
RESEARCH ARTICLE

What happens when the rain is back? A

hypothetical model on how germination and

post-germination occur in a species from

transient seed banks

Bruna Luiza de Souza1‡, João Paulo Ribeiro-OliveiraID
2‡*, Juliana Pereira Bravo1,

Gabriela Fernanda Dias1, Edvaldo Aparecido Amaral da Silva1*

1 Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas, Universidade
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Abstract

We hypothesize that by simulating the natural priming in seeds of a species that forms tran-

sient seed banks it is possible to clarify molecular aspects of germination that lead to the

recruitment of seedlings when the next rainy season begins. We used seeds of Solanum

lycocarpum as a biological model. Our findings support the idea that the increment of seed

germination kinetics when the rainy season returns is mainly based on the metabolism and

embryonic growth, and that the hydropriming, at the end of seed dispersion, increases the

germination window time of these seeds by mainly increasing the degradation of galacto-

mannan of the cell wall. This can improve the energy supply (based on carbon metabolism)

for seedling growth in post-germination, which improves the seedling’s survival chances.

From these findings, we promote a hypothetical model about how the priming at the end of

the rainy season acts on mRNA synthesis in the germination of seeds from transient banks

and the consequence of this priming at the beginning of the following rainy season. This

model predicts that besides the Gibberellin and Abscisic Acid balance (content and sensitiv-

ity), Auxin would be a key component for the seed-seedling transition in Neotropical areas.

Seed collection was performed under authorization number SISGEN AB0EB45.

Introduction

The formation of soil seed banks is what gives dynamism to natural forests and thus guarantees

the flow of life on the planet. Guarded by the dormancy state and/or ability to interrupt metab-

olism when there is water scarcity, these seeds remain in anhydrobiosis in the soil for brief

periods (seeds of species that form transient banks) or long periods (seeds of species that form

permanent banks)[1,2]. This is a species-specific ecophysiological aspect based on the genetic

and/or epigenetic record that includes material from several specimens that have established
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themselves in an area [3–6]. Thus, when we understand how the soil seed bank works, we do

not only outline strategies for in situ conservationism of species, but also ex situ (germplasm

banks). In this context, several reports have brought light to the functionality of these banks,

relying mainly on longevity and the germination-dormancy balance of seeds [e.g., 7 and their

references]. However, we still know little about what affects this germination-dormancy bal-

ance from a molecular point of view. A strategy to fill this gap is to cross classic physiological

measurements of the germination ecophysiology with key components of the gene expression

involved in embryo growth [8].

A limiting factor to perform a crosstalk between gene expression and germination ecophys-

iology would be that laboratory protocols are not very representative of what happens in the

field from an ecological point of view. However, this barrier is being overcome by the idea that

detailed laboratory protocols for sampling communities and performing germination experi-

ments can produce significant characters that are as enlightening as those obtained in field

experiments. Therefore, if we have these protocols, we will be able advance the understanding

of functional plant traits [see 9]. For example, the interruption of seed germination sensu
stricto can be considered natural in environments in which the seasonal rains do not always

coincide with the best environmental perspective (temperature and humidity of the substrate

and the environment) for the establishment of a young plant [10,11], as is the case in Neotropi-

cal areas. As a consequence, the embryo interrupts the intra-seminal development, resuming it

only at the beginning of the next rainy season. In this new season, germination will occur in a

shorter time and the seedling will have greater environmental resources for its initial establish-

ment [2]. This context describes a form of natural physiological priming of seeds, but the sci-

entific community has not explored this in the context of the molecular seed biology of native

species. This is due to the difficulties of experimental standardization in the field regarding fac-

tors that interrupt the germination process. A solution could be to simulate the field in the lab-

oratory, casting light on an important question: How does germination and post-germination

occur in seeds that form transient banks when the new rainy season starts?

To answer the question, we can use the seed priming technique. This technique dates back

to the 70s and was developed primarily to improve uniformity of initial plant growth of culti-

vated species with asynchronous establishment [12]. The principle is the same as natural prim-

ing, based on the interruption of the germination sensu stricto [13,14]. The practicality of the

technique and the intriguing aspects of the seed-seedling transition process, made it also very

opportune for pioneer studies on water and osmotic stresses [12,14]. What we gain in using

this technique, in this case, is understanding, under laboratory conditions, how different con-

straints of the soil water potential promote responses on a physiological phenomenon [see 15].

