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ABSTRACT
Background. Nonalcoholic fatty liver disease (NAFLD) is the most common liver
disease worldwide that endangers human health. Transcription factors (TFs) have
gradually become hot spots for drug development in NAFLD for their impacts
on metabolism. However, the specific TFs that regulate immune response in the
development of NAFLD is not clear. This study aimed to investigate the TFs involved
in the immune response of NAFLD and provide novel targets for drug development.
Methods. Microarray data were obtained from liver samples from 26 normal volunteers
and 109 NAFLD patients using the Gene Expression Omnibus (GEO) database.
Differentially expressed genes (DEGs) were analyzed by limma package. Differentially
expressed transcription factors (DETFs) were obtained on DEGs combined with
Cistrome Cancer database. Immune signatures and pathways hallmark were identified
by ssGSSEAandGSVA.The co-regulationnetworkwas constructed by the above results.
Further, quantitative Real-time Polymerase Chain Reaction (qRT-PCR), Western blot
(WB) and Immunohistochemistry (IHC)were used to validate the relationship between
GTF2I and NAFLD. CIBERSORT analysis was performed to identify cell types to
explore the relationship between differential expression of GTF2I and immune cell
surface markers.
Results. A total of 617 DEGs and six DETFs (ESR1, CHD2, GTF2I, EGR1, HCFC1,
SP2) were obtained by differential analysis. Immune signatures and pathway hallmarks
were identified by ssGSSEA and GSVA. GTF2I and CHD2 were screened through the
co-regulatory networks of DEGs, DETFs, immune signatures and pathway hallmarks.
Furthermore, qRT-PCR, WB and IHC indicated that GTF2I but not CHD2 was
significantly upregulated in NAFLD. Finally, in silico, our data confirmed that GTF2I
has a wide impact on the immune profile by negatively regulating the expression of the
chemokine receptor family (227/261, count of significance).
Conclusion. GTF2I plays a role in NAFLD by negatively regulating the chemokine
receptor family, which affects the immune profile. This study may provide a potential
target for the diagnosis or therapy of NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder characterized
by the accumulation of fats mainly with the form of triglycerides in hepatocytes more than
5% (Brunt et al., 2015). NAFLD covers a histological spectrum of liver diseases ranging
from simple steatosis to non-alcoholic steatohepatitis (NASH), and subsequently can lead
to fibrosis, cirrhosis, and even liver cancer (Stefan, Häring & Cusi, 2019). The prevalence
of NAFLD has been reported to be 25% in adults worldwide and it has become the most
prevalent causes of chronic liver disease in China (GBD, 2020; Estes et al., 2018a; Estes et al.,
2018b). NAFLD, especially after progression to NASH, largely endangers human health and
imposed significant burden on patients in terms of quality of life and economy (Gordon et
al., 2020; Younossi et al., 2016). Despite the high burden of NAFLD on the community, the
molecular and cellular mechanisms involved in NAFLD have not been fully understood
and there is no approved drug regimen so far (Younossi, 2019; Zhou et al., 2019). Therefore,
it is urgent to explore the underlying molecules in the pathogenesis and development of
NAFLD.

