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ABSTRACT

We introduce the SPlit-and-conQueR (SPQR) model,
a coarse-grained (CG) representation of RNA de-
signed for structure prediction and refinement. In our
approach, the representation of a nucleotide con-
sists of a point particle for the phosphate group
and an anisotropic particle for the nucleoside. The
interactions are, in principle, knowledge-based po-
tentials inspired by the ESCORE function, a base-
centered scoring function. However, a special treat-
ment is given to base-pairing interactions and cer-
tain geometrical conformations which are lost in a
raw knowledge-based model. This results in a repre-
sentation able to describe planar canonical and non-
canonical base pairs and base–phosphate interac-
tions and to distinguish sugar puckers and glyco-
sidic torsion conformations. The model is applied
to the folding of several structures, including du-
plexes with internal loops of non-canonical base
pairs, tetraloops, junctions and a pseudoknot. For
the majority of these systems, experimental struc-
tures are correctly predicted at the level of individual
contacts. We also propose a method for efficiently
reintroducing atomistic detail from the CG represen-
tation.

INTRODUCTION

During the last decades, RNA has been found to be much
more than a mere messenger and translator of the ge-
netic information in the cell. Its enzymatic and regulatory
function has been observed in a variety of cellular pro-
cesses, conferring it a major role in evolution and cellu-
lar metabolism (1–5). For the thorough understanding of
these functions, an insight on the three-dimensional struc-
ture of RNA molecules is of crucial importance. Neverthe-
less, the reliable prediction of the full structure of a RNA
motif based uniquely on its sequence is still a challenging
aim.

RNA is dominantly composed by a mixture of the four
most common nucleotides. Its alphabet is thus in principle
significantly simpler than the one used by proteins. This, to-
gether with the simple rule governing Watson–Crick pair-
ing, has suggested RNA folding and structure prediction to
be a relatively easy task (6). However, RNA structural com-
plexity is considerable due to the large number of backbone
conformations (7,8) and the rich variety of interactions (9–
11) which play a substantial contribution in the stability of
many biologically relevant structures, and blind structure
prediction is difficult to perform (12–14).

In this respect, many computational approaches have
been proposed to accomplish this goal during the last
decades. All-atom molecular dynamics (MD) simulations
(15) would in principle allow to fold small motifs (16). Nev-
ertheless, they are usually limited by the large amount of
computational resources required and the reliability of the
force fields, which still need certain refinement to be trusted
quantitatively (17,18). In another vein, bioinformatic as-
sembly tools (19–28) can increase the sampling efficiency,
but they also possess limitations coming from their energy
functions, do not necessarily provide information about the
folding pathway and might fail when predicting motifs that
are not already characterized experimentally and thus were
not used in their training phase. Coarse-grained (CG) mod-
els thus emerge as a suitable alternative, at the expenses
of resolution and versatility (29–44). Relying on different
representations and interactions, several models have been
proposed for the study of thermodynamic and mechanical
properties, and/or to efficiently sample the conformational
space for structure prediction and refinement purposes. De-
pending on the properties to reproduce and the criteria of
the authors, CG models focus on particular interactions
and structural features. For example, many of them restrict
their base–base interactions to stacking and canonical base
pairs (44), or might model hairpin loops as loose, non-
interacting segments of RNA (37). However, more recent
approaches have put emphasis on tertiary contacts by rep-
resenting nucleobases as anisotropic objects, able to form
directional interactions and non-canonical base pairs (e.g.
(30–32)), although their inclusion is still challenging, and in
some cases, limited (12–14).
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Figure 1. (A) Schematic representation of the mapping of four nucleotides
with the nucleoside in blue and the phosphate in red. (B) The definition of
the coordinate system from the oriented base, for two nucleotides. Dashed
lines represent the projection of the vector that joins both bases in the x-y
plane of each nucleoside. The base–base interactions, the base-phosphate
interactions, and the interactions along the backbone are defined with re-
spect to this reference frame.

In this paper, we introduce the SPQR (SPlit and con-
QueR) model, a nucleotide-level CG representation devel-
oped for the accurate prediction of the secondary and ter-
tiary structure of small RNA motifs. The mapping of the
nucleobases is based on the ESCORE function (45,46), a
scoring function which focuses exclusively on the relative
arrangement of bases comparing it with the one observed
in a structural database. Additionally, sugar and phosphate
groups are represented as a virtual site and a point particle,
respectively (see Figure 1). The interactions between these
elements are designed to sample the geometrical probabil-
ity distributions obtained from a large set of experimental
structures from a base-centered perspective. However, these
distributions have been carefully partitioned, identifying
several of their contributions and reweighting their corre-
sponding interactions. In this manner, the model focuses on
an accurate geometrical description of base–base interac-
tions (planar canonical and non-canonical base pairs) and
base–phosphate interactions, while it rescues the confor-
mation of the glycosidic bond angle and the sugar pucker,
which are important elements in many relevant motifs.