After all, as soil drainage is gradual, the reduction of soil water potential tends to be cadenced

over days or months [16]. This justifies the various studies considering the reduction of water

potential, mainly through the osmotic increment in the substrate. However, these studies do

not explain which aspects are involved in the resumption of embryo growth when the new

rainy season starts. Taking this into account, hydropriming, one of the most popular seed

priming techniques, can help us understand how the seed, more specifically the embryo, mod-

ulates the development due to changes in a seasonal environment, such as in Neotropical

areas. Hydropriming promotes a gradual reduction of available water to seeds without affect-

ing the osmotic potential of the substrate [14]. After this treatment, the seeds are stored to be

used whenever they are needed. This scenario is closer to what is observed in Neotropical

areas without problems of soil salinity, such as the Cerrado [see 16].

The idea that we can understand the seed-environment relationship through embryonic

development comes from the fact that the embryo is the main germination modulator. As a

consequence, the expression of genes associated with key enzymes becomes one of the main
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molecular components we have to elucidate [2,8]. Among the genes expressed, some have

robust validation, not only for model species, but also for congeners, such as: LeEXP8,

LeEXP10 (Expansins) [17], expressed in the embryo; LexG1 [Polygalacturonase (EC 3.2.1.15)]

[18], expressed at the apex of the embryo radicle and at the micropylar region; LeMside1
[(Endo-β-mannanase; EC 3.2.1.78)] [19], LeMan2 [(β-mannosidase; EC 3.2.1.25)] [20] and

LeaGal [(α-galactosidase; EC 3.2.1.22)] [21], expressed in the micropylar region. Taking this

into account, our hypothesis is that by simulating the natural priming in seeds of a species that

forms transient seed banks, we can clarify molecular aspects of germination that lead to the

recruitment of seedlings at the beginning of the new rainy season. If we can validate this

hypothesis, our findings will promote insights on the interruption of germination sensu stricto
of native species of a seasonal environment. Thus, our expectation is not only to promote basic

knowledge about the mechanisms involved in the seed-seedling transition from an ecophysio-

logical point of view, but also to give clues about which studied genes can be used as markers

of the germinative state of a native species that are used in ecological restoration projects. Our

aim is to promote a bridge between basic and applied knowledge, elaborating a hypothetical

model of seed germination metabolism after natural priming promoted by late rains in a sea-

sonal environment.

Material and methods

Biological model

Solanum lycocarpum A. St. -Hil. forms transient seed banks and has a zoochorous seed dis-

persal system (see dispersion system in [22]), but its seeds have no dormancy type. Here, it is

important to note that we previously considered seeds of this species as dormant, since the last

germination was around 40 days after sowing [23]. However, recently, all research concerning

seed germination of the species demonstrates that the last germination of seed samples from

different numbers of mother plants occurs around 10–15 days, reaching high germinability

(70–90%) [8,24]. Taking this into account, the species was considered a biological model for

molecular studies on seed germination of non-dormant species from Neotropical areas [8].

The species is an arborescent plant typical of the Cerrado (a biodiversity hotspot), and there-

fore has undergone a selective pressure that has forced native populations to specialize in par-

ticular environments because of high biome fragmentation [25,26]. Besides having this

positive impact on the flora, this species also has repercussions on the fauna [see 25]. Addition-

ally, the species is considered a nurse plant (sense [27]), and therefore promotes facilitation in

‘stressful environments’ [28], improving the success rate of restoration of degraded environ-

ments [29]. However, local communities have been exploiting it for some time, since it pos-

sesses potential for the fruit industry [30].