The mechanisms underlying NAFLD are not entirely understood, the role of immune
response in NAFLD has been the focus of intense research in the past few years (Marchisello
et al., 2019). Innate and adaptive immune cell activation together with oxidative stress,
mitochondrial and ER dysfunctions lead to necro-inflammation thus promoting NAFLD
development (Dong et al., 2007; Gebru et al., 2021; Suppli et al., 2019). Transcription
factors (TFs), which are frequently aberrant in diseases, have roles at focal points in
signaling pathways, controlling many normal cellular processes such as cell growth and
proliferation, metabolism, apoptosis, immune responses, and differentiation (Lambert
et al., 2018; Deng et al., 2022). Nowadays, TFs are gaining increasing attention as drug
targets against many diseases including NAFLD (Papavassiliou & Papavassiliou, 2016;
Becskei, 2020). Studies have shown that hepatic de novo lipogenesis is mainly regulated
by TFs, such as sterol regulatory element binding protein-1c (SREBP-1c), carbohydrate
response element binding protein (ChREBP), Farnesoid X receptor (FXR), and peroxisome
proliferator-activated receptor (PPAR) (Ahmed & Byrne, 2007; Zhao et al., 2020; Hong &
Tontonoz, 2008; Schmuth et al., 2014; Moon, 2017). Transcription factor nuclear factor
erythroid 2-related factor 2 (Nrf2) mediates the crosstalk between lipid metabolism and
antioxidant defense mechanisms in experimental models of NAFLD (Chambel, Santos-
Gonçalves & Duarte, 2015). Forkhead box O1 (FOXO1) plays a crucial role in coordinating
the nutritional signals regulating metabolic control, including the homeostasis of glucose
and lipids, inflammation, and oxidative stress (Sabir et al., 2022). Most of studies focus on
roles of TFs in the process of metabolism; few are focusing on the effects of TFs on immune
response, which plays major role in the progression of NAFLD (Schmuth et al., 2014;
Toobian, Ghosh & Katkar, 2021; Porcuna, Mínguez-Martínez & Ricote, 2021). Therefore,
it is necessary to explore the key TFs that regulate immune response and construct the
regulation network of them in NAFLD. The key TFs could be the potential targets of
NAFLD.
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In the present study, we integrated the NAFLD population gene information, including
pathway hallmarks, immune signatures, differential transcription factors and differential
genes, to construct a co-regulatory network. Here, the hub gene-GTF2I was identified in
this network. Furthermore, in vitro, in silico, and in human samples, our data confirmed
that GTF2I may play a role in NAFLD by influencing the immune profile through negative
regulation of chemokine receptor family. Our work may provide new insights of GTF2I
involved in NAFLD and provide new target for the diagnosis and treatment of NAFLD.

MATERIALS & METHODS
Patients
Liver tissues used in the study were obtained from patients with hepatic hemangioma who
underwent hepatic hemangioma resection in Tongji Hospital (Shanghai, China). The use
of specimens was approved by the Research Ethics Committee of Tongji Hospital, and the
Institutional Review Board approval number is K-KYSB-2020-139. All patients signed an
informed consent to participate in this research.

Cell culture and hepatic steatosis model constructed
At the condition of 37 ◦C, 5%CO2, HepG2 (HB-8065, ATCC) was cultured in 6-well
plates (2*105 cells/well) of DMEM Medium (KGM12800-500, Keygene BioTECH,
Nanjing, China) supplemented with 10% FBS (Gibco, South America) and 1% penicillin-
streptomycin solutions. Cells were starved for 6 h in serum-free DMEM, 0.5% BSA
(Sigma-Aldrich, St. Louis, MO, USA). Bovine albumin (BSA, 1mM) and free fatty acids
(FFA,1mM) were involved in the medium for 24 h to induce control/steatosis cells (Kanuri
& Bergheim, 2013; Chavez-Tapia, Rosso & Tiribelli, 2011).

Data acquisition
The inclusion and exclusion criteria of participants were as described in previous studies.
Specifically, microarray data and clinical information of 26 liver samples from healthy
participants and 109 liver samples from NAFLD patients were achieved from the Gene
Expression Omnibus (GEO) database (accession number: GSE126848, GSE130970)
(Brenner et al., 2013; Sun & Gao, 2004). The participants included in this analysis were
all diagnosed with histologically normal and NAFLD liver by biopsy, and interference
from excessive alcohol consumption, diabetes mellitus, drug injury and other factors were
excluded. In addition, the annotation files were acquired fromGPL18573 Illumina NextSeq
500 (Homo sapiens) and GPL16791 Illumina HiSeq 2500 (Homo sapiens) platforms
(Hoang et al., 2019; Suppli et al., 2019). Hallmark signaling pathways were collected from
the Molecular Signatures Database. 29 immune-associated gene sets which represented
diverse immune cell types, functions, and pathwayswere used to identify immune signatures
(He et al., 2018).

