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Abstract

Yeasts are widely distributed in nature and exist in association with other

microorganisms as normal inhabitants of soil, vegetation, and aqueous

environments. In this study, 12 yeast strains were enriched and isolated from leaf

samples of the carnivorous plant Drosera indica L., which is currently threatened

because of restricted habitats and use in herbal industries. According to similarities

in large subunit and small subunit ribosomal RNA gene sequences, we identified 2

yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5

genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-

acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-

tryptophan. Growth conditions, such as the pH and temperature of the medium,

influenced yeast IAA production. Our results also suggested the existence of a

tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of

various concentrations of exogenous IAA on yeast growth and observed that IAA

produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis.

Our data suggest that yeasts can promote plant growth and support ongoing

prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

Introduction

Plants are populated by microorganisms below and above ground. Above-ground

plant parts are typically colonized by microorganisms, such as different genera of

bacteria, filamentous fungi, yeasts, algae, and, less frequently, protozoa and
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nematodes [1]. Microbial species can be isolated from plant tissues and recovered

from the surfaces of healthy plants. The aerial habitat colonized by microbes is the

phyllosphere. Growth of microorganisms in the phyllosphere is dependent on

nutrients from plant metabolites that are secreted to the plant surface, or on

compounds from external sources that contact the plant surface. The availability

of carbon-containing nutrients on leaves is a major determinant of epiphytic

colonization. Simple sugars such as glucose, fructose, and sucrose are the

dominant carbon sources in plants and leach from the interior of the plant [2].

However, the leaf surface is a hostile environment for colonists, and is exposed to

fluctuating temperatures and relative humidity, as well as repeated changes in the

availability of moisture from rain and dew. Stomata, veins, and surface

appendages, including trichomes and hydathodes, can all affect nutrient

availability in the phyllosphere [3, 4].

The auxin indole-3-acetic acid (IAA) stimulates rapid and long-term responses

in plants [5–7], and has been identified in plant-associated bacteria [8, 9], fungi

[10–12], and yeasts [13–15]. The role of microbial IAA in plant-microbe

interactions has recently received increased attention. Bacteria [9, 16–18], fungi

[19], and yeasts [20] can all promote plant growth; therefore, IAA-producing

microbes have been suggested as sources of biofertilizer [21, 22]. IAA is a signaling

molecule in certain microorganisms and modifies gene expression [23, 24].

Therefore, IAA might act as a reciprocal signaling molecule in microbe-plant

interactions.

Drosera indica L. is a carnivorous plant and a sundew native of tropical

countries worldwide. It is distributed from Australia and Asia to Africa, but does

not exist in the neotropics. D. indica grows in poor, sandy, acidic, and swampy

soils. Young D. indica plants stand upright, whereas older plants form scrambling

stems with only the newest stems growing upright. The narrow leaves of D. indica

are yellow-green to maroon, alternately arranged, and fringed with gland-tipped

tentacles. The tips of the tentacles are formed by sparkling dots of sticky liquid,

which trap insects. The plant secretes several enzymes to dissolve a trapped insect

and free the nutrients contained within. This nutrient mixture is then absorbed

through leaf surfaces to be used by the plant, and can also be used by microbes

associated with the plant. D. indica is currently threatened because of restricted

habitats and collection from the wild for use in herbal industries [25]. Its natural

habitat is affected by invasive species, climatic changes, urbanization, and

agricultural pollutants. Although D. indica is classified as vulnerable, it can also be

considered a potentially endangered species because government environmental

regulating agencies have enforced stringent conservation measures [26, 27].

Plant-associated microorganisms fulfill valuable functions in plant growth and

health. However, no study has reported yeast flora in the phyllosphere of Drosera

species. Therefore, the purpose of this study was to isolate and identify yeasts in

the phyllosphere of D. indica, and to evaluate the IAA-producing capabilities of

the identified yeasts.