Fruit origin and seed sample processing

We collected ripe fruits of Solanum lycocarpum directly from the mother plants (n = 20) estab-

lished around Lavras, MG, Brazil [21˚ 14’ 43”S, 44˚ 14’ 43’’W; at 919 meters above mean sea

level (MAMSL)]. The mother plants were established at least 20 m from each other in natural

vegetation, and the choice of these plants depended on the number of fertile individuals and

the quality and number of fruits produced. We opened the fruits and removed the pulp and

passed it through a sieve under flowing water to separate the seeds. We only used visually simi-

lar seeds in relation to morphology. Therefore, we excluded apparently damaged, empty and

immature seeds from the sample. The seeds in hygroscopic equilibrium had a water content of

10% (35% RH; 25 ˚C). We determined this water content by the oven method at 105 ˚C for 17

hours [31].
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Seed priming

We placed the seeds in hygroscopic equilibrium in tubes containing 15 mL of water and kept

them at 15 ˚C for 15 days, according to [24]. Subsequently, we placed the tubes in a shaker

(Multifunctional mixer MR-II, Biomixer, São Paulo SP, Brazil) throughout the incubation

period. We dried the seeds in a controlled environment in a Biochemical Oxygen Demand ger-

mination chamber or B.O.D. (B.O.D., Technal, São Paulo SP, Brazil) with 35% RH at 25 ˚C

using closed boxes containing a saturated solution of MgCl2 solution. All this process occurred

in 16 hours. After that, we stored the seeds at 20 ˚C in dry substrate until sowing.

Seed germination analyses

We performed the germination test in a B.O.D., alternating temperatures at 20 and 30 ˚C,

and using a photoperiod of 12 hours (12 light/12 dark) under white fluorescent light

(15.35 ± 2.54 μmol m2 s-1 Photosynthetic Photon Flux Density–PPFD). We used a sample (n)

with 200 seeds, which was segregated into eight replicates (r) [sub-samples (ss) or plot size

(ps)] with 25 seeds each (n = 200; r = 4; ss or ps = 50). We performed a completely randomized

design (CRD). We sowed the seeds on germination paper in germination boxes. We damp-

ened the paper with distilled water with a volume equivalent to 2.5 times the dry mass of the

paper in milliliters. We maintained paper moisture throughout the test by adding 1 mL of dis-

tilled water whenever necessary.

We carried out the germination evaluations every 24 hours, and the germination criterion

was the radicle protrusion. We terminated the analyses 15 days after sowing when the remain-

ing seeds presented coalescing tissues (i.e., advanced decomposition process). We analyzed

primed and non-primed seeds.

Besides germinability [G (%); estimates from regression curve from accumulative germina-

tion over time] and Maguire’s rate [Rate (a frequentist daily germination measurement);

embryo protrusion day-1] [32], we calculated the absolute germination measurements, which

are: time to first (tf; days) and last germination (tl; days), mean germination time (�t; days),

mean germination rate (�v; days-1), uncertainty (U; bits) [33], coefficient of variation of the ger-

mination time (CVt; %) and synchronization index (Z) [34]. We also calculated the range from

time to first and last germination in the sample (λ = range of the seed germination time) [8].

We plotted graphs showing the relative frequencies of seed germination [35].

Gene expression analysis

We extracted the RNA from two sources: 50 embryos and micropylar endosperms subjected

to priming, and 50 embryos and micropylar endosperms imbibed in water. We used the

NucleoSpin RNA Plant1 kit (Macherey-Nagel, Bethlehem PA, USA) to perform the RNA

extraction from both groups. We froze all of this material in liquid nitrogen and ground it

down to a powder with a mortar and pestle. We added approximately 100 mg of the ground

powder to 350 μL of the extraction buffer (RA1) and 3.5 μL of β-mercaptoethanol (β-ME) and

then homogenized it by vortexing. We transferred these samples to the NucleoSpin Filter1

and centrifuged (~13 000 G-Force). We quantified the extracted RNA using a Nanodrop-2000

spectrophotometer (Thermo Scientific, Wilmington DE, USA) and confirmed RNA integrity

in a 1% agarose gel.