Data prerecession and differential expression analysis
Participants with incomplete samples and clinical information were excluded. Affy package
was utilized for reading original microarray data. Robust multi-array average (RMA)
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background was to correct, standardize, probe-specific background correction, and
summarize probe set values in expression measure. Meanwhile, normalization was used to
correct the integrated microarray data in preparation for differential expression analysis.
Differential expression analysis of genes between NAFLD and normal liver were conducted
using the Linear Models for Microarray Data (limma) package. False discovery rate (FDR)
was utilized for multiple testing. FDR< 0.05 as well as absolute log2[Fold Change (FC)] ≥
1.0 were cut off criteria.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes & Genomes (KEGG) enrichment
analyses were carried on to investigate intrinsic biological processes and pathways
which were significantly related to DEGs with FDR p-value < 0.05 as cut off value.
Furthermore, we obtained all transcription factors (TFs) from the Cistrome Cancer
database (http://cistrome.org/CistromeCancer/), which were then merged with DEGs to
acquire the key differentially expressed transcription factors (DETFs).

Identification of potential downstream hallmark pathways
Potential downstream hallmark pathways of DETGs were identified through GSVA and
GSEA (Ferreira et al., 2021; Mei et al., 2017). 50 hallmark pathways (GSEA | MSigDB
(gsea-msigdb.org)) were absolutely quantified and then evaluated to extract the hallmark
differential expression pathways related to NAFLD through ClusterProfiler package
and GSVA package (Subramanian et al., 2007; Yu et al., 2012). Significant enrichment of
upregulated and downregulated hallmark pathways in NAFLD and normal livers was
indication through GSEA.

Regulation network of transcription factors
Key DETFs ultimately associated with NAFLDwere obtained through combing the Pearson
correlation analysis of DETFs (correlation more than 0.85; significance less than 0.05),
merging with the results of GSVA and GSEA analysis, and then plotted the regulatory
network combining TFs, DEGs, and hallmark pathways using the igraph R package
(https://igraph.org/r/).

Oil red O staining
After HepG2 was treated with FFA for 24 h, the medium was removed. Wash twice with
phosphate buffered saline (PBS) and fix with 4% paraformaldehyde for 30 min. Then, add
oil red O (0.6% oil red O in isopropanol: H2O = 3:2) for 1 h and washed with PBS three
times. The formation of lipid droplets was observed under optical microscope.

Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC)
Hematoxylin-eosin Staining (HE) was performed on liver tissue (5 mm) of three healthy
subjects and 10 patients with NAFLD. Following routine rehydration, antigen retrieval, and
blocking procedures, the sections were incubated overnight with GTF2I antibody (1:50
dilution, ab248269, Abcam, Cambridge, UK) at 4 ◦C. All slides were labeled polymer HRP
for half an hour and hematoxylin as a counterstain for 5 min at room temperature.
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Western blot
30 mg of each sample was taken and lysed with RIPA at 4 ◦C to obtain the total protein.
After protein quantification using a microplate reader, an appropriate amount of loading
buffer was added and subsequently changed by heating in 95 ◦C for 15 min. After
polyacrylamide gel electrophoresis (30 g protein usage) and subsequent routinewestern blot
experimental steps,GAPDH (diluted 1:25,000, 60004-1, Proteintech, USA), CHD2 (diluted
1:1,000, 12311-1-AP, Proteintech, USA) were respectively incubated overnight with the
corresponding PVDF membrane region with the GTF2I (1:1,000, ab248269, abcam, USA)
antibody at 4 ◦C overnight. Then, the membranes were incubated with the horseradish
peroxidase-conjugated goat anti-rabbit IgG secondary antibody (cat. no. A0208; 1:10,000;
Beyotime Institute of Biotechnology, Jiangsu, China) or goat anti-mouse IgG (cat. no.
A0216; 1:10,000; Beyotime Institute of Biotechnology) at room temperature for 1 h.
BeyoECL Plus (Beyotime Institute of Biotechnology, Jiangsu, China) and QuantityOne
v4.6.6 software (Bio-Rad Laboratories, Inc., Hercules, CA, USA) were used to observe the
protein bands.

