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Benchmarking emergency 
department prediction models 
with machine learning and public 
electronic health records
Feng Xie1,13, Jun Zhou2,13, Jin Wee Lee1, Mingrui Tan2, Siqi Li1, Logasan S/O Rajnthern3, 
Marcel Lucas Chee4, Bibhas Chakraborty1,5,6, An-Kwok Ian Wong7, Alon Dagan8,9, 
Marcus Eng Hock Ong1,10, Fei Gao2,14 & Nan Liu   1,11,12,14 ✉

The demand for emergency department (ED) services is increasing across the globe, particularly 
during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly 
challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by 
the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access 
to a vast amount of clinical data, which allows us to develop prediction models and decision support 
systems to address these challenges. To date, there is no widely accepted clinical prediction benchmark 
related to the ED based on large-scale public EHRs. An open-source benchmark data platform 
would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate 
comparisons among different studies and methodologies. Based on the Medical Information Mart for 
Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we created a benchmark dataset 
and proposed three clinical prediction benchmarks. This study provides future researchers with insights, 
suggestions, and protocols for managing data and developing predictive tools for emergency care.

Introduction
Emergency Departments (ED) experience large volumes of patient flows and growing resource demands, par-
ticularly during the current COVID-19 pandemic1. This growth has caused ED crowding2 and delays in care 
delivery3, resulting in increased morbidity and mortality4. Prediction models5–9 provide opportunities for iden-
tifying high-risk patients and prioritizing limited medical resources. ED prediction models center on risk strat-
ification, which is a complex clinical judgment based on factors such as patient’s likely acute course, availability 
of medical resources, and local practices10.

The widespread use of Electronic Health Records (EHR) has led to the accumulation of large amounts of data, 
which can be used to develop predictive models to improve emergency care11–14. Based on a few large-scale EHR 
databases, such as Medical Information Mart for Intensive Care III (MIMIC-III)15, eICU Collaborative Research 
Database16, and Amsterdam University Medical Centers Database (AmsterdamUMCdb)17, several prediction 
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benchmarks have been established18–20. These public benchmarks standardized the process of transforming raw 
EHR data into readily usable data to construct prediction models. They have provided clinicians and method-
ologists with easily accessible and high-quality medical data, accelerating research and validation efforts21,22. 
These non-proprietary databases and open-source pipelines make it possible to reproduce and improve clinical 
studies in ways that would otherwise not be possible18. While there are some publicly available benchmarks, 
most pertain to intensive care settings, and there are no widely accepted clinical prediction benchmarks related 
to the ED. An ED-based public benchmark dataset would lower the entry barrier for new researchers, allowing 
them to focus on developing novel research ideas.

Machine learning has seen tremendous advances in recent years and has gained increasing popularity in the 
realm of ED-based prediction models23–30. These prediction models involve machine learning, deep learning, 
interpretable machine learning, and others. However, we have found that researchers often develop an ad-hoc 
model for one clinical prediction task at a time, using only one dataset23–28. There is a lack of comparative studies 
among different methods and models to predict the same ED outcome, undermining the generalizability of any 
single model. Generally, existing prediction models were developed on retrospective data without prospective 
validation in real-world clinical settings. Hence, there remains a need for prospective, comparative studies on 
accuracy, interpretability, and utility of risk models for ED. Using an extensive public EHR database, we aimed 
to standardize data preprocessing and establish a comprehensive ED benchmark dataset alongside comparable 
risk prediction models for three ED-based outcomes. It is expected to facilitate reproducibility and model com-
parison and accelerate progress toward utilizing machine learning in future ED-based studies.

In this paper, we proposed a public benchmark suite for the ED using a large EHR dataset and introduced 
three ED-based outcomes: hospitalization, critical outcomes, and 72-hour ED reattendance. We implemented 
and compared several popular methods for these clinical prediction tasks. We used data from the publicly avail-
able MIMIC IV Emergency Department (MIMIC-IV-ED) database31,32, which contains over 400,000 ED visit 
episodes from 2011 to 2019. Our code is open-source (https://github.com/nliulab/mimic4ed-benchmark) so 
that anyone with access to MIMIC-IV-ED can follow our data processing steps, create benchmarks, and repro-
duce our experiments. This study provides future researchers with insights, suggestions, and protocols to process 
the raw data and develop models for emergency care in an efficient and timely manner.

Methods
This section consists of three parts. First, we describe raw data processing, benchmark data generation, and 
cohort formation. Second, we introduce baseline models for three prediction tasks. Finally, we elaborate on the 
experimental setup and model performance evaluation.