IAA-Producing Yeasts in the Phyllosphere of the Carnivorous Plant
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Materials and Methods

Sample collection

Green and undamaged D. indica plant leaves were collected from Xinfeng

Township which is located on the north point of Hsinchu County, Taiwan

(N24 5̊298020, E120 5̊899350). There is no specific permissions were required for

these locations/activities. The field studies did not involve endangered or

protected species. The annual average temperature of the collection site is around

32 C̊. The soil temperature is around 26 C̊ and the soil pH is from 6.2 to 6.9.

Samples were placed in plastic bags, which were sealed and transferred by an

icebox and sent to the laboratory. The samples were maintained at a low

temperature (4 C̊) until yeast isolation procedures.

Yeast isolation

Yeast was isolated using an enrichment technique by malt extract medium (30 g/L

malt extract, 5 g/L peptone) supplemented with approximately 2–3 mL of 100%

lactic acid. The D. indica leaves were placed into 15-mL test tubes and incubated

on a rotary shaker at 30 C̊ for 2 d. A loopful of the enriched culture was streaked

onto malt extract agar supplemented with approximately 2–3 mL of 100% lactic

acid. Yeast colonies of different morphologies were selected and purified by cross-

streaking on malt extract agar. Purified yeast strains were suspended in YPD

medium (1% yeast extract, 2% peptone, 2% dextrose) supplemented with 15% v/

v glycerol and maintained at 280 C̊.

Extraction of yeast genomic deoxyribonucleic acid

Young yeast cultures (1 mL) were transferred to a 1.5-mL tube and centrifuged at

13 000–16 000 g for 1 min. The supernatant was discarded and the cell pellet was

suspended in 200 mL of lysis buffer (2% Triton X-100, 1% sodium dodecyl sulfate,

100 mM sodium chloride, 10 mM Tris (pH 8.0), 1 mM ethylenediaminetetraa-

cetic acid), to which 200 mL of phenol-chloroform-isoamyl alcohol (25:24:1;

isoamyl alcohol is optional) and 0.3 g of acid-washed glass beads (0.45–0.52 mm)

were added and mixed gently. The samples were vortexed for 5 min to disrupt

cells, and then centrifuged at 13 000–16 000 g for 5 min. The aqueous layer of

each sample was then transferred to a clean tube and 400 mL of 95% ethanol and

16 mL of 3M sodium acetate (pH 5.2) were added. The samples were mixed by

inversion and centrifuged at 13 000–16 000 g for 5 min. The pellets were washed

with 300 mL of 70% ethanol, and the samples were centrifuged at 13 000–16 000 g

for 2 min before the supernatant was discarded. Ethanol was aspirated with air for

30 min to dry the pellets. Finally, genomic deoxyribonucleic acid (DNA) from

each sample was suspended in 100 mL of Tris-EDTA buffer (pH 8.0).
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Yeast identification

Sequences of the D1/D2 domain of large subunit (LSU) and small subunit (SSU)

ribosomal RNA (rRNA) were determined from polymerase chain reaction (PCR)

products from the genomic DNA extracted from yeast cells. The D1/D2 domain of

LSU rRNA was amplified using a PCR with the universal primers ITS-1 (59-

TCCGTAGGTGAACCTGCG-39) and NL-4 (59-GGTCCGTGTTTCAAGACGG-

39) [28]. The D1/D2 domain of SSU rRNA was amplified using a PCR and SR1R

(59-TACCTGGTTGATYCTGCC-39) [29] and BMB-C (59-

ACGGGCGGTGTGTRC-39) [30] primers. Samples were sent to Tri-I Biotech, Inc

for DNA sequencing. A BLAST search of nucleotide sequences was conducted

through the National Center for Biotechnology Information homepage (http://

www.ncbi.nlm.nih.gov). Yeast identification was accorded to a guideline of

Kurtzman and Robnett [31] reported that yeast strains with 0–3 nucleotide

differences are conspecific or sister species. And different species were identified if

they had.6 nucleotide substitutions.