For cDNA preparation, we used the First-Strand cDNA Synthesis Kit (New England Bio-

labs, Ipswich MA, USA). We performed the cDNA synthesis from RNA of primed and non-

primed seeds at 1, 5 and 10 days after imbibition. These times correspond to a predominantly

biophysical phase, a predominantly biochemical phase and the end of the germination sensu
stricto (embryo protrusion) of Solanum lycocarpum seeds, respectively [8].
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For each biological sample, we used 1 000 ng of total RNA (RT) + 0.8 μL of 25X dNTP Mix

(100 mM) + 2 μL 10X RT of random primers + 2 μL of 10x RT Buffer + 1 μL MultiScribeTM

Reverse Transcriptase and 4.2 μL Nuclease-free H2O. We incubated the samples at 70 ˚C for 5

min and then dipped them in ice. We placed the samples in a thermocycler at a temperature of

25 ˚C for 10 min, at 37 ˚C for 2 h and at 85 ˚C for 5 min for inactivation of the enzymes. We

quantified the cDNA in a Nanodrop-2000 spectrophotometer (Thermo Scientific, Wilmington

DE, USA).

We studied the following genes: expansin, α-galactosidase and polygalacturonase in the

embryo, and α-galactosidase, β-mannosidase, endo-β-mannanase and polygalacturonase in

the micropylar endosperm (S1 Table). We used the sequences deposited in the NCBI database

(http://www.ncbi.nlm.nih.gov/) for tomato (Solanum lycopersicum L.) for the primer design.

For the development of primers, we used the Primer Quest software (https://www.idtdna.com/

primerquest/Home/Index) (S2 Table).

We used an Eco Real-Time (Illumina) with primers, cDNA and Eva-Green_ master mix to

perform Real-Time PCR. For each reaction, we used 3 μL of cDNA (60 ng L-1), 0.25 μL of for-

ward and reverse primers (at a concentration of 10.0 mM) and 5 μL of Master Mix Eva-Green

for a final volume of 10.0 μL sample-1. The amplification protocol consisted of 2 min at 50 ˚C,

5 min at 95 ˚C; then 40 cycles of 15 s at 95 ˚C and 1 min at 60 ˚C ± 1˚C.

We determined melting curves to assess specificity. We used the universal 18S primers as

an internal control to normalize the products. We performed real-time PCR three times using

biological replicates. We calculated values of fold change in gene expression in relation to 1

day of imbibition, using 2-ΔΔCt.

Statistical analysis

For the classical physiological measurements recorded from CRD, we tested the data for the

assumptions (α = 0.01) of normality of residuals (Kolmogorov-Smirnov test) and homogeneity

of variances (Levene test), and, when the assumptions were violated, we performed data trans-

formation according to [36] (S3 Table). For cumulative germination curves, we chose regres-

sion models based on significance from ANOVA test and model fitting to observed data.

For molecular raw data, we used the bootstrap method with 1 000 re-samplings, since values

generated above this number are similar according to the convergence test. Bootstrap is a tech-

nique of successive resampling from original data [37], which ensures that analytical models

are reproducible and reliable. The technique is useful in applications where analytical confi-

dence intervals are unobtainable or when robust nonparametric confidence intervals are

required [38]. In addition, the bootstrap easily estimates the distribution of an estimator,

reduces impacts of outlier and numerical anomalies, as well as calculates the estimates of stan-

dard error and population parameters of confidence intervals [39]. For molecular comparisons

of fold change, we used the tool REST1 for Ct calculation, which was based on the data simu-

lation of bootstrap methods from raw data. The REST performs comparative quantifying from

the Pair-Wise Fixed Reallocation Randomization Test method [40]using a normalizing gene.

For clarification of the REST results, we used the overlapping of confidence intervals from

bootstrap estimative, according to [8].

Results

The germinability of Solanum lycocarpum seeds primed by water is similar to that of non-

primed seeds, fitting the Gompertz model with three parameters (see CI in germinability

curves; Fig 1A and 1B). However, seed hydropriming leads to a smaller and more constant rel-

ative frequency of germination (Fig 1A and 1B), increasing the time window for potential
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germination of seed samples by up to two days (ʎ = 10 days). This time reduction in seed ger-

mination range is not associated with the increment of uniformity of the germination process

(CVt; Fig 1A and 1B), but with the precocity of the first (tf) and last (tl) seed germination in the

sample. These outliers were responsible for the anticipation of the germination peak of the

seed sample (�t) in approximately one day (Fig 1C). This relation between the germination fre-

quency, the time window and the germination time makes the average frequency of embryo

Fig 1. Germination process in primed and non-primed seeds (n = 200; r = 4; ss = 50) of Solanum lycocarpum A. St.-Hil. A, B: Cumulative curves of

germinability (filled lines) and relative frequency of germination over experimental time (dashed lines). Black line: estimative of cumulative

germinability curve; colored lines (Blue: primed seeds; Red: Non-primed seeds): upper and lower limits of confidence intervals from bootstrap method

(1 000 resamples). Ĝ : Germinability from Gompertz model; R2: Coefficient of determination of the germinability model (fitting germinability model).