We show that these interactions suffice for describing a
number of structures involving a variety of canonical as well
as non-canonical base pairs, like duplexes, tetraloops, three-
way junctions and a pseudoknot. We also show that our
base-centered approach is useful for the insertion of atom-
istic details in the predicted structure in a consistent frame-
work.

The paper is organized as follows: the model and the in-
teractions are exposed in the ‘Materials and Methods’ sec-
tion, together with the simulation protocol used in the pa-
per. In the following section, the results will be presented
over several sets of structures. We will begin with a proof of
concept of our method, to continue with a set of tetraloops,
double strands (with and without internal loops), a pseu-
doknot, a subset of motifs already tested in the FARFAR
protocol (47) and finally, a small set of junctions. The de-
tails of the structures can be found in the Supplementary
Data Section 1. We later present the results of the backmap-
ping procedure, which consists in the reintroduction of the
atomistic resolution in the predicted structures, applied to

two tetraloops. The paper finishes with the conclusion and
discussing how to improve the results presented here.

MATERIALS AND METHODS

Coarse-grained representation

The representation of a nucleotide consists of two ele-
ments: a point particle for the phosphate group and a rigid,
anisotropic particle for the nucleoside, as shown in Figure
1. The base is represented as a triplet of particles forming
a triangle which determines its centroid and orientation, as
defined in the ESCORE function (45). Meanwhile, a virtual
site rigidly attached to the base represents the geometrical
center of the sugar ring. Each nucleotide has a well defined
sugar pucker (C2′-endo or C3′-endo) and a glycosidic bond
state, which can be chosen between anti and high-anti con-
formations, and additionally syn for purines.

Interactions

The energy function between two nucleotides i and j is de-
fined as:

Ui j = U EV
i j + Ubp

i j + Ust
i j + Ubph

i j + Ubb
i j,χp (1)

which is a combination of excluded volume (EV), base-
pairing (bp), stacking (st), base-phosphate (bph) and inter-
actions along the backbone (bb). The latter depends both
on the glycosidic bond angle and the sugar pucker, a con-
formation that will be referred as the � p state of a nucleotide
from now on. This energy term is given by:

Ubb
i j,χp = Ub

i j,χp + Ua
i j,p + 1

2

(
Us

i,χp + Us
j,χp

)
, j = i + 1 (2)

where, Ua
i j,p is an energy function of the angle formed by

the sugar–phosphate–sugar triplet of two consecutive nu-
cleotides, and its functional form depends on the sugar
pucker conformations of the nucleotides involved. Ub

i j,χp
is the interaction between nucleoside i and the phosphate
group of nucleotide i + 1. In addition, the self term Us

i,χp is
a sum of the energy between a nucleoside and its own phos-
phate group and a shift ε

χp
i which characterizes the glyco-

sidic bond angle and sugar pucker conformations of the nu-
cleotide. The prefactor 1/2 is not present when considering
the terminal nucleotides.

Each energy term is designed to reproduce a probability
distribution between two or more types of particles. This
distribution is sampled from all their occurrences in a non-
redundant list of structures (see Supplementary Data Sec-
tion 1, (48)). The histograms of the planar base-pairing re-
gion obtained are spanned by classifying the points accord-
ing to the specific kind of interaction using the FR3D pack-
age (49), and, therefore, we rely on its definition of base
pairing and hydrogen bonding. Thus, it is possible to asso-
ciate a particular distribution for stacking interactions and
non-canonical base pairs, as well as base–phosphate and
backbone interactions. The interaction between two bases
turns out to be the most complex due to the anisotropy of
both particles, but also the most important one to describe
the RNA structure. The probability distribution of the spa-
tial configuration of two nucleosides depends on six coor-
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Figure 2. Depiction of selected clouds of points found in structural
database: (A) CG and atomistic representations of Adenine as found in a
typical duplex. The own phosphate group and the one of the following nu-
cleotide are colored in blue and red in the CG representation, respectively.
(B) Clouds of the nucleotide’s own phosphate group; all clouds represent
C3′-endo cloud under different � conformations: anti (green), high-anti
(purple) and syn(cyan). (C) Clouds of the neighboring nucleotide’s phos-
phate group position, � in anti conformation with sugar in C3′-endo (gold)
and in C2′-endo (orange). Also, the syn conformation is shown in red. (D)
Cloud of stacking points, (E) cloud of positions of paired bases through
sugar (purple), Watson–Crick (orange) and Hoogsteen (cyan) faces. (F)
represents the positions of the phosphate groups for base-phosphate inter-
actions, with the same color nomenclature of (E).

dinates, which are shown in Figure 1B. The ESCORE ref-
erence frame deals only with the angles θi , φi and the dis-
tance r. This allows to introduce the probability distribution
function PE (r, θ, φ) based on these degrees of freedom. It is
therefore reasonable to approximate the full probability dis-
tribution as:

P(r, θ1, φ1, θ2, φ2, η) ≈

r 2 Pη(η) × PE
1 (r, θ1, φ1)PE

2 (r, θ2, φ2)
Hr (r )

(3)

where, P� and Hr are the probability distribution of the ori-
entation � and the histogram of the distance r, respectively.
The remaining factors include the probability distribution
of the distance r and the corresponding Jacobian.