Quantification of indole-3-acetic acid by using Salkowski reagent

To quantify IAA produced, yeast isolates were grown in a test tube in YPD

medium with or without 0.1% (w/v) L-tryptophan (L-Trp) and incubated in the

dark on a shaker at 30 C̊ and 150 revolutions/min (rpm) for 5 d. One milliliter of

the cells was pelleted by centrifuging at 3000 g for 5 min, and 0.5 mL of the

supernatant was mixed with 0.5 mL of Salkowski reagent (2 mL of 0.5M iron(III)

chloride and 98 mL of 35% perchloric acid) [32]. After 30 min, color

development (red) was quantified using a spectrophotometer (Unico 1200-

Spectrophotometer, USA) at 530 nm. A calibration curve using pure IAA was

established for calculating IAA concentration. The effects of pH and temperature

on IAA production were determined by inoculating YPD medium containing

0.1% (w/v) L-Trp with each yeast isolate and incubating in the dark at pH 4.0, 6.5,

or 9.0, or at 37 C̊, 28 C̊, or 16 C̊, on a shaker for 5 d. After incubation, the IAA

produced was quantified.

Effects of exogenous indole-3-acetic acid on yeast growth

To determine the possible biological role of IAA in yeast, the effects of exogenous

IAA on the growth of the tested yeasts were investigated by adding various IAA

concentrations (0, 312.5, 625, 1250, 2500, 5000 mM) to the YPD medium. Yeast

growth was monitored 12 h after IAA treatment by using a spectrophotometer to

measure optical density at 600 nm.

Plant material and growth conditions

The transgenic line DR5::uidA of Arabidopsis thaliana Col-0 [33] was used to

characterize auxin activity in planta. Seeds were surface-sterilized using 5% (v/v)

sodium hypochlorite solution with a few drops of Tween 20 for 10 min, and
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washed 4 times with sterilized water. They were then sown on quarter-strength

Murashige-Skoog (MS) medium (M5519, Sigma, MO, USA) supplemented with

1.0% (w/v) sucrose (pH 5.7) and 0.05% (w/v) 2-morpholinoethanesulfonic acid

monohydrate, and solidified with 1.5% (w/v) Bacto-agar. Two weeks post-

germination, 6 healthy seedlings were randomly selected and inoculated with the

supernatants from 5-d cultures (YPD medium with 0.1% L-Trp). A control group

was inoculated with the medium only. After an additional 2 d, DR5::uidA

seedlings were stained for GUS activity and cleared to evaluate changes in GUS

expression. The plants were then placed in a plant growth chamber with a

photoperiod of 16 h light and 8 h dark at 24 C̊.

Co-cultivation of Arabidopsis plants with yeasts

Yeasts were evaluated in vitro for their plant growth-promoting ability using the

Arabidopsis Col-0 ecotype. Yeasts were inoculated at the opposite ends of agar

plates containing 9-d-old germinated Arabidopsis seedlings (10 seedlings per

plate). Plates were placed vertically in a growth chamber at 25 C̊ with long-day

condition (16/8 hr). At 7 d post inoculation, the number of emerged lateral roots

was quantified under a dissecting microscope.

Histochemical analysis

For histochemical analysis of GUS activity, Arabidopsis seedlings were fixed with

4% paraformaldehyde in ice-cold 0.1M phosphate buffer (pH 7.0) for 30 min.

The samples were incubated on ice and washed 3 times with phosphate buffer

(10 min each wash). Arabidopsis seedlings were vacuum-infiltrated and incubated

overnight at 37 C̊ in a GUS reaction buffer (1 mM 5-bromo-4-chloro-3-indolyl b-

D-glucuronide, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and

0.1% Triton X-100 in 100 mM sodium phosphate buffer, pH 7.0) [34]. The

stained seedlings were washed 4 times with 70% (v/v) ethanol to stop the reaction

and remove chlorophyll. For each treatment, at least 6 seedlings were analyzed. A

representative plant was selected and photographed using a stereomicroscope.