Quantitative reverse transcriptase-PCR (qRT-PCR)
Total RNA of liver specimens (30 mg) was extracted via Trizol reagent as described by
the manufacturers, and RT-PCR were performed with total RNA (1 µg) according to the
instructions of the RT-PCR reaction kit. The product was amplified in a reaction volume
of 20 µl containing 1 µl RT product, 10 µl SYBR H (5X), and 0.5 µl of each primer
(10X). PCRs were reacted for 40 cycles at 95 ◦C for 10 s, 60 ◦C for 30 s, 72 ◦C for 30 s.
Samples’ threshold cycle values were standardized to GAPDH mRNA expression, while the
fold-change for each mRNA was calculated using the 2-delta delta Ct method. Primers of
qRT-PCR were listed in Table 1.

Immune profile assessment
According to the median of GTF2I in all samples, the samples were divided into high
expression group and low expression group. CIBERSORT algorithm was used to analyze
the effect of GTF2I on different immune cell composition. GSEA was used to analyze the
differential pathways between high expression group and low expression group. Immune
cell surface markers were used to further compare the difference of high expression group
and low expression group.

Statistics analysis
Statistical analyses were performed with R version 3.6.1 (R Core Team, 2019). The
continuous variables were presented as themean± standard deviation. For non-microarray
data, data that satisfied normal distribution were analyzed by Student’s t -test. A Mann–
Whitney U test was used to evaluate non-parametric data. P value< 0.05 was supposed to
statistically significant.
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Table 1 The primer sequences.

Forward Reverse

GTF2I TTGTCGTCGGAACTGAAAGAG CGATTTGCCTGGGTTGTAGAT
CHD2 AGTCAGTCGGAAAGTGAGCAG ACATCAGCTATCCGTTCCTTCT
GAPDH AATGGGCAGCCGTTAGGAAA GCGCCCAATACGACCAAATC

RESULTS
Identification of DEGs and functional enrichment analysis
The analysis procedure of this study is shown in Fig. 1. The participants included in this
analysis were all diagnosed with histologically normal and NAFLD liver by biopsy, and
interference from excessive alcohol consumption, diabetes mellitus, drug injury and other
factors were excluded. On this basis, we integrated the expression matrix of the microarray
data for differential gene analysis. As shown in the volcano plot (Fig. 2A) and heat map
(Fig. 2B), 617 genes were identified as DEGs from 18435 genes in 26 controls and 109
NAFLD patients.

Next, GO and KEGG enrichment analyses were used to explore the potential function
of identified DEGs. In GO analysis, the most significant terms of biological process
(BP), cellular components (CC), and molecular function (MF) were ‘establishment of
protein localization to membrane’ (Fig. 2C), ‘cytosolic ribosome’ (Fig. 2D), and ‘structural
constituent of ribosome’ (Fig. 2E), respectively, which were critical in NAFLD pathogenesis.
In KEGG analysis, DEGs between NAFLD and normal participants were involved in cell
signal transduction and immune related diseases, such as ‘Glycine, serine and threonine
metabolism’, ‘Cell adhesion molecules’, ‘autoimmune thyroid disease’ and ‘Allograft
rejection’ (Fig. 2F). Through the functional analysis of differential genes between NAFLD
and normal participants, these results suggested that the expression pattern of differential
genes in NAFLD may be closely related to the immune profile, which we will investigate in
the next step.

Identification of key differentially expressed transcription
factors (DETFs)
The results of the analysis above showed that differential genes were enriched in immunity
and signal transduction. We further screened transcription factors on the basis of DEGs to
obtain key regulatory genes.

All TFs were obtained through the Cistrome Cancer database, and then crossed with
the DEGs to get the relevant transcription factors that are differentially expressed. As the
volcano plot (Fig. 3A) and heat map (Fig. 3B) illustrated, six TFs (ESR1, CHD2, GTF2I,
EGR1, HCFC1, SP2) were considered as the DETFs in patients with NAFLD. Among these
transcription factors, CHD2, ESR1, and GTF2I were significantly increased in NAFLD.
EGR1, HCFC1 and SP2 were significantly decreased in NAFLD. These transcription factors
would prepare for the later construction of co-expression networks among immune
signatures, pathway hallmarks, DEGs and DETFs.
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Figure 1 Analysis flow chart of the study process of this study.
Full-size DOI: 10.7717/peerj.13735/fig-1