CVt: coefficient of variation of the germination time; λ: germination time range. C, D and E: Classical germination measurements: time [C. time to first

(tf) and last germination (tl), and mean germination time (�t)], frequentists (D. Rate), velocity [E. mean germination rate (�v)] and sinchrony [D.

Uncertainty (U); E. Synchronization index (Z)]. In this case, averages followed by the same capital letter within the treatment (primed vs non-primed)

do not differ by the Tukey test (α = 0.05).

https://doi.org/10.1371/journal.pone.0229215.g001
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protrusions (Rate) higher in primed seeds (Fig 1D). As a consequence, there is a less predict-

able (U; Fig 1D) and more synchronous (Fig 1E) germination process (Z). This is because

water priming increases germination metabolism (�v)(Fig 1E), promoting a more active physio-

logical process.

The increase of the germination metabolism in hydroprimed seeds can also be observed by

increasing the gene expression of mRNAs coding key enzymes for embryo growth and/or

weakening of the micropyle endosperm (Fig 2A, 2B and 2C). In general, only β-mannosidase

(LeMan2) and polygalacturonase (PG; LeXPG1), expressed in the micropylar endosperm, are

insensitive to seed hydropriming, regardless of the germination sensu stricto phase (Fig 2A and

2C). Another peculiarity of these enzymes is that β-mannosidase increases its expression in the

micropylar region during germination sensu stricto, and PG maintains the same fold change of

the predominantly biochemical phase (classically called Phase II, 5 DAS; Fig 2C). However, it

Fig 2. Relative fold change in transcript abundance of genes related to embryo and micropylar endosperm in germinating seeds of Solanum
lycocarpum A. St.-Hil. imbibed in water. A. mRNA fold change of α-galactosidase (LeaGal) and polygalacturonase (LexG1) expressed in the embryo

and in the micropylar endosperm; B. mRNA fold change of Expansin 8 (LeEXP8) and Expansin 10 (LeEXP10) expressed in the embryo; C. mRNA fold

change of endo-β-mannanase (LeMside1) and β-mannosidase (LeMan2) expressed in the micropylar endosperm. Averages followed by the same capital

letter within the treatment (primed vs non-primed seeds) do not differ by the Pair-Wise Fixed Reallocation Randomization Test (α = 0.05); �:

Differences between gene expression in embryo and micropylar endosperm indicated by the overlapping of interval confidence (α = 0.05) calculated

from bootstrap method (1 000 resampling) applied to raw data. For each biological triplicate we used 50 embryos (n = 150; r = 3; ss = 50).

https://doi.org/10.1371/journal.pone.0229215.g002
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is important to emphasize that the gene expression of PG in the embryo was higher than in

the micropylar endosperm region during the predominantly biochemical germination phase

(5 DAS), being substantially more expressed (approximately 100 times more) in primed seeds

(Fig 2A).

α-galactosidase (LeaGal) was also substantially more expressed (up to 100 times more) in

primed seeds during the predominantly biochemical phase, but had similar expression in

both embryo and the micropylar endosperm regions (Fig 2A). What draws attention to

these two enzymes is the fact that there is a drastic reduction in the expression in primed

seeds at the end of germination, when there is embryo protrusion (10 DAS; Fig 2A and 2C).

On the other hand, endo-β-mannanase (LeMside1) increases its expression over germination

time, especially in primed seeds (Fig 2C). In this case, the highest expression of the gene cod-

ifying the enzyme occurs at the end of germination, but this expression is higher in hydro-

primed seeds (72% higher than 5 DAS) in relation to those unprimed (60% higher than 5

DAS).

