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Introduction
The term neoplastic meningitis (NM), also 
known as ‘leptomeningeal metastasis’, refers to 
the spread of tumor cells to leptomeninges (pia 
and arachnoid) and subarachnoid space, and 
their dissemination through the cerebrospinal 
fluid (CSF). An increased incidence of NM has 
occurred because of the development of effective 
antineoplastic treatments for solid tumors and 
improvement of diagnosis on magnetic resonance 
imaging (MRI).1 The majority of the antineoplas-
tic drugs are able to control the systemic disease, 
but do not penetrate an intact blood–brain barrier 
(BBB) in adequate concentrations, thus the cen-
tral nervous system (CNS) is a frequent site of 
relapse. NM is the third most common CNS 
complication of cancer following brain metastases 
and epidural spinal cord compression, and repre-
sents a challenge for clinicians in terms of diagno-
sis and treatment.

For a long time, diagnostic tools for NM were not 
standardized and there were no generally accepted 
criteria to define patient subgroups that might 
benefit from therapy. Recently, the Leptomeningeal 

Assessment in Neuro-Oncology (LANO) Group 
and the European Association for Neuro-Oncology/
European Society for Medical Oncology (EANO/
ESMO) have proposed clinical and radiological 
recommendations2,3 in order to provide diagnos-
tic and response criteria for NM, both for enroll-
ment in clinical trials and in clinical practice.

Treatment of NM aims to improve neurological 
symptoms and extend overall survival (OS), espe-
cially when the disease is diagnosed early on. 
Currently, there is not a standard treatment and 
several approaches, such as radiotherapy (RT), 
intrathecal or systemic therapies, can be 
employed. Despite these aggressive therapeutic 
options, the median overall survival (OS) is poor 
and ranges between 6 and 8 weeks without tumor-
specific treatments, while it may be prolonged to 
3–6 months with NM-directed therapies, includ-
ing target therapies and immunotherapy as well.4

In this review, we analyzed the clinical aspects 
and the most recent diagnostic tools and thera-
peutic options in NM.
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Epidemiology
NM is a frequent complication in patients with 
solid tumors (4–15%) as well as in patients with 
lymphoma or leukemia.5,6 The most common pri-
mary tumors metastasizing to the leptomeninges 
are breast and lung carcinomas, melanoma, 
aggressive non-Hodgkin lymphoma, and acute 
lymphocytic leukemia. Because of the improved 
efficacy of antineoplastic treatments, there is an 
increased number of NM from solid tumors that 
were rarely associated with NM in the past, such 
as prostate, ovarian, gastric, cervical, and endo-
metrial cancers.7 Furthermore, NM is diagnosed 
in 1–2% of patients with primary brain tumors, 
such as ependymomas, medulloblastomas, germi-
nomas and gliomas.8 In more than 70% of patients 
NM develops in the setting of an active systemic 
disease, while in 20% of patients it occurs in asso-
ciation with a stable disease, and in up to 10% of 
patients it is the first manifestation of cancer.

Some risk factors for developing NM have been 
recognized: concomitant brain metastases are 
associated with NM in 33–54% of patients with 
breast cancer, 56–82% with lung cancers and 87–
96% with melanomas.9–11 Within breast cancers, 
the lobular subtype, triple-negative or human epi-
dermal growth factor receptor-2 (HER2) sub-
types display a specific tropism for CNS,12,13 as 
well as the expression of the mutant epidermal 
growth factor receptor (EGFR)14 or the anaplas-
tic lymphoma kinase (ALK) rearrangement in 
non-small-cell lung cancer (NSCLC).15,16 To 
date, both mutations are targeted by EGFR tyros-
ine kinase inhibitors (TKIs) and ALK inhibitors, 
respectively, with encouraging data regarding dis-
ease control. Conversely, the role of risk factors 
(i.e. BRAF mutation) in patients with melanoma 
and NM has been investigated in a few large 
cohorts without any relevant evidence.

