was catalogued as antigenic, non-allergenic, and non-toxic, which
establishes it as a safe and powerful vaccine candidate against SARS-CoV-2 (Table 1).
Furthermore, the adjuvants provided in the multiepitope construct allows for a syner-
gistic effect with other types of adjuvants. Proposals for multi-epitope peptide vaccines
similar to that of this study have been proposed for various infectious etiologies (DEN-
2 [152], Hendra [153], Nipah [154], Pseudomonas aeruginosa [77], Klebsiella pneumoniae [155],
Plasmodium spp. [156], and non-infectious (Kaposi’s sarcoma [157]). For in vivo models,
multi-epitope vaccines for influenza virus type A [158], Ebola virus [159], HPV-16 [160], and
Uropathogenic E. coli [161] have been tested and have shown to be capable of stimulating
the innate and adaptive immunity to ensure specificity and safety.

In SARS-CoV-2, the validation of immunogenic peptides obtained from structural,
non-structural, and accessory proteins was carried out. This was based on a bioinformatic
analysis, similar to ours, which demonstrated the activation of TL in the peripheral blood
of convalescent Covid-19 patients at the University Hospital Tuebingen [162]. From these
findings, the authors selected 8 peptides capable of interacting and activating TL-CD4,
TL-CD8, and producing IFN-γ. These were incorporated together with the XS15 adju-
vant, emulsified in MONTANIDETM ISA 51 VG, which targets TLR1/2. This approach is
currently in Phase 1 trials (NCT04546841) [163]. Another study in the preclinical phase
focused on optimizing a vaccine for TL-CD8 using artificial intelligence and computational
algorithms like the aforementioned study. The authors also used conserved regions of struc-
tural, nonstructural, and accessory proteins for the binding prediction to the HLA-A*02:01
allele, one of the most common worldwide. Using an in vivo methodology, the authors
utilized an HLA-A*02:01 transgenic mouse, which indicated an activation and production
of memory TL to 55 peptides coupled to the PADRE sequence together with the Montaigne
adjuvant. In patients with a history of symptomatic, moderate, and severe COVID-19,
there was at least one and a maximum of six months without evidence of infection. These
patients were shown to activate peripheral blood monocytes towards these peptides [164].

Using an immune simulation with a heterozygous HLA adjustment, represented by
some of the most frequently recovered LATAM alleles, we confirmed the immunogenic
nature of the vaccine constructs. Without the extra adjuvant LPS, the vaccine constructs
promoted an immune profile that indicated adequate antigenic presentation and the subse-
quent generation of immune memory in groups of T and BLs. Also, there was a polarized
response towards HLT-1 and the stimulation of several immunoglobulins (IgG1+IgG2,
IgM and, IgG+IgM) following the first injection. There was a robust response to the third
injection, with evidence of the production of IFN-1 and IL-2 cytokines related to CD8+
lineage expansion. Comparative simulations using the C-IMMSIM algorithm have been
conducted with experimentally validated peptides. Correlations with in vitro studies were
found [165], which suggests that in vitro experiments with our construct may potentially
evoke similar cellular behaviours.

These predictions are consistent with the analysis of flexible protein-peptide docking,
which provides evidence of the adequate anchorage of the side chains of some residues of
two promiscuous peptides located in the vicinity of the single groove of different HLAs.
This results in adequate accommodation of the core sequence in HLA-I and II molecules. It



Vaccines 2021, 9, 581 27 of 36

is associated with effective immune interaction, and therefore sufficient presentation of
CD4+ and CD8+ TLs, that when is activated, trigger an immune response [67].

Our in-depth secondary structure analysis showed the predominance of α-helices,
while the tertiary structure showed an optimal spatial arrangement of amino acids. The
modelled structure was further improved which increased its general quality. When we
performed a molecular coupling of TLR-4/MD-2 using ClusPro v2, the resultant interfaces
were generally based on hydrogen and salt bridges supported primarily by TLR4. This fixes
the multi-epitope construct towards the concave and terminal C region of its ectodomain,
identifying a probable non-canonical interaction. At this location, some P6 residues of MG
have more contact near the more hydrophobic region of MD-2, where coupling with LPS
has been reported [166]. Therefore, this interaction could be stable and safe since it shows
the hydrophobic pocket of empty MD-2 which is known to interact with traces of LPS
and is associated with a fatal toxic immune response [167]. Other protein interactions that
occupy TLR-4 could be safety-relevant. In COVID-19 an immunopathological process has
been described that at least theoretically could be explained in part from the interaction
of SP with TLR-4, increasing the production of inflammatory cytokines secondary to the
formation of interfaces composed of antigenic residues of SP, interacting with external
residues of TLR-4 [168]. In our multi-epitope construct, although we use antigenic peptides
that come from SP, none of these antigenic residues is part of the interfaces described.

