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Network models of primary melanoma
microenvironments identify key melanoma
regulators underlying prognosis
Won-Min Song 1,2,3,8, Praveen Agrawal4,5,8, Richard Von Itter4,5, Barbara Fontanals-Cirera4,5,

Minghui Wang 1,2,3, Xianxiao Zhou 1,2,3, Lara K. Mahal 6, Eva Hernando 4,5✉ & Bin Zhang 1,2,3,7✉

Melanoma is the most lethal skin malignancy, driven by genetic and epigenetic alterations in

the complex tumour microenvironment. While large-scale molecular profiling of melanoma

has identified molecular signatures associated with melanoma progression, comprehensive

systems-level modeling remains elusive. This study builds up predictive gene network models

of molecular alterations in primary melanoma by integrating large-scale bulk-based multi-

omic and single-cell transcriptomic data. Incorporating clinical, epigenetic, and proteomic

data into these networks reveals key subnetworks, cell types, and regulators underlying

melanoma progression. Tumors with high immune infiltrates are found to be associated with

good prognosis, presumably due to induced CD8+ T-cell cytotoxicity, via MYO1F-mediated

M1-polarization of macrophages. Seventeen key drivers of the gene subnetworks associated

with poor prognosis, including the transcription factor ZNF180, are tested for their pro-

tumorigenic effects in vitro. The anti-tumor effect of silencing ZNF180 is further validated

using in vivo xenografts. Experimentally validated targets of ZNF180 are enriched in the

ZNF180 centered network and the known pathways such as melanoma cell maintenance and

immune cell infiltration. The transcriptional networks and their critical regulators provide

insights into the molecular mechanisms of melanomagenesis and pave the way for devel-

oping therapeutic strategies for melanoma.
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Melanoma is a highly aggressive tumor that accounts for
less than 5% of all skin cancers, but 80% of skin cancer-
related deaths1. Melanoma is a malignancy of pigment-

producing cells, i.e., melanocytes, located predominantly in the
skin. These pigments play protective roles against ultraviolet
(UV) radiation in healthy individuals, safeguarding cells against
DNA damage. Accumulation of UV exposure in melanocytes
contributes to high mutational burden1,2, conferring mitogenic
signals via defective DNA repair and replicative mechanisms and
inducing oncogenic mutations such as those observed in BRAF
and NRAS3. Mutations in BRAF, NRAS, NF1, and KIT have been
all implicated as melanoma drivers1,2,4,5.

Primary melanomas are heterogeneous in terms of molecular
and clinical features, as well as their tumor microenvironment.
Interaction with diverse stromal cells can activate pro-invasive
programs such as an epithelial-to-mesenchymal transition in
some primary tumor cells, leading to metastatic dissemination6,7.
Dynamic changes in the tumor microenvironment can also lead
to immune surveillance escape8,9 and are predictive of melanoma
prognosis10. Within the tumor microenvironment, tumor-
reactive T lymphocytes play a central role in suppressing tumor
growth by infiltrating into malignant lesions and selectively kill-
ing cancer cells11,12. However, some subclones of melanoma
tumors evade the immunosurveillance by intra-tumoral expres-
sion of programmed cell death ligand 1 (PD-L1), which binds to
the co-inhibitory checkpoint receptor, programmed cell death
protein 1 (PD-1)13,14.

While understanding the heterogeneity is critical for patient
treatment, several factors have hampered a comprehensive
molecular characterization of primary melanoma tumors. First,
most large-scale, multi-omics studies focus on metastatic tumors
or combine analysis of primary and metastatic tumors2. Further,
these large-scale studies are often bulk-based and confounded by
the diversity of cell-types within cancer. This complicates the
identification of cell type-specific signaling circuits within the
microenvironment. Although machine learning methods such as
CIBERSORT15 and ESTIMATE16 can estimate relative cell
compositions in bulk samples to some degree, they cannot replace
the high-resolution analysis of cell-type-specific interactions from
scRNA-seq.

Systems biology, especially network biology approaches, have
proven effective for integrating diverse, large-scale datasets in
complex human diseases17–39. Here, we applied an integrative
multi-scale gene network analysis framework to jointly analyze
the primary melanoma bulk RNA-sequencing data from The
Cancer Genome Atlas (denote as pSKCM) and a published
single-cell transcriptomic dataset40. We hypothesized that co-
expressed gene modules associated with the patients’ prognosis
capture dysregulated pathways in primary melanoma etiology.
By generating prognosis gene signatures from the TCGA data,
we were able to intersect these signatures with gene modules
and identify the enriched modules, subnetworks, and network
drivers as pro-tumorigenic regulators of primary melanoma.
Similarly, gene signatures associated with (epi-)genomic
alterations were utilized to inform gene modules affected by
these alterations. This integrative approach has proven effective
in identifying causal molecular alterations in complex diseases
such as Alzheimer’s disease41,42, asthma43, breast cancer44, and
gastric cancer45.

Our study revealed key immune cell types and signaling
pathways, and predicted their regulators underlying primary
tumors with varying degrees of tumor infiltration by jointly
analyzing bulk and single-cell data. Key findings were replicated
in independent bulk46 and scRNA-seq datasets40,47. Further, the
predicted pro-tumorigenic regulators of melanoma were validated
via siRNA screening in vitro and in vivo xenografts.

Results
Integrative network biology analysis of primary melanoma. We
constructed a gene co-expression network from the bulk-based
primary skin cutaneous melanoma (pSKCM) RNA-seq data in
The Cancer Genome Atlas (TCGA) to identify co-expressed gene
modules (subnetworks) and their key regulators by multiscale
embedded gene co-expression network analysis (MEGENA)
(Fig. 1, Supplemental Fig. 2A, B)48. A total of 221 gene modules
were prioritized by enrichment for the genes associated with
overall survival and known primary melanoma-specific pathways
(see “Methods”).

Among the top ten ranked modules, five (M7, M597, M57,
M46, and M350) were enriched for the genes whose upregulation
was associated with increased overall survival (denoted GOSG;
Supplementary Fig. 2B) while the others (M530, M22, M205,
M204, and M235; Supplemental Fig. 2A) were enriched for the
genes whose upregulation was associated with poor prognosis
(denoted POSG). In general, not many POSG enriched modules
are associated with known pathways or functions. Only one
POSG enriched module M22 significantly overlaps with generic
transcription pathways curated by REACTOME (corrected
Fisher’s Exact Test p value (cFET p)= 3.45E− 54, 13 fold-
enrichment(FE)), due to co-expressions of zinc finger proteins.

In contrast, the top-ranked GOSG enriched module, M7
(Fig. 1C; cFET p= 5.76E− 193, 13.2 FE) is characterized by
immune response pathways, including the hallmark IFN-γ
response (cFET p= 4.95E− 95, 9.29 FE), the CTLA4 pathway
(cFET p= 6.20E− 8, 10.6 FE), TNFα signaling via NFκB (cFET
p= 8.36E− 16, 3.6 FE) and the T-cell receptor alpha pathway
(cFET p= 2.56E− 11, 13.1 FE). Hyper-methylation in cis-CpG
sites of several genes in M7 was associated with their down-
regulation (cis-MCG: cFET p= 4.01E− 10, 2.43 FE). As altered
gene expression and methylation affect each other directly and
indirectly, we dissected the causal relationships between these
genes and the altered CpG sites. We identified PTPN6 and
PTPRCAP as potential modulators of epigenetic regulation of the
leukocyte activation pathway in M7 (see Epigenetic silencing of T-
cell activation leads to poor prognosis in Supplementary Methods;
epigenetic regulatory network in Supplementary Data 6).