Surgery may be a factor influencing the leptome-
ningeal dissemination: in particular, the opening 
of the ventricular system during resection of a 
brain metastasis (BM) or primary brain tumor can 
be associated with CSF spreading, especially in 
posterior fossa lesions and when using a piecemeal 
compared with en-block resection.17,18 Moreover, 
the incidence of NM seems higher in patients 
treated with surgery followed by stereotactic 
radiosurgery compared with radiosurgery alone.19

Pathogenesis
Tumor cells may reach the subarachnoid space by 
means of a hematogenous spread through the 

venous or arterial circulation, a growth along 
nerve and vascular sheaths, a migration from a 
tumor adjacent to CSF, or by a iatrogenic spread 
following resection of a BM.20,21 Tumor cells may 
disseminate through the CSF along the entire 
CNS with a predilection to invade regions with 
slow CSF flow or gravity-dependent sites, such as 
basal and lumbar cisterns or posterior fossa. 
Recent data suggest that the increased activity of 
some matrix metalloproteases, including matrix 
metalloproteasis 9 (MMP-9) and the A disinteg-
rin and metalloproteasis 8 and 17 (ADAM8 and 
ADAM17), may play a role in malignant invasion 
in the CSF.22

Diagnosis
Clinical manifestations of NM are typically 
multifocal and may involve one or more seg-
ments of the neuroaxis: cerebrum (15%), cra-
nial nerves (35%), or spinal cord (50%).7 
Clinicians need to be careful in the evaluation of 
a patient with suspected NM because any site in 
the CNS could be potentially involved, and 
signs and symptoms may overlap with those of 
parenchymal brain metastases or mimic treat-
ment-related toxicities and, rarely, neurological 
paraneoplastic syndromes.

The most common clinical presentations are as 
follow:

1.	 headache (66%) related to an increased 
intracranial pressure, blockage of the CSF 
flow and obstructive hydrocephalus;

2.	 spinal symptoms and signs, including lower 
motor neuron weakness (46%), sensory 
loss, radicular and back/neck pain, bladder, 
sexual and bowel dysfunctions9,23,24;

3.	 diplopia (36%), visual impairment, hearing 
loss, facial weakness due to cranial nerve 
palsies (cranial nerves II, III, IV, VI, VII, 
VIII);

4.	 dysphagia as a later symptom, often corre-
lated with impaired consciousness;

5.	 mental changes and seizures, especially in 
the case of coexistent encephalopathy;

6.	 gait disturbances due to cerebellar or sensi-
tive ataxia;

7.	 nausea/vomiting.

Overall, diagnosis is based on three tools: a stand-
ardized neurological examination; CSF cytology 
in solid cancers and flow cytometry (FC) in 
hematologic malignancies; brain and spinal cord 
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contrast MRI, while radioisotope CSF flow study 
is useful in patients to be treated with intrathecal 
therapy only.

Rarely, leptomeningeal biopsy is performed when 
CSF cytology is repeatedly negative and MRI 
unrevealing.

Neurological examination
A careful neurological examination is mandatory 
to reveal multiple deficits and a standardized 
evaluation should be used at diagnosis and during 
follow up.2 The Neurologic Assessment in Neuro-
Oncology (NANO) scale, that is currently 
employed to evaluate the neurological status in 
patients with brain tumor, is not useful enough in 
NM due to the low sensitivity to detect the multi-
level involvement of the CNS typically seen in 
NM. In this regard, the LANO Group has cre-
ated a standardized assessment of the neurologi-
cal examination with multiple domains that 
reflect the sites of NM involvement. Several 
domains are investigated, such as gait, strength, 
sensation, vision, eye movement, facial strength, 
hearing, swallowing, level of consciousness and 
behaviour. The level of fuction in each domain  
is graded as 0 (normal), 1 (slight abnormal), 2 
(moderate abnormal) and 3 (severe abnormal). 
Based on this neurological assessment, progres-
sive disease in NM is characterized by a change 
from level 0 to level 3 (or level 2 in domains with 
three levels only) in any domain. This instrument 
was designed to be as simple as possible in order 
to be utilized not only by neurologists, but also by 
oncologists, nurses, and physician assistants, but 
needs to be prospectively validated.

Other important aspects are the neurocognitive 
functions and the self-perception of quality of life: 
in this regard, the patient-reported outcomes 
(PROs) and performance status could be prog-
nostic indicators of both progression-free survival 
(PFS) and OS in patients with primary and meta-
static brain tumor.25 Some experts have proposed 
adding the MD Anderson Cancer Center 
Symptom Inventory Brain Tumor Module 
(MDASI-BT) and Spine Tumor Module 
(MDASI-ST) to better define symptoms, such as 
pain or incontinence, which otherwise would not 
be easily detected.2 Although there is a lack of 
validated data in the literature, it would not be 
surprising if both quality-of-life measures and 
neurological examination provide additional 
insights regarding treatment response and tolera-
bility of treatments.