Similar to the gene expression of hydrolytic enzymes associated with catabolism of the cell

wall, the expansins, in general, increased their expression in hydroprimed seeds (Fig 2B). The

greatest impact of the technique on the mRNA of expansin isoenzymes (Expansin 8: LeEXP8
and Expansin 10: LeEXP10) occurred at 5 DAS in primed seeds, where the expression of

Expansin 10 was 100 times higher than in non-primed seeds. For non-primed seeds, the

Expansin 10 gene had its peak expression at the end of germination, even though this value

was not much higher than at 5 DAS. The values of Expansin 10 were the same at 10 DAS for

both primed and non-primed seeds. In non-primed seeds, the peak expression of Expansin 8

was at 5 DAS being up to ten times higher than at 10 DAS. This expression pattern of Expansin

8 also occurred in hydroprimed seeds, but the variation of expression between 5 and 10 DAS

was much higher (approximately seven times higher). These findings support the idea that the

increment of germination velocity in Solanum lycocarpum seeds when a new rainy season

starts is mainly based on embryo metabolism, and that the seed hydropriming, from late rains

after seed dispersion, improves the germination time window of these seeds. This occurs

because the hydropriming from late rains mainly increases the degradation of galactomannan

of the cell wall, improving the energy supply for embryo growth.

Discussion

By using Solanum lycocarpum as a biological model and seed hydropriming as an experimen-

tal technique to simulate the natural conditioning from rains at the end of the rainy season in

tropical and seasonal environments, we demonstrate that: (i) non-dormant seeds of a species

forming transient seed banks have similar germinability to the moment of post-dispersion,

and (ii) these seeds have a greater time window to express germination than those dispersed

at the beginning of the new rainy season. This is not related to the increment of germination

uniformity, but with a small and constant frequency of daily germination, as pointed by rela-

tive frequency of germination and Ratemeasurement. Taking this into account, seed hydro-

priming from late rains seems to affect the seed physiology in a species forming transient

seed banks in a different way than hydropriming affects seed physiology of a cultivated spe-

cies [see 14; 12]. In cultivated species, seed hydropriming not only increases germination uni-

formity, but also germination velocity. In contrast, our findings infer that the physiological

gain from rainfall priming is relative only to the germination kinetics. This was demonstrated

by mean germination rate and ratified by the high fold change of mRNA codifying key

enzymes for weakening the cell wall as well as the cell extension in seed structures over ger-

mination time.
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At first, germination precocity could be attributed only to embryo growth per se, since it is

conditioned to the perfect relation between embryo growth potential and micropylar endo-

sperm degradation. These characteristics are related to mechanical resistance (higher or lower)

to embryo protrusion [41]. However, this relation also reminds us of the idea of mobilizing

reserves for embryo growth. This is because our model species possesses an endospermic seed,

which is characterized by micropylar cell walls thickened by mannans [23]. The mannans have

already been shown to be a fundamental energy supplier for early establishment (seed germi-

nation and seedling or young plant development) of native species [42,43]. This hypothesis is

even clearer when taking into account that mRNAs codifying both β-mannosidase and polyga-

lacturonase (PG) expressed in the micropylar region have the same pool between hydroprimed

and non-primed seeds, but that α-galactosidase and PG are highly expressed in the embryo

region during the predominantly biochemical germination phase. During embryo protrusion,

these enzymes decay their gene expression, contrasting with the increment of the expression of

endo-β-mannanase and β-mannosidase in the micropylar endosperm region. By acting on the

mannans metabolism in the cell wall of the micropylar endosperm, these enzymes not only

reduce the mechanical resistance of the region, but also release complexed carbohydrates that,

when degraded by α-galactosidase, become readily useful for early seedling development

[19,44–47]. This explains the high expression of the enzyme both in the embryo and in the

micropylar region, making it the key to the seed-seedling transition for species forming a tran-

sient seed bank. This is an unprecedented component of the study of the germination of tropi-

cal native seeds and demonstrates that, in addition to the oxidative metabolism [8], it is also

fundamental for seeds of species that form transient seed banks in tropical areas. Therefore,

cell wall modifying enzymes are also fundamental to the success of the seed-seedling transition

and can be a molecular marker to evaluate the quality of seed samples that will be used to

recompose degraded areas. We recommend that gene expression related to endo-β-manna-

nase and α-galactosidase activity (in our case LeMside1 and LeaGal, respectively) be consid-

ered in pretesting of potential seed samples to be used in recovery projects.