Once done this approximation, the interaction potential
is obtained by Boltzmann inversion, as

U(r, θ1, φ1, θ2, φ2, η) =
−T0 log P(r, θ1, φ1, θ2, φ2, η) + ε (4)

where T0 is a fictitious temperature. Here, we use the ap-
proximation of Equation (3) for the function P and intro-
duce a shift ε, which corrects the arbitrary normalization
of the probability distributions. This indetermination can
be used to control the relative strength of the different in-
teractions present in the system (see Figure 2). In a first in-
stance, in the planar non-canonical base pairs, ε is chosen
to make the minimum energy proportional to the number of
hydrogen bonds present in the Leontis-Westhof tables (see

(10)), while the stacking interactions are adjusted with a fit-
ting procedure over a series of structures (see ‘Parametriza-
tion’ section). This approach is intended to distinguish the
multiple interactions that emerge not only between different
species, but also between the Watson–Crick, Hoogsteen and
Sugar/CH4 faces. Stacking interactions, on the other side,
depend on the orientation of the planes defined by the bases
involved. This makes that ε depends on the kind of interac-
tion, species and faces involved in the pairing or stacking.
For the base–phosphate interactions, the energy is given by
Equation (4) but using PE (r, φ, θ ) as the probability distri-
bution, due to the lack of structure of our phosphate group
representation. In this case, the splitting of the probabil-
ity distribution is also done according to the base faces in-
volved. The position of the base with respect to the phos-
phate group in its local reference frame is also taken into
account to form the base-phosphate interaction and avoid
false positives (see Supplementary Data Section 2).

The backbone interactions are designed in a similar way.
For the interactions between a nucleoside and its neighbor-
ing phosphates along the backbone, Equation (4) is used
with its corresponding PE probability distribution, which
is classified according to their backbone conformations
using the Suitename software (http://kinemage.biochem.
duke.edu/software/suitename.php). The obtained probabil-
ity clouds are found to depend strongly on the sugar pucker
and the glycosidic bond of the involved base (see Figure 2).
In this representation, they emerge as a natural partition of
the conformational space, which keeps certain resemblance
with previous pucker-dependent virtual bonds representa-
tions of the backbone (50). The sugar–phosphate–sugar an-
gle shows also a clear dependency on these conformations
(see Supplementary Data Section 2). In these cases, the ab-
sence of a special distinction of the conformations greatly
favors the most populated conformation which corresponds
to the C3′-endo pucker for the sugar pucker and anti confor-
mation of the glycosidic bond torsion � .

The EV interaction is also taken from the ESCORE rep-
resentation, which assigns to sugar, bases and phosphates
an ellipsoidal geometry with specific parameters.

Simulation protocol

Random moves are proposed and accepted with a standard
Monte Carlo Metropolis procedure (51). In addition, each
nucleotide can change its � p state by displacing and rotating
the nucleobase and remapping the sugar, as described in the
Supplementary Data Section 3.

Our method, in its most general form, is intended to be
applied in two steps: first, a search of the global minimum
of the energy function, which can be performed by Simu-
lated Annealing or Simulated Tempering, while keeping the
� p state of all the nucleotides fixed in the anti and C3′-endo
states. These calculations will be referred as � pc simulations
along the paper, to stress the constraint on these variables.
Then, a shorter annealing procedure is run on a smaller set
of nucleotides, typically a junction or an internal or hair-
pin loop, without any constraint on the � p states. In this
manner, for example, we anneal junctions and internal and
hairpin loops by anchoring the molecule to a rigid vicinity,
which can be determined from a previous � pc simulation or

http://kinemage.biochem.duke.edu/software/suitename.php


Nucleic Acids Research, 2018, Vol. 46, No. 4 1677

from a crystal structure. However, for larger structures such
as duplexes and pseudoknots, we have opted for taking into
account their natural flexibility during this refinement step.
To this aim, we apply a soft restraint on the secondary struc-
ture during the refinement.