Master data generation.  We use standardized terminologies as follows. Patients are referred to by their 
subject_id. Each patient has one or more ED visits, identified by stay_id in edstays.csv. If there is an inpatient stay 
following an ED visit, this stay_id could be linked with an inpatient admission, identified by hadm_id in edstays.
csv. subject_id and hadm_id can also be traced back to the MIMIC-IV31 database to follow the patient through-
out inpatient or ICU stay and patients’ future or past medical utilization, if needed. In the context of our tasks, 
we used edstays.csv as the root table and stay_id as the primary identifier. As a general rule, we have one stay_id 
for each prediction in our benchmark tasks. All raw tables were linked through extract_master_dataset.ipynb, 
illustrated in Fig. 1. The linkage was based on the root table, and merged through different identifiers, including 
stay_id (ED), subject_id, hadm_id, or stay_id (ICU). We extracted all high-level information and consolidated 
them into a master dataset (master_dataset.csv).

Fig. 1  Raw data and the linkage through four unique identifiers (omit .csv for table name).
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To construct the master dataset, we reviewed a number of prominent ED studies5,7,33–35 to identify relevant 
variables and outcomes. Moreover, we consulted clinicians and informaticians familiar with the raw data and ED 
operation to identify and confirm all ED-relevant variables. We excluded variables that were irrelevant, repeated, 
or largely absent. A list of high-level constructed variables is presented in Supplementary eTable 1, including 
patient history, variables collected at triage and during ED stay, and primary ED-relevant outcomes. The final 
master dataset includes 448,972 ED visits by 216,877 unique patients.

Data processing and benchmark dataset generation.  The data processing workflow (data_general_
processing.ipynb), illustrated in Fig. 2, begins with the master dataset generated previously to derive the bench-
mark dataset. In the first step, we filtered out all ED visits with patients under 18 years old and those without 
primary emergency triage class assignments. A total of 441,437 episodes remained after the filtering process.

The raw EHR data cannot be directly used for model building due to missing values, outliers, duplicates, or 
incorrect records caused by system errors or clerical mistakes. We addressed these issues with several proce-
dures. For vital signs and lab tests, a value would be considered an outlier and marked as missing if it was outside 
the plausible physiological range as determined by domain knowledge, such as a value below zero or a SpO2 level 
greater than 100%. We followed the outlier detection procedure used in MIMIC-EXTRACT20, a well-known 
data processing pipeline for MIMIC-III. We utilized the thresholds available in the source code repository of 
Harutyunyan et al., where one set of upper and lower thresholds was used for filtering outliers. Any value that 
falls outside this range was marked as missing. Another set of thresholds was introduced to indicate the phys-
iologically valid range, and any value that falls beyond this range was replaced by its nearest valid value. These 
thresholds were suggested by clinical experts based on domain knowledge.

For benchmarking purposes, we fixed a test set of 20% (n = 88,287) of ED episodes, covering 65,169 unique 
patients. Future researchers are encouraged to use the same test set for model comparisons and to interact with 
the test set as infrequently as possible. The training set consisted of the remaining 80% of ED episodes. The val-
idation set can be derived from the training set if needed. Missing values (including outliers marked as missing 
and those initially absent) were imputed. In this project, we used the median values from the training set and 
other options are provided through our code repository. The same values were used for imputation on the test set.

ICD codes processing.  In MMIC-IV, each hospital admission is associated with a group of ICD diagnosis 
codes (in diagnoses_icd.csv), indicating the patients’ comorbidities. We embedded the ICD codes within a time 
range (e.g., five years) from each ED visit into Charlson Comorbidity Index (CCI)36 and Elixhauser Comorbidity 
Index (ECI)37 according to the mapping proposed by Quan H et al.38. We adopted the codebase from Cates et al. 
and developed the neural network-based embedding with similar network structures to Med2Vec39.

Benchmark tasks.  Following are three ED-relevant clinical outcomes. They are all of utmost importance to 
clinicians and hospitals due to their immense implications on costs, resource prioritization, and patients’ quality 
of life. Accurate prediction of these outcomes with the aid of big data and artificial intelligence has the potential 
to transform health services.

•	 The hospitalization outcome is met with an inpatient care site admission immediately following an ED visit40–42. 
Patients who transitioned to ED observation were not considered hospitalized unless they were eventually 
admitted to the hospital. As hospital beds are limited, this outcome indicates resource utilization and may 

Fig. 2  The workflow of data processing from raw data.
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facilitate resource allocation efforts. The hospitalization outcome also suggests patient acuity, albeit in a limited 
way, since hospitalized patients represent a broad spectrum of disease severity.

•	 The critical outcome34 is compositely defined as either inpatient mortality43 or transfer to an ICU within 
12 hours. This outcome represents the critically ill patients who require ED resources urgently and may suffer 
from poorer health outcomes if care is delayed. Predicting the critical outcome at ED triage may enable phy-
sicians to allocate ED resources efficiently and intervene on high-risk patients promptly.