Statistical analysis

Data are expressed as mean ¡ standard deviation (SD). The significance of

differences between groups was determined using Student t tests and analyses of

variance. P,0.05 was considered statistically significant. *P,0.05; **P,0.01.

Results

Yeast identification

The D1/D2 domain of the LSU and SSU rRNA gene sequences indicated that we

isolated 12 yeast strains in the phyllosphere of D. indica. We considered isolates

with.6 nucleotide substitutions as different species. Thus, we identified the 12

IAA-Producing Yeasts in the Phyllosphere of the Carnivorous Plant
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yeast strains as 7 species in 7 genera (Table 1). Two species were in 2 genera of the

phylum Ascomycota: Aureobasidium pullulans and one undescribed Candida

species. Five species were in 5 genera of the phylum Basidiomycota: Cryptococcus

flavus, Hannaella coprosmaensis, Pseudozyma aphidis, Sporisorium reilianum, and

Ustilago esculenta. Our results indicated that 16.67% of the isolated strains were

ascomycetous yeasts and 83.33% were basidiomycetous yeasts. We identified 5

strains of Cryptococcus flavus and 2 strains of Pseudozyma aphidis that showed

nucleotide sequence divergence within the same species but ,6 nucleotide

substitutions.

Production of indole-3-acetic acid by yeast

When we added Salkowski reagent to the yeast species isolates, we observed a

color change (to red), indicating that all of the yeasts produced IAA when

cultivated in YPD broth supplemented with 0.1% L-Trp (pH 6.5) (Figure 1). IAA

production ranged from 32.6 (¡ 2.7) to 147.4 (¡ 2.7) mg/mL. A. pullulans

produced relatively high IAA concentrations (147.4¡2.7 mg/mL), whereas S.

Table 1. Yeasts isolated from the phyllosphere of Drosera indica L. with the accession numbers of large subunit and small subunit regions (ND5not
determined).

strains
closest species (GenBank
accession no.) (LSU/SSU)

nucleotide substitutions/
total nt (LSU/SSU) species accession no. (LSU/SSU)

Phylum
Ascomycota

YL-11 Aureobasidium pullulans (FN428878) 5/692 ND Aureobasidium pullu-
lans

KJ917967

JYC072 Candida apicola strain (EU926480)/
Candida floricola (AB018143)

53/697 14/733 Candida sp. KJ917968 KJ917979

Phylum
Basidiomycota

YL-2 Cryptococcus flavus (FN428891) 0/691 ND Cryptococcus flavus KJ917971

JYC071 Cryptococcus flavus (FN428942) 1/697 ND Cryptococcus flavus KJ917969

YL-3 Cryptococcus flavus (FN428891)/
Cryptococcus flavus (AB032629)

10/691 758/759 Cryptococcus flavus KJ917972 KJ917981

YL-12 Cryptococcus flavus (FN428891)/
Cryptococcus flavus (AB032629)

11/692 750/751 Cryptococcus flavus KJ917973 KJ917982

JYC073 Cryptococcus flavus (FN428942)/
Cryptococcus flavus (AB032629)

18/750 2/714 Cryptococcus flavus KJ917970 KJ917980

YL-10 Hannaella coprosmaensis (FN428945) 0/691 ND Hannaella copros-
maensis

KJ917974

YL-8 Pseudozyma aphidis (FN424100) 2/670 ND Pseudozyma aphidis KJ917975

YL-16 Pseudozyma aphidis (FN424100) 2/742 ND Pseudozyma aphidis KJ917976

YL-9 Sporisorium cruentum (AY740156)/
Sporisorium reilianum (FQ311431)