For the folding simulations, we used a simulated anneal-
ing protocol with 20 initial conditions. For the anchored
tetraloops, each step of the annealing procedure consisted
of 5 × 107 Monte Carlo trials on each nucleotide, sav-
ing conformations every 5000 steps. These parameters had
slight modifications in the rest of the systems. The anneal-
ing procedure started at temperature T = 15T0. T was mul-
tiplied by a factor 0.75 when the minimum energy of an an-
nealing step did not decrease (52). Once it reached a value
smaller than T0, the temperature was set to zero so as to
minimize the energy of the resulting structure and run for a
time equal to the one of an annealing step. This is in gen-
eral more than enough to obtain a converged structure. In
addition, we also performed Simulated Tempering simula-
tions for the pseudoknot, which is also implemented in our
code. We used the method of (53) for estimating the initial
values of the relative weights, with a maximum temperature
of 12.5 T0 and minimum of 0.5 T0, using 12 temperatures
separated by �T = T0.

Parametrization

We parametrize the set of ε shifts of stacking and base–
phosphate interactions by folding a small set of structures.
The base-pairing interactions are scaled according to the
number of hydrogen bonds between two nitrogen or oxygen
containing groups according to the Leontis-Westhof classi-
fication (10). The energy scale of stacking interactions has
been adjusted to obtain an initial value that will be refined
in a posterior step. We start with a trial value strong enough
to correctly fold the stem of the GCAA tetraloop. Later
on, the backbone interactions are multiplied by a prefac-
tor, which is required to obtain the correct arrangement of
bases in the loop region. In a following step, we introduce
the base–phosphate interactions, and adjust their strength
in order to keep the formation of the stem stable. Later, the
stacking interactions have been adjusted by folding a du-
plex which contains the UU stacking (PDB ID: 255D), pro-
viding a lower bound to their strength. Thus, the stacking
strengths are parametrized to distinguish between purines
and pyrimidines (see Supplementary Data Section 2). The
parameters obtained were later on refined by annealing a
set of 46 internal and hairpin loops from the 1S72 riboso-
mal structure. On the resulting structures, the native one was
not always obtained, and a number of alternative interme-
diate structures was often obtained as well. We determined
the minimum energy structure for a large set of parameters
of stacking (see Supplementary Data Section 2), and calcu-
lated the INF score only for the stacking interactions. Thus,
we chose the set of parameters which maximized this score
over the entire training set. In a similar manner, the εχp was
obtained by recalculating the energy of these decoys and
maximizing the number of correctly predicted cases. The de-
tailed values are reported in the Supplementary Data Sec-
tion 3, showing that, after the parametrization, the anti gly-
cosidic conformation with the C3′-endo sugar pucker is still

the most energetically favorable one, although not as dras-
tically as when no shift is applied.

Backmapping

Once the minimum energy CG structure is identified, we
produce an all-atom prediction by performing steered-MD
simulations. The MD simulation is performed using an
atomistic description of RNA in explicit water (TIP3P wa-
ter molecules (54), Amber99 force field (55) with parmbsc0
(56) and � OL3 corrections (57) ) in a truncated dodecahedral
box with Na+ counterions (58). An external force propor-
tional to the ERMSD (45) with respect to the target struc-
ture is applied using the Gromacs code 4.6.7 (59) in combi-
nation with PLUMED (60). This means that the bases are
positioned according to the CG structure, while the back-
bone atoms simply adjust to this arrangement. The temper-
ature was of 350K, while the pulling constant was of 500
kJ/nm2 and the ERMSD cutoff was of 3.6. The possibility
to use the ERMSD as a steered variable has been already
discussed in (18) where it was used so as to enforce the cor-
rect fold in stem-loop structures.

Assessment of prediction quality

We use the standard root-mean-square deviation after opti-
mal superposition (RMSD (61)) and the Interaction Net-
work Fidelity (INF) to compare the predicted structures
with their native counterpart. The INF is given by (62)

INF =
√(

T P
T P + F P

)
×

(
T P

T P + F N

)
(5)

where, TP stands for the correctly predicted contacts while
FP and FN are the false positive and false negative num-
bers, respectively. This coefficient is calculated separately for
stacking (st), canonical pairs (wc), non-canonical pairs (nc)
and base-phosphate (bph) pairs. The RMSD was calculated
by using the position of the sugar, phosphate and backmap-
ping the C2, C4 and C6 atoms from the CG representation.

RESULTS

In the following we discuss the results obtained using our
model on a series of benchmark systems for which the native
structure is already known by means of X-ray or nuclear
magnetic resonance spectroscopy.

As mentioned in the ‘Materials and Methods’ section, the
simulation protocol might be applied in two steps for large
structures, while for small motifs it can be applied without
any � pc constraint, but keeping the RNA motif anchored
to its neighbors. These choices will be specified in each sub-
section.