Immune signatures and pathway hallmarks between NAFLD and
normal participants
Based on the enrichment analysis results, we further deeply evaluated the distinction of
immune profile in NAFLD and normal participants. 29 immune-associated gene sets
which represented diverse immune cell types, functions, and pathways were used to
identify immune signatures between NAFLD and normal participants. Firstly, we used the
ssGSEA algorithm to rank individual sample gene expression by absolute value, compute
cumulative empirical probability distributions for specific gene sets, and finally obtain
enrichment score (ES) representing the abundance of immune infiltrating cells. The results
were shown in the heatmap (Fig. 4A). and the most significant immune related gene set
based on difference analysis were ‘APC co-inhibition’, ‘DCs’, ‘Cytolytic activity’, ‘T helper
cells’ and ‘CD8+ T cell’ (Table 2).
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Figure 2 Identification of differentially expressed genes (DEGs) and functional enrichment analy-
sis. (A) A total of 617 genes were identified as DEGs and visualized by volcanic map. (B) The expression
levels of DEGs in each sample were visualized by heat map with unsupervised clustering. (C–E) The top
five terms of BP, CC, and MF in GO analysis were visualized by circle plot. (F) The top 20 terms in KEGG
analysis were visualized by bar plot.

Full-size DOI: 10.7717/peerj.13735/fig-2

In addition, at the biological function rather than a single gene level, we used the GSVA
algorithm to analyze the biological status between NAFLD and normal participants to
identify key biological processes. Hallmark gene sets, which summarize and represent
specific well-defined biological states or processes, were used as reference datasets. The
difference analysis results of GSVA in the pathway betweenNAFLD and normal participants
were visualized by volcano map and heat map (Figs. 4B–4C). According to the differential
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Figure 3 Recognition of key DETFs and functional annotation. (A) Six genes were identified as DETFs
and visualized by volcano plot. (B) The expression levels of DETFs in each sample were visualized by heat
map with unsupervised clustering.

Full-size DOI: 10.7717/peerj.13735/fig-3

ranking of each gene set between the two groups, the most significant gene sets were
‘E2F_targets’ and ‘ANGIOGENESIS’, which play an important role in cell proliferation
and metabolism (Fig. 4D). The results of ssGSEA and GSVA analyses helped us to identify
immune signatures and pathway hallmarks between NAFLD and normal participants,
which would prepare us to construct co-expression networks among immune cells,
signaling pathways, differential genes and transcription factors.

Construction of regulatory network and screening of hub genes based
on DEGs, DETFs, immune signatures and pathway hallmarks
In the previous study herein, we obtained results for DEGs, DETFs, immune signatures,
and pathway hallmarks. On this basis, we used DEGs to perform correlation analysis
(correlation more than 0.85; significance less than 0.05) with transcription factor/immune
signatures/pathway hallmarks, respectively (Fig. 5A). The common genes of DEG, DETF,
immune signatures and pathway hallmarks were screened and visualized by heat map
(Fig. 5B). Then, we constructed the correlation coefficient matrix of common genes,
immune signatures and pathway hallmarks, which were shown to be highly correlated with
each other (Fig. 5C).

Next, to explore the hub genes in common genes, we used correlation coefficient as links
and common genes as nodes to construct the co-expression network of DEGs, DETFs,
immune signatures and pathway hallmarks. As shown in the network, GTF2I and CHD2
were identified as hub genes between NAFLD and normal participants (Fig. 5D). We would
validate the hub genes to clarify its function in the next step.