Neuroimaging assessment
Brain and spinal cord MRI without and with con-
trast enhancement, using at least 1.5 Tesla field 
strength, is highly recommended for the neurora-
diological assessment in suspected NM.26 
Contrast-enhanced T1-weight and fluid-attenuated 
inversion recovery (FLAIR) sequences are the 
most sensitive to show NM lesions.27 Contrast 
brain and spinal cord MRI must be performed at 
baseline and following treatments.

The neuroradiological diagnosis in NM is chal-
lenging and MRI in some patients may be nega-
tive. Sensitivity and specificity of brain and spinal 
cord MRI have not been fully investigated so far, 
due to the limited number of publications, but it 
has been estimated in the range of 66–98% and 
77–97.5%, respectively.28,29 Pauls and coworkers 
reported a higher sensitivity of contrast-enhanced 
T1 imaging in detecting NM from solid tumors 
compared with hematological malignancies.30 
Moreover, the MRI sensitivity is superior in NM 
from solid tumors with elevated CSF cell counts 
in comparison to those with normal CSF counts.31

Linear or nodular enhancing lesions of the cranial 
nerves and spinal nerve roots (e.g. cauda equine), 
brain sulci and cerebellar foliae are the most com-
mon findings32,33 (Figures 1–3). NM lesions typi-
cally are small in size (<5 mm) and with complex 
geometry, thus a quantitative analysis with cur-
rent MRI technology is difficult.34 Other neuro-
imaging techniques (MRI spectroscopy, MRI 
perfusion, MRI diffusion and positron emission 
tomography) are not currently employed. 
Communicating hydrocephalus could be 
observed in 11–17% of patients, and CSF flow 
studies, including radioisotope cisternography, 
are useful in the case of suspected CSF blockage 
or altered intrathecal drug delivery.35,36

The LANO Group recommends for clinical trials 
that measurable lesions are defined as nodules of at 
least 5 × 10 mm in the orthogonal diameters and 
should be distinguished from linear contrast 
enhancement. Up to five target lesions (either 
measurable or not measurable) are selected at the 
baseline and must be monitored during the follow 
up. Based on the current recommendations, 
response determination in NM is as follows: com-
pletely resolved (+3), definitely improved (+2), 
possibly improved (+1), unchanged (0), possibly 
worse (−1), definitely worse (−2), new site of dis-
ease (−3). An increase of over 25% in a measurable 
lesion compared with the baseline is necessary to 
declare a progressive disease; similarly, a decrease 
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Figure 1.  Enhanced lesions in the cauda equine.

Figure 2.  Enhanced lesions in brain sulci.

Figure 3.  Linear enhanced lesions in cerebellar 
foliae.

of over 50% in a measurable lesion is considered as 
a partial response. The complete disappearance of 
a lesion is classified as complete response. All other 

situations are considered as stable disease. Changes 
of the ventricular volumes are not considered in the 
response assessment as well as the use of corticos-
teroids, which only modestly affect neurological 
improvement or MRI enhancement in NM from 
solid tumors. Conversely, the oncolytic effect of 
steroids in hematologic cancers is well known and 
thus steroid dose is included in the response 
criteria.2

The EANO/ESMO Group has proposed a classi-
fication of the radiological findings in NM: linear 
leptomeningeal disease (type A), nodular lep-
tomeningeal disease (type B), both linear and 
nodular leptomeningeal disease (type C), absence 
of enhanced lesions but presence of hydrocepha-
lus (type D)

CSF analysis
Several alterations may be found in the CSF of 
patients with NM, and include increased pressure 
(>200 mm H20) in 21–42% of patients, elevated 
leucocyte count (>4/mm3) in 48–77.5%, high 
level of proteins (>50 mg/dl) in 56–91% and 
decreased level of glucose (<60 mg/dl).10–37 
Moreover, an increased level of lactate dehydro-
genase (>1.6 mEq/liter) may be detected, while 
the presence of oligoclonal bands indicates an 
intrathecal immune activation.38 All these find-
ings are not pathognomonic of NM, and the iden-
tification of malignant cells in the CSF remains 
the ‘gold standard’ for diagnosis.
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CSF cytology is usually a qualitative analysis 
with low sensitivity, and up to 30–50% of 
patients have a negative CSF.39 If the first CSF 
analysis is negative, a second or third lumbar 
puncture should be carried out with an increase 
of sensitivity to 80%.3 Notably, some factors 
may impact the yield of CSF cytology, such as 
volume of CSF (at least 10 ml), site of sample 
collection (that should be close to the neuroim-
aging alterations), and time to process CSF 
(within 30 min).31,40

Overall, the interpretation of CSF cytology, 
according to the LANO Group recommendations, 
is as follows: positive: unequivocal presence of 
neoplastic cells; equivocal: presence of ‘atypical’ or 
‘suspicious’ cells; negative: absence of neoplastic 
cells.