Validation of the annealing procedure

We have observed including the change of both glycosidic
bond angle conformation and sugar pucker increases con-
siderably the complexity of the conformational space and,
consequently, the simulation time. We thus perform the an-
nealing simulations without restrictions in the � p space on a
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Figure 3. (A) UUCG tetraloop predicted by SPQR. (B) UUCG tetraloop
predicted by � pc annealing. (C) CUUG tetraloop, closest structure to na-
tive and (D) CUUG tetraloop predicted by � pc simulations.

selected set of systems only, in order to validate the two-step
procedure. In particular, we perform a de novo prediction of
a duplex formed of the sequence CCCCGGGG (PDB ID:
1RXB) and a hairpin of sequence GGGCGCAAGCCU
(PDB ID: 1ZIH). In both cases, the contacts and three-
dimensional structure are nicely recovered. Equivalent re-
sults were also produced using the two-step procedure,
which evidences the robustness of our approach.

Tetraloops

We have tested our approach on a set of tetraloops which
include several GNRA occurrences and the UUCG and
CUUG sequences. Details about the sequences and native
structures can be found in the Supplementary Data Sec-
tion 4. The loop structures are optimized by a single round
of Simulated Annealing while keeping them attached to a
fixed stem obtained from the crystal structure. Only the
tetraloops and the closing base pair are allowed to move
during the simulation (six flexible nucleotides). The total
number of nucleotides in the hairpin loops is eight for
GNRA and UUCG and nine for CUUG. The change of
the � p state is allowed only on the four nucleotides in the
tetraloop. The results are shown in Table 1. We can observe
the comparison between the systems with fixed � pc simula-
tions. In the case of GNRA and UUCG, the pucker and gly-
cosidic bond angle conformations are correctly predicted,
and the bases orient themselves accordingly leading to an
excellent agreement. Particularly, in UUCG, two bases are
flipped: a purine (G9), by virtue of its glycosidic bond angle,
and a pyrimidine (C8), due to its sugar pucker conforma-
tion, which is reconstructed by SPQR as shown in Figure
3A and B. In the case of CUUG, the native structure was
observed as the second most energetically favorable struc-
ture. The energy difference between the native structure and
the one predicted as most stable by SPQR was only of the
order of the energy of a single hydrogen bond. Nevertheless,
the agreement is remarkable, reproducing both the loop re-

Figure 4. (A) Native pseudoknot 1L2X, (B) folded after refinement. To
facilitate the comparison between the two structures, the three initial nu-
cleotides and two bulges are colored in red.

gion and a bulge as shown in Figure 3C, compared to its
� pc counterpart in Figure 3D.

Double-stranded structures and pseudoknot

We also tested our method on a set of double stranded-
structures containing non-canonical pairs, as well as on a
pseudoknot. For these systems, the two-step procedure was
applied as described in the ‘Materials and Methods’ section,
that is, we performed � pc simulations which are later refined
imposing secondary structure restraints. The results before
and after the refinement are shown in Table 2. For the pseu-
doknot, all the canonical base pairs, with the exception of a
pair of bulged bases, were correctly predicted.

Once the duplexes have been successfully folded with con-
straints, they are remarkably stable. In general, the results
are not greatly affected by the additional degrees of free-
dom. An unfavorable case is 1KD5, where a slightly less fa-
vorable conformation appears with a similar energy of the
native with two puckers wrongly predicted. A similar case
is observed in 402D, where an incorrect structure has prac-
tically the same energy as a better structure listed in the ta-
ble. For the 1L2X pseudoknot structure we obtain a rea-
sonable agreement without sampling glycosidic bond angle
and pucker. However, it turns out that the refinement im-
proves the INF corresponding to non-canonical pairs, and
reduces the number of false positive base–phosphate inter-
actions from five to two. For this system, the number of true
positives is zero, so that INF is zero irrespectively of the
number of false positives. We also see that some bases can
flip to syn state (the only cases on the present set), although
they are unpaired or bulged. In addition, the first two un-
paired nucleotides turn more flexible under the refinement.
By neglecting them from the analysis, the RMSD improves
to 3.3Å. A depiction of this structure is found in Figure 4.

Anchored internal loops and junctions

We simulated a small subset of the FARFAR motifs (47).
For a detailed description, see the Supplementary Data
Section 1. In this case, each motif is completely flexible
while the nucleotides of its environment are frozen in space.
This included the initial and terminal nucleotides of the
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Table 1. RMSD and INF scores of the predicted tetraloops

Structure RMSD (Å) INF INFwc INFnc INFbph

GCAA 1.4 1 1 1 1
GAAA 1.7 1 1 1 1
GAGA 1.2 1 1 1 1
GCGA 1.8 1 1 1 1
GGAA 2.1 1 1 1 1
GGGA 1.3 1 1 1 1
GUAA 1.3 1 1 1 1
GUGA 1.5 1 1 1 1
UUCG 0.9 1 1 1 1
UUCG(� pc) 2.7 0.86 1 0 0
CUUG(s) 1.8 0.94 1 - 0
CUUG(� pc) 3.5 0.7 0.81 0 -

Results for the tetraloop simulations allowing the change of sugar pucker and � angle conformation. Results forcing these parameters to the C3′-endo and
anti conformation in all the nucleotides are denoted with (� pc). Also, the second best result for CUUG is denoted by (s), and included for completeness.