It is noteworthy that PG is involved in the development processes of conductive vessels in

seedlings [see 48], causing its greater expression in the embryo. This is a healthy indicative of

improvement in the survival of seedlings that emerged from seeds hydroprimed by rain in a

previous rainy season. Another addendum that deserves attention is the similar gene expres-

sion of PG in the micropylar region of primed and non-primed seeds. Because it is associated

with the metabolism of pectin residues, PG has been one of the most important components

for biotic interactions between plants and the environment, conforming development pro-

cesses to interactions favorable to the individual [49]. As it remains constant, even with seed

hydropriming, the enzyme may play an important role in recognizing biotic interactions dur-

ing the germination of seeds that form the transient bank. In this sense, there may be an

important synergy with β-mannosidase, also insensitive to rehydration, but fundamental for

the germination of endospermic seeds such as Solanaceae [see 2]. This idea should be better

explored in future studies on the proteomic germination of seeds that form soil seed banks.

In addition to the high gene expression of PG, two other components draw our attention to

the embryo: (i) the high expression of Expansin 10 in hydroprimed seeds during the predomi-

nantly biochemical germination phase, and (ii) maintenance of the gene expression pattern of

Expansin 8 in the embryo of primed and non-primed seeds. A first explanation is that Expan-

sin 10 is more expressed at the end of germination [see 17] and, when anhydrobiosis is

resumed at the end of the rainy season, the pool of mRNA codifying expansins would be pre-

served. Consequently, it would increase not only the de novo synthesis of these enzymes when

rehydrated, but also the activation of mRNA of the previous pool. This explanation would also

be valid for the largest pool of most enzymes in hydroprimed seeds. However, Expansin 8
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Fig 3. A hypothetical model of seed-seedling transition in a species forming transient seed banks without any type of dormancy in a tropical area.

1. Scattered seeds during the rainy season have high germinability, but the asynchronous and slower process causes only part of them to reach the end of

germination. The majority of mRNA coding key enzymes for the degradation of the micropylar endosperm and/or expansion of the embryo cells

increase the fold change until the moment of protrusion, highlighting the endo-β-mannanase (LeMside1) in the micropylar region and Expansin 10

(LeEXP10) in the embryo. 2. With water available, the seedlings that emerged from the seeds developed at the end of the previous rainy season show

better growth, which may be associated with increased content and sensitivity to auxin. One point that reinforces this idea is the fact that both expansins

(LeEXP8 and LeEXP10) and polygalacturonases (LeXPG1), whose expression is usually associated with auxin, have a greater increment in fold change. 3.

Delayed seeds present an increment in the synthesis and sensitivity to abscisic acid (ABA) in counterpoint to the reduction of the content and sensitivity

to Gibberellin (GA). This probably is due to the gradual reduction of water availability. Thus, the synthesis of mRNA codifying hydrolases and

Expansins, which are GA-regulated and ABA-repressed, falls dramatically. This causes the seeds to fail germinating even without presenting dormancy,

but without major damage to germinability. These seeds enter the transient seed bank in the soil. 4. In the transient seed bank, anhydrous seeds

probably maintain the pool of mRNA of hydrolytic enzymes (endo-β-mannanase, α-galactosidase–LeaGal–and β-mannosidase–LeMan2) and

Expansins synthesized during the end of the rainy season. It is possible that this pool remains until the return of the rains due to the high content of