Upregulated immune response subnetwork associated with
good overall survival. The module most strongly associated with
a good prognosis, M7, is comprised of sub-modules48 reflecting
distinct immune response pathways, including leukocyte activa-
tion (M110) and antigen presentation (M112, Supplementary
Fig. 3B). M112 captured the PD1/PD-L1 signaling pathway,
including PD-L1 and several key regulators of the PD-L1 tran-
scription pathway as its hubs, such as STAT1 and IRF149. The
immune regulatory role of M112 was further supported by its
enrichment of the genes upregulated by PD1 ligation in T cells50

(cFET p= 1.62E− 21, 16.6 FE). The hubs of M7 were also
associated with the T-cell activation pathway (cFET p= 3.86E−
10, 40.2 FE; Supplementary Data 3).

We dissected the immune cell populations involved in M7 and its
sub-modules by integrating the scRNA-seq data comprised of 4645
cells from 19 melanoma patients (GEO accession: GSE72056)40.
The individual cells were annotated with the published and inferred
cell types, including melanoma, T cells (CD3+), macrophages,
endothelial, and cancer-associated fibroblasts. We further classified
T-cell subpopulations into CD8+ cells, CD4+ T cells, resting
memory (RM) CD4+ T cells, and M1-polarized macrophages (M1
macrophages) (Supplementary Fig. 4A; see “Methods”). Genes in
M7 sub-modules were expressed in distinct cell types, predomi-
nantly melanoma cells (expressed in M401, M402, M110, M639,
and M642), M1-macrophages (expressed in M400, M401, and
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M642), B-cells (expressed in M111), CD8+ T cells (expressed in
M399, M401, M402, and M403) and CD4+ T cells (expressed in
M399, M401, and M402, Supplementary Fig. 4C).

To understand gene interactions within each cell population,
we constructed a co-expression network for each cell cluster
(labeled as CLS1, CLS2, etc.), termed as sc-networks (see

Supplementary Fig. 4B). Then, we evaluated the concordance
between the pSKCM network and the sc-networks to identify cell
populations involved in the bulk-based gene interactions. For
example, the interferon-γ (IFN-γ) response modules M401 and
M402 significantly overlap the macrophage-enriched modules in
the CLS3 sc-network (cFET p= 9.48E− 20). This makes sense as
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IFN-γ is a known activator of macrophages51. The MYO1F
neighborhood from the pSKCM network was significantly
enriched in the MYO1F neighborhood in the CLS3 network
(Fig. 2A; cFET= 2.12E− 6, 211 FE; Supplementary Fig. 4G). In
single-cell transcriptomes, MYO1F was consistently expressed in
M1-macrophages and IFN-γ-secreting CD8+ T cells in the
discovery cohort and an independent cohort of 33 melanoma
tumors47 (Fig. 2B; Supplementary Fig. 5B; Supplementary Fig. 6).
These MYO1Fhigh M1-macrophages cells expressed PD-L1
(CD274 in Fig. 2B), and MYO1Fhigh CD8+ T cells showed high
IFN-γ expression (IFNG in Fig. 2B). Given that M1-macrophages
are pro-inflammatory and interact with cytotoxic CD8+ T cells52,
these results suggest MYO1F may play an essential role in IFN-γ/
PD-L1 signaling in primary melanoma.

The findings from single-cell transcriptomes are consistent
with those from the pSKCM bulk RNA-seq data. MYO1F was
correlated with the inferred M1-macrophage abundance in
pSKCM but not with M0-/M2-macrophages (Fig. 2C). We
leveraged the published immune subtypes of the pSKCM samples
by Thorsson et al.53 to clarify which immune subtype is
associated with MYO1F. MYO1F showed predominantly high
expression in the IFN-γ dominant subtype, C2 (Supplementary
Fig. 7A), and was correlated with inferred M1/M2 macrophage
ratio and CD8+ T-cell abundance within C2 (Supplementary
Fig. 7B).

In agreement with these observations, MYO1F has been
identified as an upstream regulator that hyper-activates macro-
phage STAT1, leading to M1-polarization and IFN-γ secretion by
stimulating intercellular adhesion54. MYO1F may also regulate
leukocytes. MYO1F is associated with the T cell co-inhibitory
receptor, PD-L1, in both bulk cohorts (Fig. 2D). PD-L1 upstream
genes such as IRF1 and STAT1 are more highly expressed in
MYO1Fhigh M1-macrophages than in the other CD19+ mono-
cyte/macrophages (Supplementary Fig. 6).

To validate the IFN-γ response subnetwork in macrophages
captured in the pSKCM network, we curated the loss-of-function
(LoF) signatures of a key IFN-γ response pathway regulator,
STAT1, from bone marrow-derived macrophages (BMM) of Stat1
knockout (Stat1-KO) mice (GSE48970) by querying the CREED
database55. As expected, the downregulated genes from Stat1-KO
BMM are significantly enriched in the STAT1 centered subnet-
work in the pSKCM network (Supplementary Fig. 3C; cFET p=
2.80E− 31, 34.6 FE). Furthermore, STAT1 expression was
correlated with inferred M1-macrophage abundance by CIBER-
SORT in pSKCM (Spearman ρ= 0.59, p= 4.28E− 11; Supple-
mentary Fig. 3E). These results support the STAT1 centered
network depicts IFN-γ response of macrophages in pSKCM.
Altogether, MYO1F may modulate IFN-γ response in M1-
macrophages and cytotoxic CD8+ T cells via the
STAT1/IRF1/PD-L1 axis.

Upregulation of intra-tumoral DNA repair and mRNA splicing
pathways associates with poor prognosis. We further char-
acterized the top-ranked modules associated with poor prognosis,

including M530, M22, M205, M204, and M235 (Supplementary
Fig. 2A). Although these modules are not associated with known
pathways and functions in the MSigDB, the hub genes in these
modules include known regulators of pre-mRNA splicing such as
serine-arginine protein-like factors, SFRS3, and SFRS13A56, which
are the hubs of M235, and a spliceosome associated protein,
SR140 as a hub of M53057. M205 includes a nuclear pore com-
ponent (NUP205)58 and a splicing factor (TNPO3)59. On the
other hand, the hubs of M22 include DNA repair regulators such
as FANCM60 (a component of the Fanconi anemia core complex)
and ZNF180, which has a locus associated with aberrant genomic
rearrangements61. Interestingly, FANCM and ZNF180 gene
expressions were correlated with expression of a DNA mismatch
repair protein, MSH2, from the reverse-phase protein array
(RPPA) datasets (Supplementary Data 9) with ρ= 0.530 (adjusted
p= 4.53E− 2) and 0.529 (adjusted p= 4.48E− 2), respectively.
In melanoma, high expression of DNA repair genes including
MSH2 is associated with metastasis and may explain their resis-
tance to chemo- and radio-therapies through maintaining the
genetic stability62. These data suggest DNA repair and mRNA
splicing pathways are linked to poor prognosis in primary
melanoma.

To identify primary melanoma prognosis regulators, we
examined the intersection between the previously identified top
ten modules’ hub genes and the poor prognosis signatures
(Fig. 3A). This scheme nominated 18 regulators, which were
more likely to be essential for melanoma cell viability than the
poor prognosis signature alone (Wilcox p value= 3.03E− 4;
Supplementary Fig. 10) based on CRISPRi screening data in the
Achilles database63. These potential regulators’ gene expression
profiles were correlated with the inferred tumor purity score by
ESTIMATE, supporting them as tumor cell-intrinsic genes
(Supplementary Fig. 9). Higher expression of these key regulators
in tumors was associated with lower CD8+ T cell as inferred by
CIBERSORT (Supplementary Fig. 9), suggesting intra-tumoral
expression of these genes was associated with low infiltration of
cytotoxic T cells. Therefore, these predicted regulator genes
capture intra-tumoral pathways essential to tumor viability and
confer poor prognosis in primary melanoma.