A critical point is the duration of response follow-
ing antineoplastic treatments: importantly, to 
declare a cytological response, CSF must be 
cleaned of tumor cells and maintain the status for 
at least 4 weeks, and other parameters, such as 
proteins, cell count and glucose level, are not 
taken into consideration for the evaluation of 
response.

Based on these criteria, progressive disease is 
defined by either conversion of negative to posi-
tive CSF cytology or failure to convert positive 
cytology to negative (refractory disease) following 
induction therapy.

The role of CSF FC in diagnosis of NM from 
solid tumors is limited, as reported by the 
LANO Group guidelines. In this regard, there 
is not a standard CSF FC diagnostic test to dis-
tinguish neoplastic cells from reactive pleocyto-
sis in cases of doubtful morphology on 
conventional CSF cytology.41 Conversely, the 
CSF FC is a highly sensitive quantitative analy-
sis for the diagnosis of NM hematologic malig-
nancies as it may allow a more objective 
determination of tumor burden42 and predict 
the risk of CNS relapse.43,44

Recently, the EANO/ESMO Group provided 
recommendations considering both CSF and 
neuroimaging findings.3 The aim was twofold: to 
provide standardized diagnostic criteria and treat-
ment response parameters shared by all clinicians; 
and to enroll in clinical trials patients who fulfill 
prespecified inclusion criteria.

Future directions in the CSF diagnosis
The liquid biopsy could be a new approach for an 
early diagnosis and monitoring of NM. Genomic 
profiles of circulating tumor cells (CTCs) in the 
CSF have been shown to closely match those of 
the corresponding tumors.45 CSF samples from 
patients diagnosed with NM have been analyzed 
for the expression of epithelial cell adhesion mol-
ecules (EpCAM) to identify the CTCs. The 
prognostic value of FC immunophenotyping was 
evaluated in 72 patients diagnosed with NM and 
eligible for therapy.46 Compared with cytology, 
FC immunophenotyping had greater sensitivity 
and negative predictive value (80% versus 50% 
and 69% versus 52%, respectively), but lower 
specificity and positive predictive value (84% ver-
sus 100% and 90% versus 100%, respectively). 
Moreover, the multivariate analysis revealed that 
the percentage of CSF EpCAM-positive cells pre-
dicted an increased risk of death. In another 
study, EpCAM-based FC showed 100% sensitiv-
ity and 100% specificity rates in detecting NM 
compared with a sensitivity rate of 61.5% for 
cytology.47 This study may overestimate the accu-
racy: in fact, other studies reported lower sensitiv-
ity and specificity rates.48–50 Cordone and 
coworkers reported the successful use of CSF FC 
in detecting the overexpression of MUC-1 
(CD227) and syndecan-1 (CD138), which are 
strongly correlated with CSF dissemination from 
breast cancer. Considering the small sample size, 
validation in a large cohort of patients is needed 
to confirm these results.51 Overall, the results sug-
gest that CSF FC warrants further investigation 
for diagnosing NM. A further improvement in 
diagnosis is the Rare Cell Capture Technology 
(RCCT) for detecting and numbering CTCs in 
the CSF: Lin and colleagues defined at least one 
CSF-CTC/ml as the optimal cutoff for a robust 
diagnosis of NM.52

Circulating tumor DNA (ctDNA) has also been 
the objective of investigations in terms of liquid 
biopsy for brain tumors. There are some techni-
cal challenges associated with the use of ctDNA 
in CSF or serum as biomarkers due to the low 
concentration of nucleic acid in biofluids com-
pared with cells. Some data suggest that ctDNA 
derived from metastatic lesions in the brain with 
clinical features of meningeal carcinomatosis is 
more abundant in the CSF compared with blood, 
thus CSF likely represents a preferable source of 
representative liquid biopsy in NM.53 Several 
techniques, such as microarrays,54 real-time 

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 11

6	 journals.sagepub.com/home/tan

polymerase chain reaction (qPCR) and whole 
exome sequencing,55–57 have displayed good sen-
sitivity to find genomic alterations in the CSF, 
but it remains unclear what the cutoff is of tumor 
DNA in CSF that corresponds to clinically rele-
vant NM. Additional studies are needed to com-
pare ctDNA and cytology in the CSF from 
patients with NM, but these two approaches will 
probably complement the use of neuroimaging 
and clinical parameters.58,59