18/683 0/710 Sporisorium reilianum KJ917977 KJ917983

JYC070 Ustilago alcornii (AY740165)/Ustilago
esculenta (FJ825142)

16/758 0/739 Ustilago esculenta KJ917978 KJ917984

doi:10.1371/journal.pone.0114196.t001
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reilianum produced low IAA concentrations (32.6¡2.7 mg/mL). Although all 5 C.

flavus strains produced IAA, the IAA concentration produced was strain-

dependent, ranging from 38.6¡1.7 to 103.9¡21.2 mg/mL (Figure 1). The 2 P.

aphidis strains exhibited marginal differences in IAA-producing capabilities.

Yeasts produce indole-3-acetic acid in the absence of exogenous

tryptophan

IAA was the first plant hormone discovered; however, its biosynthetic pathway, at

a genetic level, remains unclear. IAA biosynthesis in fungi is not well described.

Previous studies have suggested that 4 IAA biosynthesis pathways exist in plants

and bacteria [35, 36]. In fungi, IAA has been proposed as a metabolite of Trp [37],

which was confirmed in later studies in certain species [38, 39]. Rao et al. [40]

proposed that a Trp-independent pathway for IAA synthesis exists in baking yeast

(Saccharomyces cerevisiae). To confirm the existence of a Trp-independent

Figure 1. Indole-3-acetic acid production in YPD medium, with or without 0.1% (w/v) L-tryptophan,
incubated on a shaker at 30˚C and 150 rpm for 5 d. Black bars indicate yeasts cultured in medium with L-
tryptophan; white bars indicate yeasts cultured in medium without L-tryptophan.

doi:10.1371/journal.pone.0114196.g001
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pathway in our tested yeasts, we analyzed IAA production in yeast cultures

without Trp. We observed that all but one of our evaluated yeast isolates

produced IAA in the absence of exogenous Trp (Figure 1). Five isolates produced

higher amounts of IAA, and 5 isolates produced lower amounts of IAA, in the

absence of exogenous Trp. Two isolates produced similar amounts of IAA in the

presence and absence of Trp (Figure 1). One C. flavus strain did not produce IAA

in the absence of Trp.

Influence of pH and temperature on indole-3-acetic acid

production

To investigate the effects of environmental changes on IAA production, we

adjusted the pH and temperature of the growth medium (containing Trp).

Compared with in YPD broth supplemented with 0.1% L-Trp at pH 6.5, in an

acidic environment (pH 4.0), 6 isolates produced lower amounts of IAA, 5

isolates produced similar amounts of IAA, and Candida sp. produced higher

amounts of IAA (Table 2). These results indicated that IAA production is

influenced by the pH of the medium. In the majority of yeast species, growth is

optimal in a neutral or acidic pH environment. A minority of species thrive in an

alkaline environment. When we evaluated IAA production in an alkaline

environment (pH 9) we observed that some yeast species thrived; however, none

produced IAA.

When we investigated the effects of incubation temperature on IAA production,

we observed that at a high temperature (37 C̊), only Candida sp., P. aphidis strains

YL-8 and YL-16, S. reilianum, and U. esculenta thrived. Three of the isolates

produced higher amounts of IAA, and 2 isolates produced similar amounts of

IAA, at 37 C̊ compared with at 28 C̊ (Table 2). At a low temperature (16 C̊), all of

the isolates thrived. Ten isolates produced lower amounts of IAA, and 2 isolates

produced higher amounts of IAA, at 16 C̊ compared with at 28 C̊ (Table 2).

Effects of exogenous indole-3-acetic acid on yeast growth

To elucidate the role of IAA produced by yeast, we evaluated the effects of

exogenous IAA on yeast growth. We observed that growth of U. esculenta was not

influenced by the IAA concentrations tested, and that a high IAA concentration

(5000 mM) significantly inhibited the growth of 11 of the 12 plant-associated

yeasts (Figure 2). In the phylum Ascomycota (Figs. 2A–2B), low concentrations of

exogenous IAA (312.5–625 mM) promoted or did not influence yeast growth.