Systematic validation of candidate network drivers of poor
prognosis. To validate the 18 candidate regulators of the mole-
cular networks underlying primary melanoma prognosis, we
performed siRNA knockdown experiments in SKmel147 (NRAS
mutant) and A375 (BRAF mutant) cell lines (see siRNA screening
of candidate targets in Supplementary Methods). Of the 18 can-
didates, siRNAs for 17 were readily available for high-throughput
screening assays to assess the impact on cell growth and invasion.
siRNA-mediated knockdown of five genes (KRIT1, ZNF680,
SRSF10, ZNF180, and TMEM160B) in SKmel147 cells sig-
nificantly reduced cell growth (p value < 0.05), relative to non-
targeting controls (NTC) (top, Fig. 3B). Knockdown of eight key
regulators (PPP1R2, G2E3, MKLN1, ZNF225, ZNF180, ZNF347,
KRIT1, and U2SURP (SR140)) in SKmel147 cells significantly

Fig. 1 Analytic flow of the co-expression network analysis of the primary skin cutaneous melanoma cohort in TCGA. A Overall workflow. B Global co-
expression network of the primary melanoma samples from TCGA. Gene modules identified with the default resolution parameter α= 1 are shown in
distinct colors. Highly connected hub genes are labeled with respective gene symbols. C Heatmap representation of molecular features associated with the
top 30 gene modules by survival analysis. Heatmap color represents an enrichment of respective gene signatures in the modules. GOSG represents the
good prognosis associated genes in pSKCM and/or metastatic melanoma (mSKCM) cohorts. POSG includes the poor prognosis associated genes in
pSKCM and/or mSKCM cohorts. DEG-UP and DEG-DN are the upregulated and downregulated gene signatures in tumors in comparison with adjacent
normal tissues, respectively. MCG represents the methylation correlated genes (MCG). MCG with a positive (negative) correlation between the gene and
a CpG site is called Positive (negative) MCG. MCG is also classified into cis- or trans-regulation dependent on the distance between the respective CpG
site’s location and the genomic location of the gene (see the “Methods”).
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reduced invasion (middle, Fig. 3B). A similar siRNA invasion
screening on A375 cells yielded significant differences for five
genes: TBC1D23, PPP1R2, ZNF180, MYNN, and ZNF347 (bot-
tom, Fig. 3B). Altogether, we validated the pro-tumorigenic
effects of 13 (76.4%) of 17 candidate regulators tested in
SKmel147 and A375 cells (Table 1).

ZNF180 silencing antagonizes melanoma cell proliferation and
invasion in vitro and in vivo. Among the 13 successfully vali-
dated functional candidate genes, PPP1R2 (a hub of M530),
ZNF180, and ZNF347 (hubs of M22) showed robust effects in
multiple siRNA functional assays. Transient depletion of PPP1R2,
ZNF180, and ZNF347 significantly reduced the invasive capacity
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of SKmel147 and A375 cells in trans-well invasion assays (middle,
Fig. 3B). Of these candidates, only the knock-down of
ZNF180 showed significant anti-proliferative effects in SKmel147.

Therefore, we further investigated the anti-proliferative
effect of ZNF180 silencing in vivo. Lower ZNF180 transcript
and protein levels confirmed effective knock-down in
shZNF180–SKmel147 cells relative to shNTC-transduced control
cells (Supplementary Fig. 14). SKmel147 cells stably infected with
control (shNTC) or shZNF180 expressing lentivirus were injected
into the flanks of NOD/Shi-scid/IL-2Rgamma null (NSG) mice
(n= 12/group). Mice injected with shZNF180 transduced cells
showed significantly reduced tumor growth (p < 0.0001) and
weight at termination (p < 0.0001) compared to mice injected
with cells carrying a non-targeting shRNA (Fig. 3D–G). This
supports the role of ZNF180 in melanoma growth in vivo.
Together, our data indicate that ZNF180 is essential for
melanoma growth both in vitro and in vivo.

RNA-sequencing revealed transcriptional changes elicited by
ZNF180 silencing in SKmel147 cells (see RNA-sequencing in
Supplementary Methods). Genes differentially expressed in
response to silencing ZNF180 (termed siZNF180-DEGs; Supple-
mentary Data 8) were significantly enriched in the subnetwork of
ZNF180 in the pSKCM network using threshold-free rank–rank
hypergeometric overlap test (see Analysis of RNA-sequencing
data of siRNA knock-down SKmel147 cells in Supplementary
Methods; Supplementary Fig. 11E). Moreover, the genes down-
regulated by siZNF180 were enriched in the four-layer network
neighborhood of ZNF180 in the pSKCM network (Supplementary
Fig. 12A; cFET p= 1.41E− 83, 3.69 FE), thus validating the
topological structure of pSKCM gene network. Such findings were
replicated in the co-expression network analyses of the metastasis
SKCM (mSKCM) and Van Allen et al.46 cohorts (Supplementary
Fig. 12B).

ZNF180 is a multifunctional driver of primary melanoma
etiology. The siZNF180-DEGs were associated with several
aberrant signaling pathways in cancer and pSKCM prognosis. The
downregulated genes (siZNF180-DN) significantly overlap with
pSKCM-POSG (cFET p= 1.07E− 172, 3.00 FE). The intersection
between these two signatures was associated with the cell
cycle pathway (cFET p= 2.15E− 6, 3.60 FE). On the contrary, the
upregulated genes (siZNF180-UP) significantly overlapped the
good prognosis signatures in pSKCM (FET FDR= 7.32E− 54,
2.03 FE), and their intersection was associated with the generic
immune system pathway (cFET p= 6.37E− 3, 2.64 FE).

We further examined a potential correlation between ZNF180
and protein expressions from the RPPA to identify candidate
interacting proteins. Protein expressions of mismatch repair
protein, MSH2, and plasminogen activator inhibitor, PAI-1, were

significantly correlated with ZNF180 expression with ρ= 0.54
(adjusted p= 4.48E− 2) and −0.44 (adjusted p= 4.83E− 2),
respectively. Particularly, MSH2 closely interacted with the genes
down-regulated by siZNF180 in the protein-protein interaction
network (Fig. 3H). Given the role of MSH2 and DNA repair in
melanoma cells to maintain tumor cells’ genetic stability, the data
suggests ZNF180 may play a role in regulating these pro-
tumorigenic pathways.

The gene modules enriched for the siZNF180-DEGs more
comprehensively captured the signaling pathways controlled by
ZNF180. The modules enriched in the genes upregulated by
siZNF180 included tumor suppressors and negative cell cycle
regulators (M597; Supplementary Table 1). In contrast, those
enriched for the genes downregulated by siZNF180 were
associated with DNA repair, epithelial–mesenchymal transition
(M25), oncogenesis (M24, M25, and M257), pre-mRNA splicing
(M25 and M30), protein modification/degradation and chroma-
tin modification/remodeling (Fig. 4D; see Differentially expressed
pathways by ZNF180 suppression in SKMEL147 cells in vitro in
Supplementary Methods).

Notably, M25 emerged as a core module regulated by ZNF180 as
it was enriched for not only the down-regulated genes by siZNF180
but also the poor prognosis signatures from pSKCM (Fig. 4D). M25
was associated with oncogenic signaling pathways, including MYC
targets (Hallmark MYC targets V1: FET FDR= 9.43E− 4, 2.58 FE).
M25 also constituted a coherent protein interaction network,
comprised of high confidence interactions in the STRING database
(>70% confidence; Fig. 3D)64. The protein interaction network
within M25 included established oncogenes such as ROCK1,
PIK3CA, RHOA65,66, and the key DNA repair regulators, MSH2,
and ATR (Fig. 3D). These results indicated close interactions
between the DNA repair signaling and oncogenic signaling
pathways in primary melanoma.