In nature, other non-canonical interactions have been described as in the case of the
HIV Tat protein that results in an interface between the N-terminal and TLR-4/MD-2,
showing greater stability in the resulting complex [169]. Also, other studies on larger and
smaller viral proteins, including Tat [170,171], have identified an inhibitory competition of
the binding site towards MD-2 by lipid A of LPS from Rhodobacter sphaeroides. This could
affect the activation by disrupting the formation of a stable complex with TLR-4. However,
the MD-2 interaction may not always be necessary for receptor activation. For example,
in E. coli, the adhesive subunit FimH can evoke a more immunogenic profile against LPS
by targeting TLR-4, which up-regulates the expression of HLA-I and II molecules [172].
Therefore, the stable and low entropy formation between the interfaces of the tetramer
with potential ligands, including multi-epitope constructs, could activate it [173,174]. The
position and situation that our multi-epitope construct occupies has been found in other
vaccine models constructed using different methods. Therefore, it seems to be relevant to
the stabilization of the multi-epitope construct [165]. In addition to the immunogenicity
and stability identified in our molecular dynamics analysis, the physicochemical analysis of
the construct revealed other desirable characteristics related to a safer profile. In particular,
the construct was found to be nontoxic and nonallergenic. It was also thermally stable,
which suggests that it would be suitable for the overexpression in the bacterial model
E. coli K 12. A successful in silico cloning procedure is a cost-effective option that can
be extrapolated to laboratories in LATAM countries. Based on the algorithms used in
this study, some considerations regarding susceptibility and the expected clinical result
should be used discreetly. We identified the HLA-C Locus as the highest loading capacity
of antigenic peptides that are predicted to strongly binding towards the most frequent
HLA-I alleles in LATAM from conserved regions of SARS-CoV-2 (Table S11). However,
the HLA-C promoter lacks binding sites to the transcription factor NF-κ β [175], which is
upregulated in the antiviral state. Therefore, it may not represent an accurate picture of an
active infection. Although the C locus can present antigenic peptides and activate CTL, this
locus is more in tune with the effector function of natural killers [176], which could regain
importance in the activation of NK in COVID-19. However, a greater presence of antigenic
peptides is necessary for its membrane expression, and its high capacity to recognize
peptides from SARS-CoV-2 could be associated with less thymic selection. Interestingly, the
HLA-B*35:01 allele, which was found in one of the HLA molecules capable of recognizing
a greater number of peptides from SARS-CoV-2, was found more frequently in BRA-CHL-
COL-CUB -NIC-PER (Table S11). It was recently recognized in a cohort of Spanish patients
with moderate COVID-19, which did not have a fatal outcome [107]. According to the
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country of origin, when compared to Locus C and A, locus B did not represent a group
of alleles in LATAM with a higher carrying capacity of peptides. As a result, despite the
country of origin, certain people will have a better outcome from SARS-CoV-2. It would
be interesting to review BRA-CHL-COL-CRI-VEN in the future. Especially VEN, since it
was found with alleles belonging to Locus A, which can recognize many peptides from
SARS-CoV-2. Countries such as ARG-CUB-ECU-NIC have a lower capacity to recognize
alleles from locus A. Additional attributes of HLA molecules found in HLA-B*35:01 include
stability in acidic pH and alternate antigenic presentation [177] and allelic heterozygosity
in patients with COVID-19, which could bring us closer to a precise treatment. This type of
approach can better characterize populations at risk and allow a deeper understanding of
the immunopathology caused by SARS-CoV-2. A collaborative initiative on the study of
HLA and COVID-19 is currently available at (http://www.hlacovid19.org, accessed on 19
December 2020).

5. Conclusions

SARS-CoV-2 undoubtedly poses a substantial social challenge for all citizens of the
world. Not only are its effects devastating to public health, but they have also set back
the progress made over decades in other fields like economics, equity regarding social
determinants in health and social management of other endemics outbreaks, especially
in regions with emerging economies. By using bioinformatics tools and considering the
immunological profiles of vulnerable and diverse regions in LATAM, the use of peptide
binding predictors such as SARS-CoV-2 and HLA-I can be considered. This can be used as
part of a precise treatment plan focused on characterizing people and populations with a
greater risk of COVID-19 infection.

A vaccine is the best option for limiting the medium- and long-term effects of COVID-
19 on the global population. We created a candidate multi-epitope vaccine directed towards
the world population, with an immunogenic capacity that surpassed the safety standards
required to begin complementary experimental studies. Furthermore, we try to analyze the
binding affinity of potential antigenic peptides resulting from our pipeline of most prevalent
HLA molecules in LATAM as part of a regional immunoinformatics approach. Several
PPVPs that resulted from this methodology were found using experimental validation
and demonstrating others that share similar immunogenic characteristics and should
be validated.

We hope to quickly validate the vaccine candidate and take action against the ongo-
ing pandemic.
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