Table 2. RMSD and INF scores for the double-stranded structures and pseudoknot predictions

Structure RMSD (Å) INF INFwc INFnc INFbph

157D 1.6 0.98 1 1 -
157D(� pc) 1.5 0.98 1 1 -
1DQH 2.3 0.93 1 - -
1DQH(� pc) 2.1 0.93 0.94 - -
1KD5 4.4(3.6) 0.81 1 0 -(0)
1KD5(� pc) 3.6 0.89 1 0 -
1SA9 2 0.92 1 0 -
1SA9(� pc) 2 0.92 1 0 -
205D 1.4 0.93 1 1 -
205D(� pc) 1.6 0.95 1 1 -
402D 3.3(1.4) 0.89 1 0(1) -
402D(� pc) 1.4 0.89 1 1 -
1I9X 4.2 0.85 0.83 - -
1I9X(� pc) 4.5 0.85 0.83 - -
1L2X 4 0.84 0.94 0.42 0
1L2X(� pc) 4.4 0.81 0.94 0.22 0

The values correspond to the scores of the minimum energy conformation found on each case. In parentheses are the values of structures that were found
with an energy practically indistinguishable to the minimum.

strands involved, plus any interacting nucleotide according
to FR3D or a nucleobase with a C4′ atom separated by a
distance smaller than 12Å from any atom of the motif. The
results are presented in Table 3.

The results are reasonable, showing that in many cases,
when the � pc simulations produce good enough results, the
additional degrees of freedom introduced by the � p refine-
ment do not compromise the structure.

On average, the � p refinement improves slightly the val-
ues of the INF for non-canonical base pairs. Nevertheless,
it makes possible the formation of certain motifs which are
technically forbidden without the additional freedom of the
sugar pucker and glycosidic bond angle as in 2GDI (see
Supplementary Data Section 5). In addition, base flips seem
not to cause a major problem; in fact, the only case they ap-
pear spuriously is in unpaired bases of 1JJ2. The INF values
obtained here are comparable to the values obtained with
SimRNA for the same motifs, although the authors have
reported a smaller RMSD.

Finally, Table 4 shows the results for the junctions.
Here the results are in general worse than in the previous

cases. Although the � p refinement does not improve the re-
sults when they are already bad, it does improve them when
the � pc predictions are good. Taken together, these results

suggest that in order to be reliably used to predict junctions,
the model should likely be further refined.

Backmapping

The backmapping procedure has been applied over two rep-
resentative tetraloops (GCAA, PDB ID:1ZIH and UUCG,
PDB ID: 2KOC), using six initial conditions starting from
a free strand and MD simulations of 3 ns. The pulling
force is proportional to the ERMSD between the bases of
the atomistic structure and the lowest-energy CG structure
found in the annealing procedure and thus effectively steers
the atomistic model toward the structure predicted using
the CG model. We stress that since this ERMSD calcula-
tion is done with respect to the predicted model, its evalu-
ation does not require any knowledge of the native struc-
ture. The ERMSD converges quickly, as seen in Figure 5,
reaching a value of 0.4 or lower when the folding is suc-
cessful. The RMSD of the phosphates also converges in the
same time scale. This result is not straightforward, since
the ERMSD only measures the relative nucleobase arrange-
ment. By choosing the lowest ERMSD structures of the
simulations, we find an all-atom RMSD (without hydrogen
atoms) from native of 2.3 Å for 1ZIH and 1.9 Å for 2KOC.
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Table 3. RMSD and INF scores for subset of FARFAR motifs

Structure RMSD(Å) INFst INFwc INFnc INFbph

157D1 0.7 1 1 1 -
157D1(� pc) 0.7 1 1 1 -
1D4R1 0.7 0.94 1 1 -
1D4R1(� pc) 0.6 0.94 1 1 -
1JJ21 5 0.55 1 0 0
1JJ21(� pc) 3.7 0.62 1 0.25 0
1LNT1 1 0.96 1 0.89 1
1LNT1(� pc) 1.1 0.96 1 0.89 1
1Q9A1 1.1 0.91 1 1 1
1Q9A1(� pc) 0.9 0.91 1 1 1
1U9S1 5.9 0.22 0.71 - -
1U9S1(� pc) 4.6 0.67 0.71 - 0
2GDI1 0.9 1 1 - -
2GDI1(� pc) 2.3 0.8 1 - -
2OUI1 1.8 0.75 1 0.5 -
2OIU1(� pc) 2.1 0.77 0.87 0 -
2R8S1 1 0.88 1 1 -
2R8S1(� pc) 1 0.88 1 1 -
2R8S3 3.6 0.53 1 0.29 -
2R8S3(� pc) 5.5 0.5 1 0.29 -