To understand the cell populations regulated by ZNF180, we
deconvoluted the pSKCM bulk samples into de novo cell types
from the melanoma single-cell transcriptome studies using the
cellular population mapping (CPM) algorithm implemented in
“scBio” R package67. ZNF180 expression was consistently
correlated with increased cancer-associated fibroblasts and
decreased M1-macrophage abundance in two studies,
GSE7205640 (Fig. 4C), and Jerby-Arnon et al.47 (Supplementary
Fig. 5D). Overall, our results show that ZNF180 is a multi-
functional driver of oncogenic and DNA repair pathways that
may also modulate tumor infiltration by M1 macrophages and
cancer-associated fibroblasts.

Discussion
This study constructed a compendium of multi-scale gene net-
works from bulk and single-cell RNA-seq data to dissect complex

Fig. 2 MYO1F as a potential regulator of IFN-γ response in primary melanoma microenvironment. A The network of a POSG-enriched module, M401.
Pie size in a node piechart is proportional to the specificity of the respective gene in a cell type, defined as an enrichment score, −log10(FET FDR), which is
derived from the enrichment test for the cells expressing the respective gene and the cells that are predicted to belong to the cell type. Enrichment scores
for each gene are normalized by the sum of the enrichment scores for all the seven cell types. Cell types with FET FDR < 0.05 are shown in the piecharts.
Pie color indicates different cell types: resting memory (RM) CD4 T cell (magenta), CD8 T cell (dark brown), CD4 T cell (palegreen), M1-macrophage
(skyblue), B-cell (dark plum), Melanoma (dark red), Endothelial (green). B MYO1F is expressed in M1-macrophages and CD8 T cells along with PD-L1
(CD274). tSNE plots of the scRNA-seq datasets from GSE72056 and Jerby-Arnon et al.47 show the cellwise expressions of macrophage marker (CD14)
and CD8 T-cell marker (CD8A) along withMYO1F, INF-γ (IFNG), and PD-L1 (CD274). The scale for expression levels by log2(TPM+ 1) values are shown at
the bottom. C Scatter plots between MYO1F and CIBERSORT inferred macrophage populations (M0–M2) in the pSKCM and Van Allen et al.46 cohorts.
95% confidence intervals for Spearman correlations between MYO1F and macrophages are (−0.29, 0.33) for M0, (0.036, 0.59) for M1 and (−0.11, 0.49)
for M2. D Spearman correlation betweenMYO1F expression and PD-L1(CD274)/INF-γ (IFNG) in the pSKCM and Van Allen et al. 2015 cohorts. Point size is
proportional to inferred M1-macrophage abundance. The 95% confidence intervals of the correlation coefficients for CD274 and IFNG in pSKCM are (0.12,
0.47) and (0.42, 0.69), respectively. The confidence intervals for CD274 and IFNG in the Van Allen et al. 2015 cohort are (0.25, 0.72) and (0.30, 0.74),
respectively.
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Fig. 3 Systematic identification and validation of ZNF180 as a promising target in primary melanoma. A Intersections between the poor survival gene
signature from pSKCM (pSKCM-POSG), and the good survival gene signature (pSKCM-GOSG), and the hubs of the top ten modules. Eighteen hub genes
which are also pSKCM-POSG were nominated for siRNA screenings. B siRNA screening of the nominated targets for proliferation in (top) and invasion
(middle) in SKmel147, and invasion in A375 cells (bottom). The heatmap shows −log10(t test p value) to remark the significance of the siRNA screening
results, and significant results are marked by dots. Red rectangles highlight consistently validated genes (ZNF180, ZNF347 and PPP1R2). C Trans-well
matrigel invasion assays on SKmel147 and A375 cells transduced with siNTC or siZNF180, siZNF347, and siPPP1R2. Invading cells were quantified by
counting the number of SKmel147 and A375 cells that invaded into the basal side of Matrigel-coated trans-well inserts after 8 and 6 h respectively, n= 5
fields per replicate; 3 replicates per condition, representative images are shown. Scale bar corresponds to 100 µm. D Growth curve representing average
tumor volume over time in mice injected with shNTC or shZNF180-transduced SKmel147 cells (n= 12 per group). Tumor volume (E) and tumor mass (F),
and (G) images of resected tumors taken 13 days post injection. Data are presented as mean ± SD in (D–F). **** denotes significance of the comparison by
two-tailed unpaired t test by p < 0.0001. H M25 captures protein interactions curated in the STRING database with a confidence score >70%. Node colors
and border colors denote differentially expressed genes by siZNF180 (siZNF180-DEG) and pSKCM survival signatures as shown in the legend.
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molecular interactions and co-regulation underlying primary
melanoma pathogenesis. Our analysis revealed a number of
pathways and regulators underlying primary melanoma and its
microenvironment. The upregulation of the immune response
module, M7, is a strong positive prognostic factor and correlated
with increases in CD8+ T cells and M1-macrophages. In con-
trast, the regulators of the subnetworks predictive of poor prog-
nosis highlighted intra-tumoral DNA repair pathways. We
systematically tested the anti-tumoral effects of 17 candidates via
siRNA knockdown experiments in vitro. ZNF180 had the most
consistent anti-tumor effects and was further validated in vivo.

Network drivers of key cancer modules as identified by
MEGENA are potential regulators of many other genes, while
networks provide functional context for how those regulators
operate. While the traditional prognosis analysis offers a list of
prognostic genes to identify enriched known pathways, such
simple analyses are constrained on pre-collected knowledge-
bases, limiting the discovery of de novo disease pathways. On the
contrary, network-based findings offer mechanistic insights such
as gene modules (i.e., de novo pathways) and hubs (i.e., potential
regulators) that complement traditional approaches. Identifica-
tion of MYO1F and ZNF180 and their intrinsic network models
supports the advantages of the integrative network approach
adopted in this study.

Notably, MYO1F emerged as a potential regulator in macro-
phages. MYO1F is an influential hub in the bulk-based pSKCM
network (i.e., a top hub in the M401 module) and the network
from the pro-inflammatory M1 macrophage cell cluster in the
single-cell transcriptomic data (i.e., a hub in M1-macrophage
enriched cell cluster). We confirmed high MYO1F expression in
M1 macrophage populations in the melanoma single-cell tran-
scriptomic data (Fig. 2B).

The data indicate MYO1F plays a role in the INF-γ pathway,
mediated by STAT1 activation in M1-macrophages. MYO1F
regulates M1-polarization in macrophages within intestinal
mucosa by stimulating intercellular adhesion and promotes IFN-
γ secretion via hyper-activating STAT1, a hub gene of the same
immune response module, M76. High IFN-γ secretion in this
pathway is consistent with the significant upregulation of MYO1F
in an immune-subtype in the INF-γ dominant microenvironment
by Thorsson et al.53. To establish the role of STAT1 in this
pathway within melanoma, we developed a STAT1-centered
network model from pSKCM, and intersected it with STAT1
perturbation signature in the Stat1-KO mouse model from bone-
marrow-derived macrophages (BMM). We observed a significant
overlap between the STAT1-centered network and STAT1 per-
turbation signature from BMM (Supplementary Fig. 3C). STAT1
expression was correlated with inferred M1-macrophage abun-
dance by CIBERSORT in pSKCM (Spearman ρ= 0.59, p=
4.28E− 11; Supplementary Fig. 3E). As there is only one tumor
with somatic STAT1 mutation in pSKCM, we do not have the
power to determine the relationship between STAT1 mutation
and M1 macrophage abundance. Thus, the STAT1-centered
network presents the detailed gene interactions in the STAT1
pathways in macrophages. Given the close interaction between
STAT1 and MYO1F (Pearson ρ= 0.32, p= 9.88E− 4), these
observations also support the regulatory roles of MYO1F in M1-
polarization and STAT1 activation in macrophages, leading to
increased IFN-γ secretion in the melanoma microenvironment.