The expression of GTF2I is higher in patients with NAFLD than healthy
people
Free fatty acids (FFA, 1mM) were used to stimulate HepG2 cells for 24 h to construct an
in vitro model of NAFLD. Oil red O staining confirmed that the lipid droplets increased
significantly under the stimulation of FFA (Fig. S1). Meanwhile, the mRNA and protein
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Figure 4 Identification of Immune signatures and pathway hallmarks between NAFLD and normal
participants. (A) The immune signatures of 29 immune-associated gene sets were analyzed by GSEA and
were visualized by heat map with unsupervised clustering. (B) The pathway hallmarks of 50 hallmark sets
were analyzed by GSVA and were visualized by heat map with unsupervised clustering. (C–D) The signifi-
cant pathway hallmarks were shown by volcano map and bar plot. Red bar indicates a positive correlation,
and blue bar indicates a negative correlation.

Full-size DOI: 10.7717/peerj.13735/fig-4

expression of GTF2I were significantly increased in the FFA group compared with the
control group. Conversely, the expression level of CHD2 was not significantly changed by
FFA stimulation (Figs. 6A–6B).

Next, a total of 13 histologically validated human samples (Normal =3; NAFLD =10)
were used to examine the expression levels of GTF2I and CHD2 (Fig. 6C). The results
showed that the mRNA and protein expression levels of GTF2I in NAFLD patients were
significantly higher than those in healthy people (Figs. 6D–6E). In contrast, the mRNA
expression level of CHD2 in NAFLD patients was significantly higher, while its protein
expression was not detected (Figs. 6D–6E). Furthermore, IHC was also used to verify the
relationship of GTF2I and NAFLD in human liver tissue samples. Compared with healthy
individuals, GTF2I was significantly upregulated in NAFLD patients and appeared positive
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Table 2 The result of ssGSEA.

logFC AveExpr t P .Value adj.P .Val B

APC_co_inhibition −0.150226751 0.417994299 −13.2383464 3.57E−26 1.03E−24 48.81073912
DCs −0.143566147 0.235410253 −10.38211186 6.26E−19 4.54E−18 32.21322442
Cytolytic_activity −0.274620048 0.484078518 −9.589045688 6.23E−17 3.01E−16 27.64384486
T_helper_cells −0.151201058 0.863347164 −9.045849038 1.41E−15 5.83E−15 24.55271794
CD8+_T_cells −0.156963264 0.337882253 −6.570642478 9.96E−10 2.41E−09 11.24603267

Figure 5 Construction of regulatory network and screening of hub genes based on DEGs, DETFs, im-
mune signatures and pathway hallmarks. (A) Schematic diagram of correlation analysis between DEGs
and DETFs/immune signatures/pathway hallmarks. (B) The common genes of DEGs, DETFs, immune
signatures and pathway hallmarks were visualized by heat map with unsupervised clustering. (C) The cor-
relation coefficient matrix of common genes, immune signature and pathway hallmarks. Red squares rep-
resent a positive correlation, and blue Squares represent a negative correlation. (D) The regulatory net-
work of hub genes based on common genes, immune signatures and pathway hallmarks. Red lines repre-
sent a positive correlation, and blue lines represent a negative correlation.

Full-size DOI: 10.7717/peerj.13735/fig-5
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Figure 6 The mRNA and protein expression ofGTF2I and CHD2 in cell model and human samples.
(A–B) The mRNA and protein of GTF2I was high expression in the FFA group, while the difference in
CHD2 was not obvious. (C) H & E staining was used as pathological evidence for the diagnosis of NAFLD.
(D–E) RT-qPCR revealed the mRNA expression of both GTF2I and CHD2 were significantly higher in
NAFLD patients than in normal participants. (F) WB showed that GTF2I but not CHD2 was significantly
higher in NAFLD patients than in normal participants. (G) The immunohistochemical results of GTF2I in
liver tissues of NAFLD and normal participants. Arrows served as a marker of positive areas. * P < 0.05, **
P < 0.01, *** P < 0.001.

Full-size DOI: 10.7717/peerj.13735/fig-6

in the nucleus (Fig. 6F). These results suggested that GTF2I rather than CHD2 may be
playing an important role in NAFLD.

GTF2I may be involved in the regulation of immune profile by
regulating chemokine receptor family
Based on bioinformatics analysis and experimental validation, we screened out that GTF2I
might be an important molecule in NAFLD.We further explored the relationship ofGTF2I
and the immune profile.
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Figure 7 Evaluation of the immune profile. (A) Box plot showed the fraction of different immune cells
from high expression and low expression group by non-parametric tests. Blue represents the high expres-
sion group, and red represents the low expression group. (B) High expression and low expression groups
were differentially expressed in immune related pathway by GSEA.