Table 4. RMSD and INF scores of the set of junctions

Structure RMSD (Å) INF INFwc INFnc INFbph

1GID2 7.9 0.47 1 0.63 0.71
1GID2(� pc) 3 0.55 1 0.71 0.35
2QBZ3 8.4 0.30 0.58 0 0
2QBZ3(� pc) 6.5 0.41 0.87 0 0
3R4F2 3.1 0.59 1 - -
3R4F2(� pc) 2.8 0.6 1 - -
4P8Z2 2.2 0.47 1 - 0
4P8Z2(� pc) 2.9 0.47 1 - 0
4P9R2 3.3 0.57 1 - -
4P9R2(� pc) 2.7 0.52 1 - -

Figure 5. (A)ERMSD and phosphate RMSD as a function of time for
backmapping of 1ZIH. (B) Comparison of GCAA tetraloop(1ZIH) at full-
atom resolution for native (blue) and annealed (red).

The backmapping procedure is not always successful. In
some cases, the base-flipping, like the one of G8 in the
UUCG tetraloop, is not observed. This is an indication that
the steering procedure was too fast, not letting the atomistic
model enough time to relax. Nevertheless, the ERMSD of
these structures is above 0.6, which makes these instances
easy to detect without any knowledge of the native struc-
ture.

By taking the 90 lowest ERMSD structures, that is the
atomistic structures that better approximate the predicted
CG model, we have analyzed the glycosidic bond torsion
and sugar puckers in the tetraloop region. The sugar pucker

was identified with Suitename. Structures with not classi-
fied backbone conformations were discarded in the analy-
sis. We observe that for GCAA in 84% of the cases the full
tetraloop has the right glycosidic bond conformation in all
its nucleotides, from which 92% had the right conformation
in all the sugar puckers at the same time. On the other side,
UUCG shows 76% of right glycosidic conformations, from
which 85% of them have the right puckers. Note that these
loops are not static in solution, so it is not unexpected to
observe a variety of rotameric states (63).

DISCUSSION AND CONCLUSION

We proposed a CG model with a hybrid parametrization for
folding small RNA motifs. The model pays special atten-
tion to the non-canonical base pairs, base phosphate inter-
actions, sugar puckers and glycosidic bond torsions, which
are the key elements that determine, from our study, the ge-
ometrical arrangement of nucleotides from the perspective
of a base. It is important to observe that whereas the shape
of the distributions associated to each interaction type is
obtained from the employed non-redundant list of struc-
tures, the strength of the base-pairs interactions follows the
classification presented in (10). This gives more relevance
to certain base-pairs that are not very frequent but could
have a significant energetic contribution. It also depends of
both faces of the bases when they are confronted. There-
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fore, the correction also compensates the different normal-
izations which cannot be captured by the usual approxima-
tions that consider, in a first instance, the interactions as in
an structureless liquid (64). An equivalent procedure is also
used to partition the space according to the � p values.

The procedure used for the parametrization of our model
makes it a hybrid in between models which are based on
purely statistical potentials (e.g. (21,32)) and methods that
are trained based on the energetics of the relevant interac-
tions (e.g. (38)).

We also have opted for leaving out the pseudotorsional
space (65) interactions. Although there is evidence of the
correlation of these variables and the total RMSD of certain
structures, it is not clear whether they are indeed the cause
of the form of each loop, and they are not able to distinguish
between sugar puckers. We observe that our representation
sufficed in many cases for the correct prediction of several
motifs. This suggests that the incorporation of additional
contributions to the potential is likely not necessary at this
time. We also noticed that incorporating additional poten-
tials based on statistics from structural databases may shift
the predicted structures to more frequent conformations in
the reference database, e.g. A-form duplexes, if not properly
orthogonalized to the already present contributions.

Although the parametrization we present is not unique
and could be further refined, the simple choice we have
used in this paper has been enough for folding a number of
structures which include canonical and non-canonical pairs.
Even more, we have shown that the inclusion of puckers and
glycosidic bond torsions allows for an improvement in the
predicted structures in cases where rare conformations (syn
and C2′-endo) are present in the native structure, without
significantly destabilizing the most common conformations.
Also, crucial base-phosphate interactions have been suc-
cessfully recovered. Considering the complexity of the in-
teractions, it is also remarkable that the annealing from ran-
dom conformations is able to reproduce both duplexes and
hairpins with good accuracy of bulges and non-canonical
pairs.

The blind prediction tests give results that are comparable
to those obtained with SimRNA (32). However, it should
be mentioned that an intrinsic advantage of our model is
that it allows base flipping to be explicitly modeled chang-
ing both sugar puckers and glycosidic bond angle. We thus
think that SPQR could be optimally used side-by-side with
other modeling tools that do not take these degrees of free-
dom explicitly into account.