The data also suggest thatMYO1Fmay play a role in mediating
interactions between CD8+ T cells and M1-macrophages
underlying activated adaptive immune systems in the primary
melanoma microenvironment. MYO1F mRNA expression was
significantly correlated with IFN-γ (i.e., IFNG) in an independent
melanoma bulk transcriptomic dataset (Fig. 2D). In the single-cell
transcriptomic data, IFN-γ was expressed in CD8+ T cells, while
MYO1F was expressed in CD8+ T cells and M1-macrophages
(Fig. 2B). Indeed, co-localization of M1-macrophages and CD8+
T cells alone can induce IFN-γ production by CD8+ T cells68,
enhancing their motility and cytotoxicity69. Taken together with
MYO1F’s regulatory role in driving M1-polarization, the corre-
lation between IFN-γ and MYO1F in the bulk RNA-seq datasets
may reflect such enhanced cytotoxicity due to MYO1F-mediated
M1-polarization, which in turn increases the abundance of co-
localized M1-macrophages and CD8+ T cells.

High expression of a co-inhibitory T-cell checkpoint, PD-L1,
was also found to be associated with a good prognosis in pSKCM
(log-rank p= 1.32E− 2). Although an increase in PD-L1 was
implicated in cytotoxic T-cell inhibition and thereby promoted
immune-surveillance escape in solid tumors49,70, the prognostic
relevance of high PD-L1 expression has been somehow con-
troversial. In a broad spectrum of solid tumors, several studies
reported high PD-L1 was associated with worse outcomes70–72,
whereas high PD-L1 in metastatic melanoma was found to be
correlated with higher infiltrating T-cell content and better
prognosis73. In our study, high PD-L1 may reflect the abundance
of MYO1Fhigh M1-macrophages modulating an INF-γ dominant
microenvironment and is independent of T-cell suppression. We
observed high PD-L1 expression mostly within the MYO1Fhigh

M1-macrophages, indicating they were predominant sources of
PD-L1 (Fig. 2B). Interestingly, the correlation between CD274
(i.e., PD-L1 expressions) and IFNG (i.e., INF-γ expressions)
(Fig. 2D) also suggests high PD-L1 as a marker for the INF-γ
dominant microenvironment.

Together, theMYO1F-PD-L1/PD1-IFNγ axis was identified as a
prognostic pathway involving overall IFN-γ production and
antitumoral activities of cytotoxic T lymphocytes (Fig. 5A).

Table 1 List of top nominated key genes associated with
prognosis in primary melanoma tumors.

Hub gene Connectivity Cox P log-rank P Module

PPP1R2a,b 17 0.048877 0.04945458 M530
TBC1D23b 17 0.05934 0.04945458 M530
MYNNb 16 0.002709 0.00286385 M530
SR140
(U2SURP)a

16 0.002702 0.00142604 M530

G2E3a 25 0.018412 0.04492035 M22
ZNF180c,a,b 24 0.004064 0.00422203 M22
ZNF225a 23 0.206873 0.02719113 M22
ZNF765 19 0.002705 0.01459658 M22
ZNF347a,b 17 0.013813 0.01459658 M22
SFRS13A
(SRSF10)a

25 0.00736 0.00562611 M235

KRIT1a,c 47 0.017451 0.00616876 M205
TMEM106Bc 33 0.016207 0.00063893 M205
PNPLA8 25 0.034177 0.00142604 M205
CCDC132
(VPS50)

22 0.18037 0.021213 M205

ZNF680c 20 0.02294 0.00142604 M205
ZNF12 18 0.001513 0.00286385 M205
MKLN1a 18 0.082066 0.03678236 M205

aValidated genes from invasion screening in SKmel147 cells.
bValidated genes from invasion screening in A375 cells.
cValidated genes from proliferation screening in SKmel147 cells.
Connectivity of a node (i.e., a gene) is the number of links incident to the node in the co-
expression network of TCGA-pSKCM. Cox P (i.e., Cox p value) was obtained from a two-sided
Cox proportional hazard model for the respective gene expressions. Log-rank p (i.e. log-rank
p value) was obtained by grouping patients by median expressions of the respective genes via a
two-sided log-rank test. The module shows the gene module membership of the respective
genes. Genes highlighted by bold fonts were chosen for comprehensive transcriptome analysis
by RNA-sequencing of SKmel147 cells transfected with the respective siRNAs.
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Among 17 nominated targets from the pSKCM network,
ZNF180 showed the most consistent pro-tumorigenic effect
(Fig. 4D). Consistent with the suppression of DNA repair path-
ways in melanoma cells by the knockdown of ZNF180, the
module primarily regulated by siZNF180, M25, harbors interac-
tions between DNA repair pathways involving MSH2, and
oncogenic pathways involving PIK3CA, Rho kinases, and
GTPases. Indeed, overexpression of MSH2 in primary melanoma
was associated with poor prognosis, likely by enabling tumor cells
to proliferate and metastasize as reported62. In contrast, several
modules upregulated by silencing of ZNF180 include tumor
suppressors such as BRMS1 (Breast cancer metastasis suppressor
1; within M170)74 and negative regulator of cell cycle GADD45-
GIP175 as hub genes. In pSKCM, PAI-1 protein expression is
negatively correlated with ZNF180 expression. PAI-1 has been

shown to promote macrophage infiltration in melanoma via
phosphorylation of FAK-Tyr925 76 (Fig. 5B), suggesting ZNF180
may also regulate immune cell infiltration in primary melanoma.

In conclusion, this study has identified multi-facetted axes of
tumor progression and immune evasion of primary melanoma
including enhanced CD8+ T-cell cytotoxicity likely via MYO1F
mediated macrophage M1-polarization and ZNF180 as a mole-
cular regulator of DNA repair and immune cell infiltration in
melanoma cells. The network models have revealed additional
regulators that have not been fully characterized in this study.
More mechanistic studies (e.g., genetic and epigenetic regulation)
using immune-competent models are needed to understand the
functional impact of the prioritized regulators of melanoma (e.g.,
MYO1F and ZNF180) on tumor progression and immune
modulation.

Fig. 4 Dissection of ZNF180-regulated pathways in melanoma. A, B Correlations between ZNF180 expressions (x-axis) and protein expressions (y-axis;
A: MSH2, B: PAI-1) by RPPA. Dot color indicates patients’ prognosis in overall survival (death within 3 years of follow-up: red, otherwise yellow). C Cell
abundance is correlated with ZNF180 expressions in pSKCM. The relative abundance of 4645 cells with annotated cell types (in x-axis) were inferred
across 103 pSKCM samples by cell population mapping (CPM) algorithm in the scBio package. The inferred abundance was then tested for correlation with
ZNF180 expressions in pSKCM. Each dot represents the correlation between the relative abundance of one cell from the scRNA-seq with ZNF180
expressions in pSKCM. the x-axis is cell types of the respective cells, and the y-axis is −log10(FDR) signed by Spearman’s correlation coefficient. The red
horizontal lines mark FDR= 0.05 threshold, and red rectangles highlight the most distinctively correlated cell types. The border of a boxplot show the
lower quantile, median, or upper quantiles while a whisker spans towards the minima and the maxima. D Summary of the pathways associated with the
modules potentially regulated by ZNF180. Enriched signatures in the modules are color-coded.
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Methods
Bioinformatics methods
Gene expression data processing. Ilumina HiSeq RNA Sequencing data, processed
by reads per kilobase per million (RPKM) method from TCGA (i.e. RNASeqV2),
has been downloaded and comprehensive data quality control has been performed.
Primary and metastatic tumor samples were collectively processed by log2(RPKM
+ 1) transform, followed by quantile-normalization. From then, we split the data
into primary-/metastatic-specific gene expression matrix, corrected for batch
effects by the center, platform, and tissue source site (transcription starting site
(TSS)) ids from TCGA sample barcodes, and corrected for confounding factors
including race, age, and gender by capturing residuals with intercepts from linear
regression model by lm() function from R software (version 3.4.2). This resulted in
103/353 annotated primary/metastatic tumor tissue samples across 19,047 genes.