Full-size DOI: 10.7717/peerj.13735/fig-7

First, based on the NAFLD patient global expression matrix, we re-divided the high
and low expression groups according to the expression level of GTF2I to clarify the
effect of GTF2I on different immune cells. Interestingly, high expression of GTF2I group
(NAFLD) was all NAFLD patients, while the GTF2I low expression group (Normal) was
all non-NAFLD patients. CIBERSORT analysis revealed that GTF2I has a significant effect
on the proportion of immune cells, including NK cells, CD4 + T cells, macrophages, and
dendritic cells (Fig. 7A). On this basis, we further analyze the relationship of GTF2I and
immune cell surface markers to clarify the specific mechanism of GTF2I in influencing the
composition of immune cells. Surprisingly, GTF2I all affected the expression of surface
molecules on NK cells, CD4 + T cells, macrophages, and dendritic cells (Fig. S2). This
suggested thatGTF2I might play core role in the regulation of immune cells. GSEA analysis
showed that GTF2I is negatively correlated with ‘Cytokine–cytokine receiver interaction’
(Fig. 7B). Consistent with this, the correlation coefficient matrix and co-regulatory network
showed that GTF2I is negatively correlated with chemokine receptors (CCR) (Fig. 5C).
These results suggested that GTF2I may affect the immune profile in the liver by regulating
the chemokine receptor family. Along this line, we compared the expression of chemokine
receptor family between the two groups. As expected, GTF2I had a significant impact on
the chemokine receptor family (227/261, count of significance) (Fig. 8), which may be the
key pathways of GTF2I and need to be further confirmed in future work.

DISCUSSION
NAFLD is a prevalent disease in the population that potentially seriously damages liver
function, especially after progression to NASH, and the disease may further develop to
liver fibrosis, cirrhosis, and even liver cancer (Ye et al., 2020). NAFLD not only affects
human health, but the consequent medical costs and economic losses have also become a
significant burden on patients (Zhou et al., 2020).
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Figure 8 Correlation analysis ofGTF2I and chemokine receptor family. (A–D) In the high expression
group and low expression group, a total of 261 chemokine receptor family molecules were compared, of
which 227 were significant.

Full-size DOI: 10.7717/peerj.13735/fig-8

Currently, the pathogenesis of NAFLDmainly involves liver damage induced bymultiple
hits on the basis of ectopic accumulation of fat, including oxidative stress damage,
inflammatory response, bile acid metabolism, lipotoxicity and endoplasmic reticulum
stress (Friedman et al., 2018). Several studies involving transcription factors have shown
therapeutic effects in NAFLD. For example, obeticholic acid (OCA), an FXR agonist, has
been used clinically to treat NAFLD. Mechanistically, it can activate FXR to suppress bile
acid production, thereby playing a therapeutic role in NAFLD (Radun & Trauner, 2021).
Also, saroglitazar magnesium, a PPAR agonist, which can simultaneously regulate PPARα
And PPARγ . It has therapeutic effects in both lipid metabolism and insulin resistance
(Gross et al., 2017; Wagner & Wagner, 2020; Lefere et al., 2020). However, the effects of
drugs targeting these TFs in clinical trials are limited, and some of the drugs often produce
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serious side effects (Bushweller, 2019). Recently, the regulation of immune cells has received
increasing attention in the germination and development of NAFLD. Although PPARs are
mainly known for their roles in modulating lipid metabolism, PPARγ and PPARδ also
have anti-inflammatory actions on macrophages, which may contribute to the potential
clinical benefit in NASH (Gallardo-Soler et al., 2008; Odegaard et al., 2007; Gordon, 2003).
Similar to the PPARs, FXR not only regulates lipid and glucose homeostasis but also exerts
anti-inflammatory effects through inhibition of the recruitment ofNF-kB on the promoter
of several pro-inflammatory genes and stabilization of the binding of NCor1 complex on
the promoter of pro-inflammatory genes (McMahan et al., 2013; Wang et al., 2008). In
addition, Liver X Receptors (LXRs) which are now recognized to be central regulators
of cholesterol metabolism in mammals could regulate the expression of a panel of genes
involved in reverse cholesterol transport in macrophages (Mitro et al., 2007; Ogawa et al.,
2005). Therefore, the identification of an immune related transcription factor may facilitate
the discovery of novel therapeutic targets in NAFLD.