•	 The ED reattendance outcome refers to a patient’s return visit to ED within 72 hours after their previous 
discharge from the ED. It is a widely used indicator of the quality of care and patient safety and is believed to 
represent patients who may not have been adequately triaged during their first emergency visit44.

Baseline methods.  Various triage systems, including clinical judgment, scoring systems, regression, 
machine learning, and deep learning, were applied to the benchmark dataset and evaluated on each bench-
mark task, as detailed in Table 1. A five-level triage system, Emergency Severity Index (ESI)45, was assigned by 
a registered nurse based on clinical judgments. Level 1 is the highest priority, and level 5 is the lowest. Several 
scoring systems were also calculated, including the Modified Early Warning Score (MEWS)46, National Early 
Warning Score (NEWS, versions 1 and 2)47, Rapid Emergency Medicine Score (REMS)48, and Cardiac Arrest 
Risk Triage (CART)49. It is important to note that there are no neurological features (i.e., Glasgow Coma Scale) 
in the MIMIC-IV-ED dataset, which may lead to incomplete scores. Three machine learning methods – logistic 
regression (LR), random forest (RF), and gradient boosting (GB) – were benchmarked as well as deep learning 
methods multilayer perceptron (MLP)50, Med2Vec39, and long short-term memory (LSTM)51–53. These neural 
network structures are illustrated in Supplementary eFigure 1. We used the scikit-learn package54 with the default 
parameters for machine learning methods and Keras55 for deep learning methods. In addition, the interpretable 
machine learning method, AutoScore56–59, was implemented with its R software package60.

Description Variables Hyperparameters Package used

Traditional machine learning

Logistic regression (LR) Use the logistic function to 
model binary outcomes

Vitals, chief complaints, 
comorbidities, and age

penalty = ‘l2’,
C = 1.0,
max_iter = 100

scikit-learn 
Python packageRandom forest (RF)

Build many decision trees 
in parallel and combine the 
results through ensemble 
learning

N_estimators = 100

Gradient boosting (GB)
Build a number of decision 
trees in stages and combine 
the results along the way

Loss = ‘deviance’,
learning_rate = 0.1,
n_estimators = 100

Traditional clinical scoring systems

Emergency Severity Index (ESI)
A subjective five-level 
triage system assigned by a 
registered nurse

triage_acuity None None

Clinical Score: NEWS, NEWS2, 
MEWS, REMS, CART

Widely used clinical score for 
risk stratification at ED triage

Vitals, comorbidities, 
and age

None; No training is 
needed None

Interpretable machine learning

AutoScore
Interpretable machine 
learning automatic clinical 
score generator

Vitals, chief complaints, 
comorbidities, and age

Number of variables, tuned 
through performance-
based parsimony plot

AutoScore R 
package

Deep learning

Multilayer perceptron (MLP)
The neural networks of 
multiple fully connected 
neurons

Vitals, chief complaints, 
comorbidities, and age

activation = ‘relu’, 
learning_rate = 0.001,
batch_size = 200, 
epochs = 20,
loss = binary_crossentropy,
optimizer = Adam

Keras Python 
packageMed2Vec Embedding ICD codes with 

neural network

Vitals, chief complaints, 
comorbidities, age and 
ICD codes in the past 
5 years

activation = ‘relu’,
learning_rate = 0.001, 
batch_size = 200, 
epochs = 100,
loss = binary_crossentropy,
optimizer = Adam

LSTM
A special type of RNN which 
is capable of learning long-
term dependencies

Basic static variables, 
and temporal variables 
of vital signs collected in 
the ED

activation = ‘relu’,
learning_rate = 0.001,
batch_size = 200,
epochs = 20,
loss = binary_crossentropy,
optimizer = Adam

Table 1.  Description of various baseline methods. CART: Cardiac Arrest Risk Triage. LSTM: Long short-term 
memory. MEWS: Modified Early Warning Score. NEWS: National Early Warning Score. NEWS: National Early 
Warning Score, Version 2. REMS: Rapid Emergency Medicine Score. RNN: Recurrent neural network.
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Experiments, settings, and evaluation.  We conducted all experiments on a server equipped with an 
Intel Xeon W-2275 processor, 128GB of memory, and an Nvidia RTX 3090 GPU, and the running time at model 
training was recorded. Deep learning models were trained using the Adam optimizer and binary cross-entropy 
loss. The AutoScore method optimized the number of variables through a parsimony plot. As the implementation 
was only for demonstration purposes, Module 5 of the clinical fine-tuning process in AutoScore was not imple-
mented. We conducted the receiver operating characteristic (ROC) and precision-recall curve (PRC) analysis 
to evaluate the performance of all prediction models. The area under the ROC curve (AUROC) and the area 
under the PRC (AUPRC) values were reported as an overall measurement of predictive performance. Model 