Correlation analysis between methylation and gene expression. We firstly processed
the level 3 DNA methylation data from The Cancer Genome Atlas (TCGA),
corresponding to M-values from Illumina Infinium Human DNA Methylation
450k platform. Upon quantile-normalization, the M-values were further adjusted
for batch variables, including TSS, plate and center ids, and gender and age at
diagnosis by taking residuals with intercepts from the linear model, gene expression
~α1TSS+ α2plate+ α3center id+ α4gender+ α5age+ α0. We identified gene

expressions associated with DNA methylation within the metastatic tumor or
primary tumor samples by pairwise Spearman’s correlation analysis. Cis-regulated
genes were defined by applying 1.5 kbps from TSS.

Extraction of prognostic gene signatures. We performed a Wald test to system-
atically evaluate the prognostic significance of stratifying patients by individual
gene expressions by the medians. We used the function survdiff() from the survival
2.41-3R package77 to calculate log-rank p value for overall survival outcome within
primary and metastatic tumors separately and applied log-rank p value < 0.05. The
common prognostic gene signature across primary and metastatic tumors was then
defined as the intersection of the respective significant gene signatures and was
utilized for ranking the gene modules through enrichment test.

Co-expression network analysis. Gene co-expression networks were constructed by
multiscale embedded gene co-expression network analysis (MEGENA)48,78,79.
MEGENA first selects gene pairs with significant correlations (FDR < 0.05). The
significant gene pairs are then sorted by absolute Pearson’s correlation coefficients
and then embedded sequentially by running down the sorted gene pairs to test if
each pair can be drawn on the three-dimensional topological sphere without
crossing other edges (i.e., planarity test). This edge embedding process is termi-
nated if any of the following three conditions are met: (1) no more edges can be

Fig. 5 Key signaling pathways in primary melanoma captured by the bulk pSKCM and single-cell gene networks. A MYO1F mediated M1-polarization of
macrophages is associated with a good prognosis. Contact with CD8+ T cells leads to increased IFNγ excretion in the tumor microenvironment. B ZNF180
overexpression drives DNA repair and downstream melanoma pathways and suppresses macrophage infiltration via decreased PAI-1 protein expression.
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added, (2) the number of embedded edges reaches the maximal number of edges
for the planar network, i.e., 3(|V|− 2) (|V|= the number of genes), and (3) the
significant list of gene pairs has been tested fully for planarity80. The resulting co-
expression network belongs to a class of geometrical networks called “planar fil-
tered networks (PFNs)” which can be drawn on the surface of the sphere without
any link intersections80.

PFN then goes through unsupervised clustering to identify network clusters
(i.e., gene modules) at various compactness resolutions by multi-scale clustering
analysis (MCA). MCA splits the parent module into child modules by searching for
a partition optimizing for Newman’s modularity (Q)81. Then, the compactness of
each child module is evaluated by the compactness measure υ, defined as below

υ ¼ SPD
logð Vj jÞα ð1Þ

where V is the set of genes in the network, SPD is the average of shortest path
distances of all node pairs, and α is the resolution parameter. Given that the
denominator logð Vj jÞα is the hallmark of the small-world property represented by

the scaling relation dSPD � logðjV jÞ when α= 1, υ measures the coherence of a
network’s topology82. Therefore, a smaller α identifies more compact clusters. For a
given cluster (network), MCA searches through a range of α values for a resolution
scale that leads to more compact clusters than the parent cluster. The resulting gene
modules are organized in a hierarchy that represents a multiscale organization of
gene modules with different degrees of compactness. The hierarchy captures a
series of higher-order relationships (i.e., parent) modules possessing children
modules residing within these parent modules. MEGENA identifies more compact
children modules within the parent modules48.

Candidate key drivers of gene modules are further identified as the nodes with
significantly (p < 0.05) higher network connectivity than the randomly permuted
planar networks48. Gene modules are then annotated by the enriched MSigDB
signatures and associated with outcomes through the enrichment test of the
previously identified gene signatures from the survival and differential expression
analyses.

Integrative network analyses of pSKCM cohort. To handle large-scale multi-faceted
Omics data in primary skin cutaneous melanoma (pSKCM), we developed an
integrative network analysis framework to identify and prioritize altered molecular
subnetworks in primary melanoma etiology. The approach is anchored in con-
structing a multiscale co-expression network by MEGENA48.

We next generated a set of gene signatures reflecting genomic and epigenomic
alterations (Supplementary Fig. 1, IV; co-expression network analysis in
Supplementary Methods). The functional impact of epigenetic alterations was
determined by gene signatures correlated with CpG sites annotated in the Illumina
Infinium Human DNA Methylation 450k platform. If the significant correlation is
observed between expressions of gene x and methylation at a proximal CpG site
(less than 1.5 kbps within TSS) with Bonferroni corrected p < 0.05, the gene is
called a cis-methylation-correlated gene (cis-MCG). If the CpG site is beyond
1.5 kbps from the TSS, the gene is called a trans-MCG (Supplementary Data 5).
Enrichment of these signatures in a gene module reflects the impact of epigenetic
alterations on the module.

From the bulk-based TCGA pSKCM data, MEGENA identified 221 gene
modules with at least 50 genes, which were prioritized by enrichment for overall
survival associated genes in pSKCM (log-rank p < 0.05; extraction of prognostic
gene signatures in Supplementary Methods; see Supplementary Data 1 for the gene
signatures).

We filtered out the co-expression network modules from MEGENA (see
Supplementary Fig. 2A for the scheme) by comparing their connectivity to the
normal skin cases from the genotype-tissue expression (GTEx) consortium83,
before the module ranking process. We hypothesized network connectivity of
normal skin driven modules resemble that of a normal skin co-expression network.
We tested pSKCM module connectivity against normal skin co-expression network
from the GTEx83 via module differential connectivity analysis41. Gene modules
with significant gain or loss of overall gene-gene connectivity, compared to normal
skin with an overall false-discovery rate (FDR) < 0.05 threshold were retained (see
Supplementary Data 2B for the summaries of ranked modules).

Then, the importance of each gene module was determined by enrichment of
the prognostic signatures. Specifically, we performed Fisher’s Exact Test to assess
overrepresentation of the common prognostic gene signature and utilized p value
to rank order the modules. Given the module hierarchy in the PFN, module
ranking by enrichment test results in redundancy in the ranking due to the overlap
between each parent module and its child modules. To handle this, we retained
only the best-ranked module in each branch of the module hierarchy.

Analysis of melanoma single-cell RNA sequencing data. We downloaded the log2
(TPM/10+ 1) gene expression matrix from Gene Expression Omnibus under the
accession number, GSE7205640 (denoted GSE72056). GSE72056 served as a dis-
covery single-cell dataset in combination with the discovery bulk RNA-seq cohort,
pSKCM. This dataset was comprised of 1257 malignant cells, 2064 T cells, 525 B
cells, 125 macrophages, 65 endothelial cells, 61 cancer associated-fibroblasts and 52
natural killer cells. We characterized these cells in both unsupervised and super-
vised manners to annotate cell subpopulations.

We utilized the scran (1.10.1) R package for the unsupervised clustering analysis
of the single-cell RNA-seq data. The unsupervised clustering based on random
walk community detection, namely the walk trap algorithm84, was applied by
constructing the k-nearest neighbor (kNN) graph in the first ten PCs. The optimal
value k was determined by detecting the elbow in the entropy curve for kNN ϵ
[2,√Nc] (Nc= number of cells). kNN= 19 emerged as the optimal result, leading to
15 cell clusters with sizes ranging from 77 cells to 488 cells. Then, each cell cluster’s
markers were identified by contrasting each cell cluster with the rest using limma
(3.36.1) R package with FDR < 0.05 and fold increase > 1.2.