We have also implemented a backmapping procedure
able to introduce atomistic detail on the candidate struc-
tures. Although the procedure is designed to only enforce
the position and orientation of the bases, it is able to
backmap reasonably well the whole structure, with a good
agreement of the sugar puckers and glycosidic bond torsion
conformations in most cases. This allows our protocol to be
used for structure prediction at atomistic resolution. We re-
call that atomistic MD is still impaired by sampling issues
and by the accuracy of force fields and it is not able to pre-
dict correctly such a variety of motifs. On the opposite side,
structural bioinformatics tools are typically designed so as
to quickly model or fold larger structures with an accuracy
that does not allow individual contacts to be reliably pre-

dicted. Our model is just optimally suited in the middle, and
might be useful for refining structures obtained with other
tools so as to bring them at atomistic resolution.

The CG simulations were performed using an in-house
Monte Carlo code, which can be downloaded at http://
github.com/srnas/spqr. The folding of a 12-nt hairpin may
take around 6 h in a desktop PC. Depending on the num-
ber of resources available, this procedure can be parallelized
for a better exploration of the folding space, although both
the code and the annealing procedure can be improved. The
typical cost of a backmapping simulation with our proce-
dure is 4 h on twenty processors for a 12-nt hairpin. This
time might seem large, considering that most of the available
CG models allow for the atomistic representation to be con-
structed in a single step, typically by assembling fragments
that are compatible with the CG representation. However,
the timescale of the backmapping simulation itself is com-
parable or even shorter than that of the structure predic-
tion using the CG model, so that the total simulated time is
less than doubled if only the best prediction is to be refined.
In addition, if one is willing to use the resulting structure
as an input for an atomistic simulation, our procedure has
the advantage of producing a fully solvated and equilibrated
structure. Finally, the backmapping procedure itself, being
based on a force field with a reasonable accuracy, can help
in identifying nucleotides that have been wrongly placed by
the CG simulation. The similarity between the timescales of
the CG simulation and of the backmapping procedure nat-
urally calls for a synergic simulation protocol where both
representations are simultaneously evolved, that will be the
subject for further investigation.

In this paper we presented a novel protocol for
RNA structure prediction and refinement. The employed
parametrization and the separation of the variables along
the backbone were shown to be the key ingredients for the
formation of tetraloops belonging to three families, as well
as for the correct prediction of a number of hairpins, du-
plexes, internal loops, junctions and a pseudoknot, featur-
ing multiple non-canonical interactions. Future work will
contemplate a further refinement of the base–base interac-
tions and an extensive validation on a larger number of mo-
tifs taken from structural databases.

DATA AVAILABILITY

The CG simulations were performed using an in-house
Monte Carlo code, which can be downloaded at http://
github.com/srnas/spqr.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

European Research Council under the European Union’s
Seventh Framework Programme [FP/2007-2013], ERC
Grant [306662], S-RNA-S. Funding for open access charge:
Institutional funds from Scuola Internazionale Superiore di
Studi Avanzati (SISSA).
Conflict of interest statement. None declared.

http://github.com/srnas/spqr
http://github.com/srnas/spqr


1682 Nucleic Acids Research, 2018, Vol. 46, No. 4

REFERENCES
1. Lehman,N. (2010) RNA in evolution. Wiley Interdiscip. Rev. RNA, 1,

202–213.
2. Doudna,J.A. and Cech,T.R. (2002) The chemical repertoire of natural

ribozymes. Nature, 418, 222–228.
3. Mattick,J.S. (2004) RNA regulation: a new genetics?Nat. Rev. Genet.,

5, 316–323.
4. Serganov,A. and Nudler,E. (2013) A decade of riboswitches. Cell,

152, 17–24.
5. Morris,K.V. and Mattick,J.S. (2014) The rise of regulatory RNA.

Nat. Rev. Genet., 15, 423–437.
6. Tinoco,I. Jr and Bustamante,C. (1999) How RNA folds. J. Mol.

Biol., 293, 271–281.
7. Murray,L.W., Arendall,W.B. III, Richardson,D.C. and

Richardson,J.S. (2003) RNA backbone is rotameric. Proc. Natl. Acad.
Sci. U.S.A., 100, 13904–13909.

8. Richardson,J.S., Schneider,B., Murray,L.W., Kapral,G.J.,
Immormino,R.M., Headd,J.J., Richardson,D.C., Ham,D.,
Hershkovits,E., Williams,L.D. et al. (2008) RNA backbone:
Consensus all-angle conformers and modular string nomenclature
(an RNA Ontology Consortium contribution). RNA, 14, 465–481.

9. Leontis,N.B. and Westhof,E. (2001) Geometric nomenclature and
classification of RNA base pairs. RNA, 7, 499–512.

10. Leontis,N.B., Stombaugh,J. and Westhof,E. (2002) The
nonWatsonCrick base pairs and their associated isostericity matrices.
Nucleic Acids Res., 30, 3497–3531.
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