Overall

Outcomes

Hospitalization outcome

Critical outcomes
72-hour ED 
reattendanceDischarge Hospitalized

# Emergency visits 441,437 232,461 208,976 26,174 15,299

Demographic

Age 52.80 (20.60) 46.29 (19.36) 60.03 (19.50) 65.43 (17.85) 50.40 (18.70)

Gender

 Female 239794 (54.3%) 133874 (57.6%) 105920 (50.7%) 12168 (46.5%) 7068 (46.2%)

 Male 201643 (45.7%) 98587 (42.4%) 103056 (49.3%) 14006 (53.5%) 8231 (53.8%)

Emergency Severity Index

 Level 1 25363 (5.7%) 5349 (2.3%) 20014 (9.6%) 8888 (34.0%) 462 (3.0%)

 Level 2 147178 (33.3%) 45445 (19.5%) 101733 (48.7%) 14099 (53.9%) 3838 (25.1%)

 Level 3 237565 (53.8%) 151843 (65.3%) 85722 (41.0%) 3176 (12.1%) 9849 (64.4%)

 Level 4 30160 (6.8%) 28704 (12.3%) 1456 (0.7%) 11 (0.0%) 1091 (7.1%)

 Level 5 1171 (0.3%) 1120 (0.5%) 51 (0.0%) 0 (0.0%) 59 (0.4%)

Chief complaints

Chest pain 30756 (7.0%) 13790 (5.9%) 16966 (8.1%) 1107 (4.2%) 907 (5.9%)

Abdominal pain 50868 (11.5%) 25801 (11.1%) 25067 (12.0%) 1711 (6.5%) 1961 (12.8%)

Headache 16601 (3.8%) 11967 (5.1%) 4634 (2.2%) 620 (2.4%) 627 (4.1%)

Shortness of breath 1285 (0.3%) 402 (0.2%) 883 (0.4%) 213 (0.8%) 24 (0.2%)

Back pain 17625 (4.0%) 12369 (5.3%) 5256 (2.5%) 282 (1.1%) 621 (4.1%)

Cough 9269 (2.1%) 5293 (2.3%) 3976 (1.9%) 411 (1.6%) 244 (1.6%)

Nausea/vomiting 10666 (2.4%) 5606 (2.4%) 5060 (2.4%) 466 (1.8%) 401 (2.6%)

Fever/chills 15267 (3.5%) 4651 (2.0%) 10616 (5.1%) 1427 (5.5%) 398 (2.6%)

Syncope 8198 (1.9%) 4409 (1.9%) 3789 (1.8%) 359 (1.4%) 167 (1.1%)

Dizziness 10928 (2.5%) 6337 (2.7%) 4591 (2.2%) 365 (1.4%) 287 (1.9%)

Information collected at triage

Temperature (Celsius) 36.71 (0.54) 36.68 (0.49) 36.75 (0.59) 36.75 (0.66) 36.69 (0.51)

Mean arterial pressure 
(mmHg) 96.59 (14.86) 97.55 (13.84) 95.51 (15.86) 92.08 (17.86) 97.91 (14.77)

Heart rate (bpm) 85.05 (17.46) 83.90 (16.32) 86.32 (18.56) 90.74 (20.93) 87.07 (16.94)

Respiratory rate (bpm) 17.57 (2.49) 17.30 (2.11) 17.87 (2.83) 18.91 (4.32) 17.42 (2.16)

Oxygen saturation (%) 98.40 (2.42) 98.80 (2.00) 97.95 (2.75) 97.30 (3.70) 98.39 (2.51)

Systolic blood pressure 
(mmHg) 134.84 (22.14) 135.14 (20.67) 134.51 (23.67) 129.17 (26.21) 135.09 (21.79)

Diastolic blood pressure 
(mmHg) 77.46 (14.71) 78.76 (13.76) 76.01 (15.57) 73.53 (16.46) 79.33 (14.62)

Pain scale 4.15 (3.60) 4.67 (3.58) 3.58 (3.54) 3.08 (3.02) 4.74 (3.78)

Table 2.  Basic characteristics of the benchmark dataset. Continuous variables are presented as mean (SD); binary 
or categorical variables are presented as count (%); more variables are described in Supplementary eTable 2.