Exosomes are lipid-bilayer-enclosed extracel-
lular vesicles, containing miRNAs, proteins, 
and DNAs, and secreted by cells and circulat-
ing in the blood. Cancer exosomes can func-
tion as intercellular messengers delivering 
protumor signals which contribute to mediate 
tumor metastasis.60,61 The isolation of cancer 
exosomes from patients with cancer remains a 
challenge, owing to the lack of specific markers 
that can differentiate cancer from noncancer 
exosomes. Melo and colleagues provided evi-
dence that glypican 1 (GPC1) may serve as a 
pan-specific marker of cancer exosomes, thus 
GPC1 may be an attractive candidate for detec-
tion and isolation of exosomes in the serum of 
patients with cancer for genetic analysis of spe-
cific alterations.62

The use in clinical practice of CSF biomarkers, 
including B-glucoronidase, lactate dehydroge-
nase, B2-microglobulin, cancer antigen (CA) 
15.3, CA 125, CA 19.9, α-fetoprotein (AFP), 
neuron-specific enolase, or molecules thought to 
be involved in the metastatic process, such as vas-
cular endothelial growth factor, tissue plasmino-
gen activator, metalloprotease, cathepsins and 
chemokines, have a limited role.

Differential diagnosis
Various non-neoplastic entities must be consid-
ered in order to confirm a diagnosis of a NM. 
Meningitis due to bacterial Neisseria meningitidis, 
Haemophilus influenzae, Streptococcus pneumoniae 
or agalactiae, Listeria monocytogenes, Borrelia 
burgdorferi, Mycobacterium tuberculosis, or viral 
meningitis due to herpes virus, Morbillivirus, 
Paramyxovirus, arbovirus, HIV-associated oppor-
tunistic CNS infections, or fungal meningitis due 
to Candida, Cryptococcus neoformans, Histoplasma 
capsulatum, Blastomyces and Coccidioidies must be 
ruled out with CSF examination with specific 
cultures or PCR sequencing.

Several systemic inflammatory diseases may 
mimic the leptomeningeal enhanced lesions that 
are found in NM: vasculitis (Kawasaki disease, 
Takayasu arteritis, Henoch-Schönlein purpura, 
polyarteritis nodosa, Wegener granulomatosis, 
microscopic polyarteritis nodosa), systemic con-
nective tissue diseases (systemic lupus erythema-
tosus, Sjögren’s syndrome), inflammatory bowel 
diseases and neurosarcoidosis. Finally, infectious 
or chemical meningitis need to be excluded fol-
lowing surgery or intrathecal treatments 
(baclofen), respectively.

Treatment
General considerations. Treatment goals in NM 
are to improve neurological symptoms with an 
acceptable quality of life and prolong survival. 
Only six randomized clinical trials have been 
conducted so far.26 Hence, the current manage-
ment of NM is based on expert opinions and 
varies widely across Europe.57 Treatment 
options for NM include intrathecal chemother-
apy, systemic chemotherapy and RT. It is not 
well known how much the systemic chemother-
apy may cross the BBB and reach NM lesions, 
especially when the leptomeningeal spread is 
not yet accompanied by BBB dysfunctions.63 
However, targeted therapies can prolong sur-
vival of patients with NM10,64,65 in patients with 
NSCLC harboring EGFR mutations or ALK 
rearrangement, and in patients with breast can-
cer harboring HER2 amplification.

Radiotherapy. To date, there is a lack of random-
ized clinical trials evaluating the efficacy and 
safety of RT in NM. A retrospective analysis of 
NM from solid tumors (73 patients) and hemato-
logic malignancies (62 patients) suggested no 
positive effect of RT in terms of survival, while 
systemic chemotherapy was associated with 
longer OS compared with local treatments 
modalities.66 Based on this background, RT does 
not represent the first line of treatment in NM. 
Focal RT, such as involved field or stereotactic 
RT or radiosurgery, should be considered for 
local, circumscribed and symptomatic lesions. RT 
has been proposed to resolve CSF flow obstruc-
tions in patients with spinal or intracranial blocks 
in order to improve the distribution of intra-CSF 
therapy.67 Typical targets for RT are cranial nerves 
of the skull base, interpeduncular cisterns, cervi-
cal vertebrae and lumbosacral segments in the 
case of cauda equine syndrome.
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Whole brain radiotherapy (WBRT) may be con-
sidered as a palliative treatment in patients with 
symptomatic extensive nodular or linear NM. 
Craniospinal RT is not recommended because of 
the poor benefit and the significant risk of devel-
oping severe adverse effects (myelotoxicity, enter-
itis and mucositis).