In the present study, we spread out our work from four aspects as follows. Notably,
patients included in this study had liver pathology ranging from simple fat to fibrosis
and a disease spectrum ranging from steatosis to cirrhosis. The aim of our analysis
was to find a wide variety of molecules. Thus, for early-stage NAFLD such as simple
steatosis, the global gene expression profile is similar to that of normal participants.
There were some patients with NAFLD whose heatmaps were similar to those of normal
participants. Based on the gene expression information of NAFLD and normal participants,
pathway hallmarks, immune signatures, DETFs and DEGs in NAFLD were screened out,
respectively. To identify TFs, we performed a selection on the basis of DEGs in order
to pick out the most weighted molecules. Transcription factors play a central role in
signal transduction and growth metabolic processes (Lambert et al., 2018). Therefore,
50 canonical pathway information was used as a reference, and GSVA algorithm was
used to facilitate the identification of important biological processes in NAFLD. In the
identification of immune signatures, combining the reference information of 29 immune
cells and pathways, we performed ssGSEA analysis on each sample to screen out common
immune signatures in NAFLD. Then, how to integrate these results in order to explore
their common characteristics?

First, we used DEGs to perform correlation analysis (correlation more than 0.85;
significance less than 0.05) with transcription factor/immune signatures/pathway
hallmarks, respectively. Genes that were present in both DEGs, DETFs, ssGSEA and
GSVA were filtered out to be the final set of genes for analysis. Next, we used correlation
coefficient as links and differential genes as nodes to construct the co-expression network of
differential genes, transcription factors, immune characteristics and pathways. GTF2I and
CHD2 were identified as hub genes in the network. In this coregulatory network, we also
focus on the cellular communication, especially chemokine receptor family, which play an
important role in this network. This coregulatory network also provided direction for our
subsequent analysis. Then, in terms of validation, we confirmed through human samples
and cell models thatGTF2I, but not CHD2, plays an important role in NAFLD. Meanwhile,
we would in turn re-divide into high expression group and low expression group according
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to the expression level of GTF2I. Among them, the high expression group was all NAFLD
patients, while the low expression group was healthy participants, as reflected by the good
discrimination ability of GTF2I in NAFLD.

The expression level of GTF2I significantly affected the composition of immune
cells, including NK cells, T cells, dendritic cells, and macrophages. While combining the
coregulatory network and GSEA results, we speculated that GTF2I might modulate the
effects of multiple immune cells globally by negatively regulating chemokines. In this work,
we constructed a co-regulation network by integrating diverse outcomes from DEGs,
DETFs, immune signatures and pathway hallmarks. After experimental and bioinformatics
reanalysis, a valuable molecule was successfully screened out. GTF2I was located at the
center of the entire coregulatory network while exhibiting significant high expression in
NAFLD cell models and NAFLD human samples. In addition, it also plays an important
role in the immune profile by analyzing the effect of its expression level on immune
cell composition. In addition, similar to the results of our analysis, studies from other
investigators have also shown that GTF2I is associated with heavy chain immunoglobulin
transcription in immune cells, which provides a reference and evidence for our study
(Gebru et al., 2021). Through this work, we believe that GTF2I is an important molecule
in NAFLD. The present analysis will provide a theoretical basis and experimental direction
for us to pursue more levels of validation around GTF2I in the future.

CONCLUSIONS
In conclusion, this research illustrated GTF2I was related to the pathogenesis and
development of NAFLD. Mechanistically, GTF2I was identified to play a role in NAFLD by
influencing the immune profile through negative regulation of chemokine receptor family.
This study may provide a potential target for the diagnosis or therapy of NAFLD.
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