Outcome

Hospitalization
ICU transfer in 
12 hours

Inpatient 
mortality

Critical 
outcome

ED 
reattendance 
in 72 hours

Training data 167165 (47.34%) 19791 (5.60%) 3295 (0.93%) 21048 (5.96%) 12365 (3.50%)

Test data 41811 (47.36%) 4816 (5.45%) 796 (0.90%) 5126 (5.80%) 2934 (3.32%)

Total 208976 (47.34%) 24607 (5.57%) 4091 (0.93%) 26174 (5.93%) 15299 (3.47%)

Table 3.  Outcome statistics of prediction tasks. The number of ED visits and their proportions in training and 
test data are shown for each outcome subgroup.
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performance was reported on the test set, and 100 bootstrapped samples were applied to calculate 95% confidence 
intervals (CI). Furthermore, we computed the sensitivity and specificity measures under the optimal cutoffs, 
defined as the points nearest to the upper-left corner of the ROC curves.

Results
Baseline characteristics of the benchmark dataset.  We compiled a master dataset comprising 448,972 
ED visits of 216,877 unique patients. After excluding incomplete or pediatric visits, a total of 441,437 adult ED 
visits were finally included in the benchmark dataset. They were randomly split into 80% (353,150) training data 
and 20% (88,287) test data. Table 2 and Supplementary eTable 2 summarize the baseline characteristics of the 
entire cohort, stratified by outcomes. The average age of the patients was 52.8 years old, and 54.3% (n = 239,794) 
of them were females. Compared with other patients, those with critical outcomes displayed higher body temper-
ature and heart rate, and were prescribed a greater amount of medication. Additionally, they were more likely to 
have fluid and electrolyte disorders, coagulopathy, cancer, cardiac arrhythmias, valvular disease, and pulmonary 
circulation disorders.

The outcome statistics for the benchmark data are presented in Table 3, demonstrating a balanced stratifica-
tion of the training and test data. In the overall cohort, 208,976 (47.34%) episodes require hospitalization, 26,174 
(5.93%) episodes have critical outcomes, and 15,299 (3.47%) result in 72-hour ED reattendance.

Hospitalization Critical outcomes 72-hour ED reattendance

Variable Importance Variable Importance Variable Importance

Age (years) 0.1266 Age (years) 0.09980 Age (years) 0.0840

ESI at triage 0.1118 Systolic BP at triage (mmHg) 0.09978 ED length of stays 
(hours) 0.0837

Systolic BP at triage (mmHg) 0.0872 Heart rate at triage (bpm) 0.0932 Systolic BP at ED 
(mmHg) 0.0789

Heart rate at triage (bpm) 0.0853 ESI at triage 0.0921 Diastolic BP at ED 
(mmHg) 0.0767

Diastolic BP at triage (mmHg) 0.0828 Diastolic BP at triage (mmHg) 0.0838 Heart rate at ED (bpm) 0.0762

Temperature at triage (Celsius) 0.0784 Temperature at triage (Celsius) 0.0766 Temperature at ED 
(Celsius) 0.0669

Pain scale at triage 0.0469 Respiratory rate at triage (bpm) 0.0567 Counts of medication 
reconciliation 0.0518

Oxygen saturation at triage (%) 0.0425 Oxygen saturation at triage (%) 0.0505 Pain scale at triage 0.0439

Respiratory rate at triage (bpm) 0.0402 Pain scale at triage 0.0398 Counts of medication 
reconciliation 0.0393

Hospitalizations in the past year 0.0276 ED visits in the past year 0.0187 Oxygen saturation at 
ED (%) 0.0387

Table 4.  Top 10 variables from each benchmark task based on random forest variable importance. BP: Blood 
pressure. ED: Emergency department. ESI: Emergency Severity Index.

Model AUROC (95% CI) AUPRC (95% CI) Threshold Sensitivity (95% CI) Specificity (95% CI) Runtime*
Number of 
variables

LR 0.806 (0.803–0.809) 0.770 (0.765–0.775) 0.446 0.747 (0.722–0.749) 0.721 (0.719–0.745) 3.715 64

RF 0.819 (0.819–0.822) 0.787 (0.785–0.790) 0.490 0.754 (0.742–0.767) 0.734 (0.724–0.747) 58 64

GB 0.819 (0.817–0.822) 0.793 (0.790–0.797) 0.474 0.754 (0.736–0.759) 0.729 (0.727–0.752) 60 64

ESI 0.711 (0.709–0.714) 0.632 (0.628–0.636) 2 0.582 (0.578–0.586) 0.784 (0.781–0.787) N/Aa 1

NEWS 0.581 (0.579–0.584) 0.555 (0.552–0.559) 1 0.565 (0.561–0.570) 0.540 (0.537–0.544) N/A 6

NEWS2 0.563 (0.560–0.566) 0.538 (0.534–0.541) 1 0.519 (0.514–0.522) 0.563 (0.559–0.567) N/A 6

REMS 0.672 (0.669–0.675) 0.610 (0.605–0.613) 3 0.714 (0.709–0.716) 0.564 (0.559–0.568) N/A 6

MEWS 0.559 (0.557–0.562) 0.522 (0.518–0.526) 2 0.300 (0.296–0.302) 0.810 (0.808–0.813) N/A 6

CART 0.675 (0.673–0.678) 0.618 (0.615–0.622) 4 0.702 (0.698–0.706) 0.586 (0.582–0.592) N/A 4

AutoScore 0.793 (0.791–0.797) 0.756 (0.753–0.760) 45 0.722 (0.717–0.749) 0.721 (0.698–0.725) N/A 10