ABA. 5. As the rains gradually return, not only do the GA levels increase, but also the sensitivity to the hormone. Thus, we have two simultaneous

actions: the pool of mRNA codifying enzymes involved in embryo growth and/or the weakening of the micropylar endosperm is activated, and the

synthesis of new enzymes is triggered. As a consequence, gene expression in general, is suddenly increased. In this case, embryo growth is rapidly

triggered by means of polygalacturonases and expansins (8 and 10). This rapid activation and synthesis speeds up germination without influencing time

uniformity, increasing the possibility of germination of seeds produced in the previous rainy season. 6. The greater expression of polygalacturonase and

expansins already in the middle of the predominantly biochemical germination phase is probably due to a higher activity and content of auxin. This

could explain greener seedlings with better development from seeds that were hydroprimed by the rains, explaining the general consensus that these

seeds can promote seedlings with a higher probability of survival. 7. The seeds, hydroprimed at the end of the previous rainy season, are not only the

fastest to germinate, but also the first to develop seedlings. The hydrolytic activity of the micropylar endosperm and the intense expansion activity of the

embryo cells probably allow them to better use the rains of the new season. Thus, these genes can be molecular markers of reliable seed samples for

environmental conservation/recovery programs of biodiversity hotspots, such as the Cerrado in the Neotropical area.

https://doi.org/10.1371/journal.pone.0229215.g003
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maintains a similar magnitude of increment expression between the predominantly biochemi-

cal germination phase and embryo protrusion in primed and non-primed seeds. Therefore,

endospermic seeds that form transient seed banks can be particularly interesting biological

models, since the greatest potential of embryo growth in hydroprimed seeds is mainly subsi-

dized by Expansin 10, whose half-life seems to fall over storage time [17]. This explains the fact

that embryo growth is potentially higher in hydroprimed seeds still in the predominantly bio-

chemical phase and demonstrates why seeds that form transient seed banks have a higher sur-

vival rate of seedlings than those from the new season [e.g., 50].

What is common to all enzymes that increase their expression when seeds are hydroprimed

is the fact that they are GA-dependent and ABA-repressed [2]. This information encouraged

us to release a hypothetical model (Fig 3) in which, at the end of the rainy season, seeds without

dormancy in the transient seed bank regress to anhydrobiosis due to the increment of the

ABA pool. ABA prevents enzymatic activity, but it will not act on the mRNA pool of GA-

dependent enzymes synthesized at the end of the previous rainy season. When rainfall resu-

mes, the increase in GA and the reduction of ABA levels causes the mRNA synthesized in the

previous rainy season to be expressed, and enzyme synthesis to be activated again. The conse-

quence is possibly a greater sensitivity to GA and, consequently, an increase in the velocity of

metabolic reactions that culminate in the precocity of germination, which occurs at more con-

stant rates, allowing seedlings to emerge more quickly and in a smaller time window. Another

aspect that is probably involved in the germination of seeds forming transient banks is the con-

tent and sensitivity to auxin. Although few reports discuss the role of auxin in germination

sensu stricto [see 51], the elevation of the expression of mRNA codifying polygalacturonase

and expansins after hydropriming may be indicative that the hormone has a key role when the

predominantly biochemical germination phase starts; in addition, since both enzymes are typi-

cally related to the hormone [52], greener and larger seedlings may be a direct consequence of

the increment of hormone activity. Auxin is an important morphogen [53]and, therefore, may

be associated with improved embryo sensitivity to the maternal environment, in order to allow

for a faster seed-seedling transition for seeds scattered at the end of the previous rainy season.

This model can also be used to explain the ‘hydration memory’ provoked by hydration cycles

in the environment, as is the case with seeds from the Brazilian caatinga [see 54,55]. We would

like to emphasize that this model is hypothetical, but it is a contribution for future papers con-

cerning molecular aspects of early plant development from a transient seed bank. For these

studies, our model can be a guide to a new experimental design based not only on indirect

inferences of hormonal balance from gene expression, but also on a hormonal profile of AUX,

GA and ABA, as well as on transcripts and enzymes specifically associated with each one.

Thus, our model stimulates future work with a crosstalk between germination and post-germi-

nation ecophysiology and proteomic germination.

Conclusions

We understand that rain priming at the end of a rainy season in Solanum lycocarpum seeds,

a species forming transient seed banks in the soil, improves seed germination kinetics when

the rains return, which leads to an increased expression of genes associated with embryo

growth and with enzymes involved in the degradation of the micropylar endosperm. Thus,

gene expression studies on seed priming may contribute to the development of molecular

markers to assess the way that rain priming and or artificial seed priming techniques

improve seed quality and hence decrease the time for seedling production for species from

areas targeted for natural recovery, such as Cerrado (a hotspot in biodiversity) in Neotropi-

cal areas.
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