Intrathecal chemotherapy.  Intrathecal treatment 
offers the advantage of a local therapy with mini-
mum systemic toxicity. Although high drug con-
centrations can be achieved in the CSF, intrathecal 
treatment is not effective for bulky disease in the 
meninges because intra-CSF agents penetrate only 
2–3 mm into such lesions.68 Chemotherapy admin-
istration can be performed either via lumbar punc-
ture or via an intraventricular device with a catheter 
into the lateral ventricle and an Ommaya reservoir. 
The safety of ventricular devices has been shown in 
several series, but the management of the device 
could be difficult, and careful handling is required 
to avoid infections or obstruction.69

Three drugs are commonly used for the intrathecal 
treatment of NM: methotrexate (MTX), cytara-
bine (Ara-C) and thioTEPA. Different schedules 
have been proposed without any consensus on 
optimal dose, frequency of administration, or dura-
tion of treatment. Most patients are treated until 
progression and no advantage in terms of radiologi-
cal control of the disease has been reported when 
comparing the three drugs.70,71 Due to the short 
half life of MTX, Ara-C, and thioTEPA (range 
4.5–8.0 h), multiple weekly injections are necessary 
to maintain cytotoxic CSF level. In this regard, 
liposomal cytarabine (median half life 336 h) every 
14 days may provide longer time to neurological 
progression compared with patients treated with 
MTX,71 and reduce the discomfort for patients of 
multiple lumbar punctures.

There is some clinical evidence that intrathecal 
chemotherapy may improve disease control and 
survival in NM from solid tumors, especially in 
patients with favorable prognostic factors, such as 
younger age (<55 years), absence of systemic 
metastases or cranial nerve involvement, normal 
value of CSF glucose and proteins. Moreover, the 
treatment response seems to be more dependent 
on the pretreatment patient characteristics than 
on the type of treatment.72 Overall, the evidence 
of the efficacy of intrathecal therapy is low and a 
careful evaluation of clinical factors helps clini-
cians to identify the subgroups of patients who 
may benefit.

The combination of intrathecal liposomal cyta-
rabine and systemic chemotherapy in patients 
with breast cancer and NM is addressed in an 
ongoing trial [ClinicalTrials.gov identifier: 
NCT01645839].

Systemic chemotherapy.  Neoplastic meningitis from 
non-small cell lung cancer (NSCLC) occurs in 3.8% 
of patients, especially in the adenocarcinoma sub-
type. Combined platinum-based regimens with 
pemetrexed are the first-line treatment in BM, 
but the ability to reach adequate CSF concentra-
tions and the efficacy in NM seems poor.73

Some driver mutations, such as EGFR muta-
tions (11% of white patients with NSCLC) and 
ALK rearrangements (5% of NSCLC)74 may be 
targeted by specific inhibitors with encouraging 
data regarding disease control. The presence of 
EGFR mutations is an early step during carcino-
genesis in NSCLC, and both BM and leptome-
ningeal dissemination are more common in 
patients with EGFR mutation compared with 
those who are EGFR wild type .75,76 Liao and 
colleagues have shown the efficacy of the first-
generation EGFR TKI compounds, such as 
erlotinib and gefitinib, in NM from patients with 
EGFR mutation and longer OS (10.9 months 
versus 2.3 months).77 However, a low level (1–
3%) of EGFR TKIs can be found in the CSF, 
suggesting an inability to adequately penetrate 
the BBB. Thus, higher doses of either erlotinib78 
or gefitinib79 have been administered in order to 
achieve adequate therapeutic concentrations, 
reporting a neurological improvement in 57% 
and 50% of NM, and modest benefit in terms of 
median OS (3.5 months versus 6.2 months). 
Moreover, erlotinib has shown higher CSF con-
centrations (28.7 versus 3.7 ng/ml)80 and cyto-
logic conversion rates (64.3% versus 9.1%)81 
compared with gefitinib. Despite no improve-
ment in OS, high doses of erlotinib have been 
suggested as palliative care to control neurologi-
cal symptoms from NM.