Cell type inference was performed independently from the clustering results
based on the cell type markers identified by Schelker et al. 201785. A decision-tree
algorithm implemented in R package rpart (4.1-13) was used to train classifiers
which were then subsequently applied to the entire set of the cells. Cell type
assignment for each cell was further refined by a known cell type most enriched in
the kNN of the cell (see Supplementary Data 4A for cell types in the scRNA-seq
data from GSE72056). Compared to the published cell types identified in
GSE7205640, we achieved an accuracy of 84% and all the cell clusters had distinct
cell types. For each cell cluster, we then constructed a cell-cluster specific co-
expression network by MEGENA. Lowly expressed genes were filtered out if they
were expressed in less than 20 cells and gene pairs with significant Spearman’s
correlations (FDR < 0.05) were taken as an input for MEGENA48.

To validate the findings from GSE72056, we analyzed the scRNA-seq data of 33
melanoma tumors by Jerby-Arnon et al.47. We performed the same unsupervised
clustering using the kNN approach, yielding 17 cell clusters (Supplementary
Fig. 5A; see Supplementary Data 4B for cell cluster annotation). The cell type of
each cell cluster was determined by the marker genes of the key cell types identified
through GSE72056 (shown in Supplementary Fig. 5B). The marker genes include
PTPRC (immune cell marker), CD3E (T-cell marker), CD8A (CD8+ T-cell
marker), CD19 (B-cell marker), CD14 (monocyte/macrophage marker), MITF
(melanoma cell marker), VWF, CDH5 (endothelial cell marker), COL1A1, and FAP
(cancer-associated fibroblasts, CAFs)85. In addition, we checked the chemokine
markers of macrophage polarization, adapted from Rozer86 and Duluc et al.87. As
shown in Supplementary Fig. 6, the cell cluster 17 has the most pronounced
expression of M1-macrophage-specific chemokines, hence named as M1-
macrophage in Supplementary Fig. 5A.

Identification of cell subpopulation specificity of a gene. For a given gene i, we first
identified a list of cells expressing the gene with a threshold TPMi > 0 and then
tested how these cells were enriched for the cells in each inferred cell type (i.e., cell
subpopulation) by FET. Multiple-testing corrected FET p value (i.e., FDR) < 0.05
was used as a threshold to designate a cell type (i.e., cell subpopulation) for the
gene.

Cell composition analysis of pSKCM transcriptome data. The RPKM data of the
pSKCM samples were taken as an input for the CIBERSORT web app at https://
cibersort.stanford.edu/15 with 100 permutations to identify the relative abundance
of immune cell populations. LM22 markers derived from purified distinct immune
cell populations were used to infer the abundance. The results are provided in
Supplementary Data 7A. We also performed ESTIMATE16 to infer more granular
cell compositions including tumor cells, immune and stromal cells to complement
CIBERSORT results based on L22 immune markers (provided in Supplementary
Data 7B).

However, cell type characteristics in the tumor microenvironment are
substantially different from the healthy microenvironment and is disease
dependent67,85. In this case, leveraging disease matched scRNA-seq has shown
improvements in cell type abundance inference67,85. To increase the confidence in
the inferred results, we used cell type-specific expression from the scRNA-seq data
to infer the relative abundance of individual single cells in the bulk pSKCM
samples using the CPM algorithm implemented in the scBio R package67. As a
result, mapping scores were computed between bulk samples and individual cells
from the single-cell transcriptomic data (Supplementary Data 7D).

Detailed cell types of some CD3+ T cells and macrophages were not available in
the scRNA-seq data. We performed a correlation analysis between the CPM
inferred and CIBERSORT inferred abundances as LM22 markers included detailed
cell type characteristics to address this issue. Supplementary Fig. 4D (upper panel)
shows that CIBERSORT confirmed the detailed cell types correspond to M1-
macrophage and RM CD4+ T cells. Indeed, the CD3+ T cells without unassigned
T-cell subtypes showed prominent CD4 expression (Supplementary Fig. 4E),
supporting that it was a CD4+ T-cell subtype. Henceforth, this cell population is
denoted RM CD4+ T cell.

In-silico validation of gene perturbation signatures. SKmel147 cells transduced with
siRNA against the top three target genes (namely, ZNF180, ZNF347, and PPP1R2)
from the screening were selected for RNA-sequencing to identify respective
knockdown gene signatures by differential expression analysis. We validated the
network structure around a gene subject to a functional perturbation (for instance,
gene knockdown or overexpression) by testing enrichment of the respective dif-
ferentially expressed gene signatures in the network neighborhoods of the per-
turbed genes. Specifically, l-layer neighborhood of a gene, g, is defined as the set of
genes whose shortest paths to g consists of l edges at most. The network structure is
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successfully validated if the BH FDR corrected FET p value < 0.05 within the l-layer
neighborhood. A network structure with more than 10% of the total number of
nodes in the global will not be tested as we are more interested in testing the local
structure around a gene.

Identification of cell populations expressing specific genes. Per gene i, we first
identified the list of cell types expressing the gene with threshold TPMi > 0. Then,
the list of expressing cells was tested for enrichments in the inferred cell types by
Fisher’s Exact Test (FET). FET FDR < 0.05 was used as a threshold to designate a
cell type as expressing the gene i.

Module conservation analysis between pSKCM and scRNA-seq. Each gene module
in the PFN from the pSKCM was compared against the cell-cluster specific
modules from the scRNA-seq data through FET. Two modules are conserved if the
Bonferroni corrected FET p value is smaller than 0.05, the enrichment fold-change
is greater than 2, and the overlap includes at least 30% of the genes in each module.
Supplementary Data 4C includes detailed information about the module con-
servation analysis.

Experimental methods
Western blotting. SkMel147 melanoma cells were lysed in ice-cold RIPA buffer
supplemented with protease inhibitor cocktail (Roche), centrifuged at 14,000 rpm
at 4 °C for 20 min and the supernatant was collected. Protein in the supernatant
was estimated by DC protein assay (Bio-rad). Totally, 20 µg of protein were
resolved by NuPage 4–12% Bis–Tris (Invitrogen) and transferred onto Immobilon-
P polyvinylidene fluoride membranes (Millipore). Membranes were washed with
distilled water followed by blocking with 5% nonfat dry milk in Tris-buffered saline
supplemented with 0.05% Tween-20 (TBST) for 2 h at room temperature. Mem-
branes were washed briefly with TBST then incubated in anti-ZNF180 (1:1000;
Sigma SAB1306465), and anti-Tubulin (1:5000; Sigma, T9026) primary antibodies
diluted in 5% nonfat dry milk in TBST (0.05% Tween-20) and incubated on a plate
shaker for overnight at 4 °C. Membranes were washed for 3 times with TBST
followed by incubation with horseradish peroxidase-conjugated anti-mouse or
anti-rabbit secondary antibodies (1:5000; Sigma). Membranes were washed three
times with TBST then signals were detected using Clarity Western ECL Blotting
Substrate (BioRad) and imaged in LICOR Odyssey Fc imaging system.

Cell lines and cell culture. Cell line SKmel147 was obtained from Dr. Alan
Houghton’s laboratory (MSKCC, New York). A375 was purchased from American
Type Culture Collection. Cells were cultured in DMEM (Invitrogen) containing
10% (v/v) fetal bovine serum and 1% (v/v) penicillin/streptomycin. Cell lines were
maintained in a 5% CO2 incubator at 37 °C. Cell lines were routinely tested to
exclude mycoplasma contamination.