MLP 0.822 (0.821–0.825) 0.796 (0.793–0.800) 0.457 0.757 (0.745–0.767) 0.734 (0.724–0.746) 171 64

Med2Vec 0.813 (0.812–0.816) 0.782 (0.778–0.785) 0.431 0.744 (0.738–0.748) 0.731 (0.728–0.739) 1044 64 + 7930#

Table 5.  Comparison of the performance of different models for hospitalization prediction at triage. AUROC: 
The area under the receiver operating characteristic. AUPRC: The area under the precision-recall curve. CART: 
Cardiac Arrest Risk Triage. CI: Confidence interval. ESI: Emergency Severity Index. GB: Gradient boosting. 
LSTM: Long short-term memory. LR: Logistic regression. MEWS: Modified Early Warning Score. MLP: 
Multilayer perceptron. NEWS: National Early Warning Score. NEWS2: National Early Warning Score, Version 
2. REMS: Rapid Emergency Medicine Score. RF: Random forest. *The unit of the running time in seconds. 
aRuntime calculation is not applicable for clinical scores (including AutoScore), as their development usually 
involves some manual processes. #The dataset contains 7930 distinct ICD codes.
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Variable importance and ranking.  Following a descending order of variable importance obtained from 
RF, the top 10 variables selected for each predictive task are presented in Table 4. Vital signs show significant pre-
dictive value in all three tasks. Age is also among the top predictive variables for all tasks, underscoring the impact 
of aging on emergency care utilization. While the triage level (i.e., ESI) is highly related to the hospitalization 
and critical outcome, it is not relevant to 72-hour ED reattendance. Conversely, despite its lower importance for 
hospitalization and critical outcomes, ED length of stay becomes the top variable for 72-hour ED reattendance 
prediction. The previous health utilization variable seems to be a less important feature for ED-based tasks.

Benchmark task evaluation.  Machine learning exhibited a higher degree of discrimination in predicting 
all three outcomes. Gradient boosting achieved an AUC of 0.880 (95% CI: 0.876–0.884) for the critical outcome 
and an AUC of 0.819 (95% CI: 0.817–0.822) for the hospitalization outcome. However, the corresponding per-
formance for 72-hour ED reattendance was considerably lower. Compared with gradient boosting, deep learning 
could not achieve even higher performance. While traditional scoring systems did not show good discriminatory 
performance, interpretable machine learning-based AutoScore achieved an AUC of 0.846 (95% CI: 0.842–0.851) 
for critical outcomes with seven variables, and 0.793 (95% CI: 0.791–0.797) for hospitalization outcomes with 10 
variables. Tables 5–7 and Supplementary eTable 3 present the performance of of a variety of machine learning 
and scoring systems on different prediction tasks assessed by various metrics on the test set. Moreover, they are 
also plotted in Fig. 3.

Discussion
This paper proposes standardized data benchmarks for future researchers who are interested in analyzing 
large-scale ED-based clinical data. Our study provides a pipeline to process raw data from the newly published 
MIMIC-IV-ED database and generates a benchmark dataset, the first of its kind in the ED context. The bench-
mark dataset contains approximately half a million ED visits, and is highly accessible by researchers who plan 
to replicate our experiments or further build upon our work. Additionally, we demonstrated several clinical 
prediction models (e.g., machine learning and clinical scoring systems) on routinely available information using 
this benchmark dataset for three ED-relevant outcomes: hospitalization, critical outcome, and ED reattendance. 
Our benchmark dataset also supports linkage to the main MIMIC-IV database, allowing researchers to analyze 
a patient’s clinical course from the time of ED presentation through the hospital stay.