Afatinib is an irreversible second-generation EGFR 
TKI that has demonstrated a good profile of effi-
cacy in NM or BM in patients whose condition has 
failed to respond to first-line TKIs. Overall, 35% 
of patients achieved a radiological response, but 
the study did not distinguish the outcome between 
BM and NM.82 Notably, the penetration rate of 
afatinib in the CSF is 1.65% with a significant effi-
cacy in patients with uncommon EGFR muta-
tions, such as exon 18 mutations.83
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From 49% to 63% of patients with NSCLC 
developed resistance to first- and second-genera-
tion EGFR TKIs due to the presence of a threo-
nine-methionine substitution at position 790 
(T790M) in exon 20. In this regard, osimertinib 
(AZD9291), a third-generation EGFR TKI, has 
shown greater penetration and better control of 
the extra cranial disease,84 while an ongoing phase 
II trial [ClinicalTrials.gov identifier: NCT0222-
8369] with this drug is enrolling T790M-positive 
patients with NSCLC and NM.

A new promising therapeutic option is repre-
sented by AZD3759, a novel EGFR TKI with an 
excellent BBB penetration which is active against 
EGFR mutations, with the exception of T790M 
mutation. The efficacy and tolerability of 
AZD3759 have been investigated in 29 patients 
in the BLOOM trial. Of the four patients with 
NM who were enrolled, three displayed a signifi-
cant reduction of EGFR expression on the cell 
surface, and one patient had a CSF conversion in 
two consecutive samples.85

In animal models the anti-VEGF (vascular 
endothelial growth factor) A agent bevacizumab 
prevents the formation of NSCLC brain metasta-
ses.86 Based on this background, some phase II 
trials have reported an improved OS with the 
combinations erlotinib–bevacizumab87 and gefi-
tinib–bevacizumab,88 and an ongoing clinical trial 
[ClinicalTrials.gov identifier: NCT02803203] is 
now evaluating the efficacy of osimertinib–beva-
cizumab in NM from NSCLC.

ALK rearrangement is found in only 4–5% of 
patients with NSCLC and CNS is a relapse site in 
35–50% of patients. NM in patients with ALK-
positive NSCLC tends to appear later on (approx-
imately 9 months from the diagnosis of NSCLC), 
suggesting that it is a late complication.89

Two randomized phase II trials have reported a 
major benefit from the first-generation ALK 
inhibitor crizotinib in terms of disease control in 
BM of patients with ALK mutation,89,90 but the 
efficacy is still controversial in NM due to the 
poor CNS penetration.

The second-generation ALK inhibitors, includ-
ing ceritinib and alectinib, have been approved 
for the treatment of patients who are ALK posi-
tive, who were resistant to crizotinib. The phase 
II ASCEND-2 trial has demonstrated the effi-
cacy of ceritinib in BM,91 and another phase II 

open-label study focused on ceritinib in patients 
with ALK-positive NSCLC metastatic to the 
brain or leptomeninges is ongoing (ASCEND-7) 
[ClinicalTrials.gov identifier: NCT02336451]. 
In a mouse model, ceritinib was shown to be 
transported out of the brain by ABCB1 protein 
(ATP binding cassette subfamily B member 
1),92,93 while alectinib demonstrated low levels in 
the CSF. A recent phase III trial (ALEX study) 
has shown the superiority of alectinib compared 
with crizotinib for treating BM and protecting for 
subsequent brain relapse.94

Secondary ALK kinase domain mutations, 
including the recalcitrant G1202R mutation, 
have been identified in patients whose disease 
progressed on ceritinib or alectinib after crizo-
tinib therapy. Brigatinib, an investigational next-
generation ALK TKI, was designed for the potent 
activity against a broad range of ALK resistance 
mutations.95 Recently, Kim and collaborators 
reported some benefits in terms of radiological 
response (54%) and median PFS (12.9 months) 
following brigatinib in 154 BM from crizotinib-
refractory ALK-positive NSCLC.96 However, 
there are no data available in NM.

Lorlatinib is a new third-generation ALK inhibi-
tor, designed specifically to improve CNS pene-
tration in crizotinib-resistant patients.97 A phase I 
trial of 54 patients has demonstrated impressive 
disease control in patients with ALK- and ROS1-
positive NSCLC and BM; to date, an ongoing 
phase II trial [ClinicalTrials.gov identifier: 
NCT01970865] is evaluating the activity of lorla-
tinib in both BM and NM.

Some preliminary data are available regarding the 
efficacy and tolerability in BM of immunother-
apy, including anti-programmed cell death 1 
(PD-1) compounds, such as nivolumab,98 
pembrolizumab,99 or the anti-PD ligand 1 ate-
zolizumab,100 but there are no data in NM.