Reverse transfection of siRNA. Transfection conditions were optimized for
SKmel147 and A375 melanoma cell lines using fluorescein-labeled oligos (Block-
IT, Invitrogen). Liposomal transfection complexes with siRNA pools for each of the
candidate genes and with NTC (siRNA ON-target plus SMARTpools, Dharmacon,
50 nM) were generated with Lipofectamine 2000 (Invitrogen), following the
manufacturer’s recommendations. Media was changed after 6 hr incubation with
liposomal complexes. Forty-eight hours after initiation of transfection, cells were
used for RNA extraction, or for proliferation or invasion assays.

RNA extraction, reverse transcription, and qRT- PCR. Total RNA was extracted
using miRNeasy QIAGEN mini kit according to the manufacturer’s protocol.
Totally, 500 ng of RNA were reverse transcribed using TaqMan RT reagents
(Applied Biosystems) with random hexamers following the manufacturer’s
recommendations. cDNA was diluted with RNase and DNase free water prior to use
in a quantitative real-time polymerase chain reaction (qRT-PCR). GAPDH was used
as a housekeeping gene in qRT-PCR. Transcripts were quantified by ABI StepOne
Real-Time PCR system (Applied Biosystems) using Power SYBR Green PCR
MasterMix and following 2-step cycling parameters: holding stage, 10 min at 95 °C,
and cycling stage 40 cycles of 95 °C for 15 s followed by 60 °C for 1 min followed by
melting curve stage. The experiment was performed in three technical replicates.

Cell proliferation assays. Transfected cells were seeded at 3 × 103 cells per well in
96-well plates. The following day (day 0) and every 24 h after (up to 3 days), cells
were fixed in 0.1% glutaraldehyde and stored in phosphate-buffered saline (PBS) at
4 °C. Cells were then stained with 0.5% crystal violet, dried, and dissolved with 15%
acetic acid. Optical density was read at 590 nm. For normalization and control
purposes, cells transfected with NTC (siNTC) were present on each experiment.

In vitro invasion assay. Cell invasion was measured using 24-well Fluoroblok
inserts (8 mm Becton Dickinson). Optimization was performed for SKmel147 and
A375 cell lines to identify assay time length and Matrigel concentration. Briefly,
siRNA transfected SKmel147 or A375 cells (40,000 cells per insert) were suspended
in the serum-free medium over a Matrigel coating (Becton Dickinson), and a
medium supplemented with 10% serum was used as a chemo-attractant. Cells that
invaded after 6–8 h were stained in 4 μg/ml Calcein AM dye (ThermoFisher) for

1 h and counted in 5 different fields using a fluorescent microscope. For each
independent experiment, three replicates per condition were run. The average of
cell counts from three replicates per condition was used for plotting results. For
control, cells transfected with NTC (siNTC) were present in each experiment. Cell
counts for each well were normalized to the mean counts (of replicate wells) for the
corresponding condition in the cell input plate to control for cell proliferation
effects that may have occurred between initiation of transfection and assay seeding.

RNA-sequencing of siRNA transfected SKmel147 cells. Total RNA was extracted 72 h
post transfection of siNTC, siZNF180, siZNF347, or siPPP1R2 in SKmel147 cell
line in three replicates. RNA was extracted using miRNeasy QIAGEN mini kit.
RNA was then processed with Ribo-Zero rRNA Removal Kit (Illumina) to remove
rRNA, and further processed into sequencing libraries using Illumina TruSeq
Stranded Total RNA Library Prep, following manufacturer’s protocol. All libraries
were sequenced on Illumina HiSeq2500 ($150M, 50 bp paired-end).

In vivo validation of protumorigenic effects of ZNF180 in SKMEL147 xenografts.
SKmel147 cells were infected with doxycycline (DOX)-inducible shNTC or
shZNF180 lentivirus and selected with 2 μg/ml puromycin for 48 h. Cells were
induced with 2 μg/ml DOX for 3 days, trypsinized, washed with PBS, then sus-
pended in sterile PBS at a concentration of 2 × 106 cells per 150 µl, and maintained
on ice until injection. Immediately before injection, cell aliquots were mixed with
Matrigel (Becton Dickinson). Totally, 150 µl of cell/matrigel (1:1) suspensions were
injected subcutaneously in the right flank of NOD/Shi-scid/IL-2Rgamma null (NSG,
Jackson labs #005557) 20-weeks-old male mice (n= 12 per group). Mice were fed
DOX-containing food (200mg/kg weight). When primary tumors were palpable
(6 days post injection), length (l) and width (w) were measured with calipers, 3
times weekly over a period of 13 days. Tumor volume was calculated using the
formula (l ×w2)/2. Tumor weight was measured at endpoints. Animal experiments
were conducted in accordance with guidelines set forth by the Institutional Animal
Care and Use Committee (IACUC) of NYU (protocol # S16-00051).

Viral production. Totally, 4 × 106 HEK293T cells were seeded per 10 cm tissue
culture plate and incubated overnight at 37 °C and 5% CO2. After seeding,
HEK293T were co-transfected with PLKO-Tet-On-shNTC or PLKO-tet-on-
shZNF180 (shRNA sequence: CCGGTGTCCTTGTTGTGCATCAAAGCTCG
AGCTTTGATGCACAACAAGGACATTTTTTG) lentiviral expression constructs
(12 μg), viral packaging plasmid (psPAX2, 8 μg), and viral envelope plasmid
(pMD2.G, 4 μg) using Lipofectamine 2000 (Invitrogen) following manufacturer’s
recommendations. Viral supernatant was collected and 0.45 mm filtered at 48 h
post transfection and stored at 4 °C for short-term use (1–5 days) or −20 °C for
long-term storage (5–30 days).

In vivo xenograft. SKmel147 cells were infected with DOX-inducible shNTC or
shZNF180 lentivirus and selected with 2 μg/ml puromycin for 48 h. Cells were
induced with 2 μg/ml DOX for 3 days, trypsinized, washed with PBS, then sus-
pended in sterile PBS at a concentration of 2 × 106 cells per 150 μl, and maintained
on ice until injection. Immediately before injection, cell aliquots were mixed with
Matrigel (Becton Dickinson). Totally, 150 μl of cell/matrigel (1:1) suspensions were
injected subcutaneously in the right flank of NOD/Shi-scid/IL-2Rgamma null
(NSG, Jackson labs #005557) 20-weeks-old male mice (n= 12 per group). Mice
were fed DOX-containing food (200 mg/kg weight). When primary tumors were
palpable (6 days post injection), length (l) and width (w) were measured with
calipers, 3 times weekly over a period of 13 days. Tumor volume was calculated
using the formula (l × w2)/2. Tumor weight was measured at endpoints.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The discovery bulk gene expression data, analyzed as primary melanoma (pSKCM), are
available from The Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.cancer.
gov/). The discovery single-cell RNA sequencing data is available from Gene Expression
Omnibus (GEO) under accession number GSE72056), and we downloaded the
normalized TPM values (file name: GSE72056_melanoma_single_cell_revised_v2.txt.gz).
The validation single-cell RNA sequencing data from Jerby-Arnon et al. (2018) was
downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP109/
melanoma-immunotherapy-resistance. The clinical and gene expression data (z-score
transformed from log-transformed FPKM values) for the validation bulk cohort46 were
downloaded from cbioportal website, https://www.cbioportal.org/study/summary?
id=skcm_dfci_2015. The RNA-sequencing data from siRNA silencing of ZNF180,
ZNF347 and PPP1R2 are available in GEO under accession number GSE161385. In
addition, the processed data are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
MEGENA software (version 1.3.7) is publicly available as an R package in The
Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/web/packages/
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MEGENA/index.html). The development version of MEGENA is available from GitHub
repository (https://github.com/songw01/MEGENA,https://doi.org/10.5281/
zenodo.4276493). We utilized ‘cit’ package for the Causal Inference Test (CIT) of
methylation changes to the transcriptome. Additional codes for detailed implementation
of MEGENA, CIT, in silico gene-gene interaction validation and other codes are available
at https://github.com/songw01/melanoma_network_codes.
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