Our study showed that machine learning models demonstrated higher predictive accuracy, consistent with 
the previous studies9,19,61. Complex deep learning62 models such as Med2Vec and LSTM did not perform bet-
ter than simpler models. These results suggest that overly complex models do not necessarily improve perfor-
mance with relatively low-dimensional ED data. Furthermore, predictions made by black-box machine learning 
have critical limitations in clinical practice63,64, particularly for decision-making in emergency care. Although 
machine learning models outperform in terms of predictive accuracy, the lack of explainability makes it chal-
lenging for frontline physicians to understand how and why the model reaches a particular conclusion. In con-
trast, scoring systems combine just a few variables using simple arithmetic and have a more explicit clinical 
representation56. This transparency allows doctors to understand and trust model outputs more easily and con-
tributes to the validity and acceptance of clinical scores in real-world settings65,66. In our experiments, predefined 
scoring systems were unable to achieve satisfactory accuracy. However, AutoScore-based data-driven scoring 
systems complemented them with much higher accuracy while maintaining the advantages of the point-based 
scores7.

The primary goals of ED prediction models are to identify high-risk patients accurately and to allocate lim-
ited resources efficiently. While physicians can generally determine the severity of a patient’s acute condition, 
their decisions necessarily contain subjective influences that depend on the healthcare context and practitioner’s 
knowledge. Objective predictive systems can outperform expert intuition40 in making multi-criteria decisions 
by taking away interpersonal variation between healthcare practitioners41. This could be a potentially valuable 
tool for emergency physicians who have to constantly multitask67, especially in the complex ED environment 
where decisions must be made based on heuristics and dynamic changes68. This study explores data-driven 
methods to provide an objective assessment for three ED-relevant risk triaging tasks based on large-scale public 
EHRs. Several previous studies34,69,70 have also demonstrated that objective electronic predictive triage systems 
provide more accurate differentiation for patients with regards to clinical outcomes compared with traditional 
subjective clinical assessment. In addition, the openly accessible nature of the models makes them suitable for 
reproducibility and improvement. The scientific research community can make full use of the benchmark data 
and the prediction benchmark in future research.

Three ED-based clinical outcomes were explored in this study with clinical significance. Accurate prediction 
of those three outcomes could help optimize ED resources with timely care delivery and mitigate ED delayed 
care problems. Our hospitalization prediction model can give an idea of the likelihood of hospitalization at the 
time of triage to the patients and staff, even before a physician is assigned to examine the patient40,41. Identifying 
patients who might end up with critical illness or death could potentially differentiate high-risk patients from 
more-stable patients and efficiently allocate finite ED resources5–7. Predicting ED reattendance could also allow 
providers to reconsider patient’s discharge plans and provide optimal care for those who had been prema-
turely discharge71. In addition, these three outcomes are interrelated yet represent distinct groups of predic-
tors. Prediction models of hospitalization and critical outcomes share a similar set of predictors, whereas ED 
reattendances depend on various other variables. Although understanding personal risk or prognosis has great 
value, it is more important to realize the full potential of these prediction models in improving emergency care 
in clinical practice. In the future, focus should be shifted to filling the implementation gap by considering the 
model’s actionability and real-world utility72.
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From a data science perspective, this study contributes to the scientific community by standardizing research 
workflows and reducing barriers of entry18 for both clinicians and data scientists engaged in ED research. In the 
future, researchers may use this data pipeline to process raw MIMIC-IV-ED data. They may also develop new 
models and evaluate them against our ED-based benchmark tasks and prediction models. Additionally, our 
pipeline does not focus exclusively on ED data; we also provide linkages to the MIMIC-IV main database73–76 
with all ICU and inpatient episodes. Data scientists interested in extracting ED data as additional variables and 
linking them to the other settings of the MIMIC-IV database can exploit our framework to streamline their 
research without consulting different ED physicians. With the help of this first large-scale public ED benchmark 
dataset and data processing pipeline, researchers can conduct high-quality ED research without needing a high 
level of technical proficiency.

This study has several limitations. First, although the study is based on an extensive database, it is still a 
single-center study. The performance of different methods used in this study may differ in other healthcare 
settings. Nevertheless, the proposed clinical prediction pipeline could still be used as a reference for future big 
data research in ED. Furthermore, examining whether models trained on the benchmark data generalize to 
other clinical datasets would be interesting. Second, the benchmark dataset established in this study is based on 
EHR data extracted from the hospital’s patient portal with routinely collected variables, where certain potential 
risk factors, such as socioeconomic status, critical first look, and neurological features, were not recorded. For 
example, some health utilization data such as intubation and resuscitation have been proven to be predictive 
of overall mortality and should have been included in our model. Furthermore, neurological features like the 
Glasgow Coma Scale (GCS)77 score, were not available in the MIMIC-IV-ED database. These features are con-
sidered significant predictors in the ED setting and could have greatly increased the performance of our models. 
In addition, the dataset lacks sufficient information to detect out-of-hospital deaths, which may introduce bias 
into our predictions. Lastly, simple median imputation was employed to handle missing vital signs in the raw 
data, potentially obscuring data structures that could have been captured by more sophisticated methods. Future 
researchers utilizing our data pipeline should attempt to apply more advanced techniques for dealing with miss-
ing values. Despite these limitations, the data processing pipeline can be leveraged widely when new researchers 
wish to conduct ED research using the MIMIC-IV-ED database.