A new attractive therapeutic option is the oligode-
oxynucleotide containing unmethylated cytosine-
guanosine motifs (CpG-ODN), that may activate 
both the innate and the adaptive immune system 
through toll-like receptor 9 (TLR-9).101 CpG-28 
(TLR-9 agonist) may induce tumor reduction, 
especially when inoculated directly into the tumor 
in experimental models.102,103 Based on this back-
ground, a phase I trial was designed to define the 
safety profile of CpG-28 in 29 patients with NM 
from different metastatic tumors, including 
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NSCLC. CpG-28 was well tolerated both subcu-
taneously and intrathecally. Interestingly, the 
median OS was slightly higher in eight patients 
who were concurrently treated with bevacizumab, 
but the difference was not statistically significant 
(19 weeks versus 15 weeks).104

Neoplastic meningitis from breast cancer.  
Breast cancer is the most frequent cause of NM 
from solid tumors, with an estimated frequency of 
3–5%. Capecitabine has shown long-lasting 
responses in NM in small case series,105 and the 
use of an intensified regimen, such as metronomic 
schedule, has been proposed to treat NM from 
breast cancer, and is planned to be investigated in 
a larger phase II trial.106

Amplification of HER2 is observed in 15–20% of 
patients with breast cancer. Although HER2 is 
not identified as a risk factor in NM, brain metas-
tases occur more frequently in HER2-positive 
breast cancer. Since trastuzumab does not easily 
cross the BBB, intrathecal trastuzumab has been 
investigated. Few reports in the literature have 
described clinical and radiological responses fol-
lowing intrathecal trastuzumab.107–109 Seventeen 
patients, who were administered intrathecal tras-
tuzumab, displayed a significant neurological 
improvement and a CSF conversion in 66.7%, a 
PFS of 7.5 months and a median OS of 13.5 
months,110 suggesting that intrathecal trastu-
zumab could be a feasible therapeutic option.

Lapatinib is a HER1–2 TKI that plays a signifi-
cant role as a second-line treatment in BM from 
HER2-positive breast cancer following trastu-
zumab failure.111 A single-arm phase II trial 
(LANDSCAPE) has shown the activity of the 
combination of lapatinib and capecitabine as a 
first-line treatment in brain metastases from 
HER2-positive breast cancer.112 Conversely, no 
significant differences between capecitabine plus 
lapatinib versus capecitabine plus trastuzumab 
were observed in terms of incidence of CNS 
metastases as first site of relapse.113 Lavaud and 
coworkers suggested that high doses of oral lapa-
tinib may be more effective than other intrathecal 
drugs, but this hypothesis needs to be further 
investigated in larger series.114

Neratinib is an irreversible inhibitor of HER2, 
erbB4 and EGFR with increased ability to cross 
an intact BBB and is unaltered by ABCB1-B2 
transporters. However, the activity on BM does 
not seem superior over that of lapatinib.115

Finally, there are no data available on the efficacy 
and safety of lapatinib, neratinib, trastuzumab 
emtansine, or pertuzumab in NM from HER2-
positive breast cancer.

Neoplastic meningitis from melanoma.  
Traditional chemotherapies, including temozolo-
mide or nitrosoureas (dacarbazine and fotemus-
tine), have limited efficacy in BM or NM from 
melanomas. Checkpoint inhibitors, such as 
nivolumab,116 ipilimumab,117 and pembroli-
zumab,118 alone or in combination with other 
treatments, have changed the prognosis of meta-
static melanomas achieving a median OS ranging 
from 7.5 months to 22.7 months.119 A similar 
trend was observed with BRAF inhibitors (vemu-
rafenib, dabrafenib) and MEK inhibitors 
(trametinib) in BM from melanomas with a sur-
prisingly OS of more than 5 years.120

Few case reports are present in the literature 
regarding the efficacy of vemurafenib in NM from 
melanomas.121,122 However, vemurafenib has a 
limited penetration of the BBB, suggesting a low 
chance to control the NM disease.123

Conclusion
NM from solid tumors is an emerging complica-
tion with no effective therapies. Great efforts have 
been made to provide standardized diagnostic cri-
teria and methods of response evaluation for 
patients with NM, which require further testing 
and validation. Similarly, promising new tech-
niques may play a role in the early detection of 
NM. Finally, randomized clinical trials with 
adapted methodology and new inclusion criteria 
are needed to better define the role of novel thera-
peutic options in NM.
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