Model AUROC (95% CI) AUPRC (95% CI) Threshold Sensitivity (95% CI) Specificity (95% CI) Runtime
Number of 
variables

LR 0.683 (0.677–0.698) 0.153 (0.140–0.168) 0.041 0.627 (0.604–0.652) 0.636 (0.630–0.653) 2 67

RF 0.666 (0.657–0.676) 0.150 (0.137–0.163) 0.060 0.540 (0.531–0.605) 0.706 (0.620–0.708) 29 67

GB 0.700 (0.691–0.713) 0.162 (0.149–0.177) 0.038 0.639 (0.607–0.672) 0.642 (0.617–0.679) 30 67

AutoScore 0.673 (0.665–0.684) 0.114 (0.107–0.124) 27 0.621 (0.596–0.637) 0.628 (0.622–0.665) N/Aa 12

MLP 0.696 (0.687–0.710) 0.165 (0.151–0.178) 0.027 0.644 (0.628–0.667) 0.641 (0.631–0.648) 91 67

Med2Vec 0.673 (0.661–0.684) 0.139 (0.128–0.153) 0.002 0.574 (0.562–0.621) 0.682 (0.635–0.691) 538 67 + 7930#

LSTM 0.694 (0.682–0.706) 0.150 (0.139–0.163) 0.034 0.630 (0.606–0.663) 0.650 (0.623–0.686) 11423 67^

Table 7.  Comparison of the performance of different models for 72-hour ED reattendance prediction at 
ED disposition. aRuntime calculation is not applicable for clinical scores (including AutoScore), as their 
development usually involves some manual processes. ^Include 7 temporal variables. #The dataset contains 7930 
distinct ICD codes.

Model AUROC (95% CI) AUPRC (95% CI) Threshold Sensitivity (95% CI) Specificity (95% CI) Runtime
Number of 
variables

LR 0.864 (0.859–0.868) 0.321 (0.308–0.336) 0.064 0.783 (0.773–0.809) 0.785 (0.756–0.793) 4 64

RF 0.875 (0.870–0.879) 0.380 (0.370–0.393) 0.078 0.803 (0.794–0.810) 0.792 (0.791–0.795) 51 64

GB 0.880 (0.876–0.884) 0.387 (0.373–0.405) 0.064 0.809 (0.790–0.821) 0.790 (0.783–0.810) 58 64

ESI 0.804 (0.801–0.809) 0.194 (0.187–0.205) 2 0.870 (0.863–0.875) 0.640 (0.637–0.643) N/Aa 1

NEWS 0.634 (0.627–0.640) 0.141 (0.132–0.144) 2 0.464 (0.453–0.472) 0.795 (0.793–0.798) N/A 6

NEWS2 0.616 (0.608–0.623) 0.128 (0.122–0.131) 2 0.410 (0.399–0.586) 0.823 (0.531–0.824) N/A 6

REMS 0.686 (0.679–0.691) 0.105 (0.102–0.111) 5 0.681 (0.668–0.687) 0.616 (0.613–0.619) N/A 6

MEWS 0.613 (0.606–0.618) 0.103 (0.100–0.108) 2 0.430 (0.417–0.439) 0.770 (0.768–0.772) N/A 6

CART 0.707 (0.701–0.713) 0.141 (0.132–0.148) 6 0.590 (0.578–0.598) 0.731 (0.728–0.733) N/A 4

AutoScore 0.846 (0.842–0.851) 0.278 (0.267–0.293) 66 0.804 (0.784–0.810) 0.728 (0.726–0.747) N/A 7

MLP 0.883 (0.879–0.888) 0.389 (0.377–0.407) 0.046 0.813 (0.805–0.829) 0.787 (0.772–0.794) 171 64

Med2Vec 0.848 (0.845–0.851) 0.301 (0.290–0.314) 0.004 0.783 (0.768–0.798) 0.767 (0.756–0.788) 1052 64 + 7930#

Table 6.  Comparison of the performance of different models for critical outcomes prediction at triage. 
aRuntime calculation is not applicable for clinical scores (including AutoScore), as their development usually 
involves some manual processes. #The dataset contains 7930 distinct ICD codes.
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Data availability
The data that support the findings of this study are available from the MIMIC-IV database31: https://physionet.
org/content/mimiciv/1.0/ and MIMIC-IV-ED database32: https://physionet.org/content/mimic-iv-ed/1.0/.

Code availability
The code used to analyze the data in the current study is available at: https://github.com/nliulab/mimic4ed-
benchmark.
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