However, high IAA concentrations (1250–5000 mM) substantially reduced yeast

growth. In the phylum Basidiomycota (Figs. 2C–2L), different species, and

different strains of the same species, demonstrated differing growth patterns in

response to IAA treatment. In C. flavus, 312.5 mM IAA promoted growth of strain

YL-3 but exerted no effects on the remaining 4 strains. IAA concentrations of 625–

1250 mM did not affect the growth of C. flavus. However, 2500 mM IAA reduced

the growth of all but one of the C. flavus strains (Figures 2C–2G).

IAA-Producing Yeasts in the Phyllosphere of the Carnivorous Plant
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The 2 P. aphidis strains exhibited differing responses to the various IAA

concentrations. At all except the lowest concentrations of exogenous IAA tested,

IAA inhibited the growth of strain YL-8. However, only the highest IAA

concentration (5000 mM) influenced the growth of strain YL-16 (Figs. 2I–2J).

Yeasts alter root system architecture in Arabidopsis

Lateral root development in Arabidopsis has been used as a model for the study of

phytohormones signals that regulate postembryonic organogenesis in plants.

Development and growth of lateral roots is regulated by phytohormones that

coordinate tissue outgrowth in response to environmental changes. The IAA is

considered to represent a key regulator of lateral root formation [41, 42]. To get

more insight into the effects of IAA produced by yeasts on plant development, the

number of lateral roots of Arabidopsis seedlings co-cultivated with the yeasts was

Table 2. Indole-3-acetic acid production in various environments (mg/mL) compared with in YPD broth supplemented with 0.1% L-tryptophan at pH 6.5.

YPD with Trp
(pH 6.5, 28˚C)

YPD w/o Trp
(pH 6.5, 28˚C) pH 4.0 pH 9.0 37˚C 16˚C

Phylum
Ascomycota

Aureobasidium
pullulans (YL-11)

147.4(¡2.7) 173.3(¡6.4)** 33.6(¡5.7)** NG NG 17.3 (¡1.3)**

Candida sp.
(JYC072)

87.6(¡3.6) 42.1(¡1.5)** 174.1(¡12.8)** NG 88.9(¡6.9) 58.1(¡2.0)**

Phylum
Basidiomycota

Cryptococcus fla-
vus (YL-2)

38.6(¡1.7) 46.6(¡0.8)** 45.9(¡6.8) NG NG 11.3(¡2.8)**

Cryptococcus fla-
vus (JYC071)

56.1(¡6.3) 29.0(¡1.2)** 31.6(¡0.9)* NG NG 13.8(¡4.5)**

Cryptococcus fla-
vus (YL-3)

43.2(¡9.5) 43.5(¡1.4) 51.3(¡2.5) NG NG 8.0(¡0.4)**

Cryptococcus fla-
vus (YL-12)

103.9(¡21.2) 0** 39.1(¡4.2)** NG NG 8.7(¡0.6)**

Cryptococcus fla-
vus (JYC073)

82.6(¡5.9) 59.4(¡3.3)** 19.6(¡9.5)** NG NG 7.4(¡1.1)**

Hannaella copros-
maensis (YL-10)

35.3(¡5.3) 21.9(¡3.7)* 4.3(¡1.3)** NG NG 19.9(¡1.5)**

Pseudozyma
aphidis (YL-8)

43.2(¡4.0) 38.7(¡4.0) 22.2(¡3.6)** 0** 117.3(¡11.5)** 62.0(¡10.7)*

Pseudozyma
aphidis (YL-16)

38.7(¡1.5) 57.0(¡3.5)** 33.9(¡7.6) 0** 81.3(¡12)** 35.6(¡0.4)*

Sporisorium reilia-
num (YL-9)

32.6(¡2.7) 63.9(¡3.7)** 30.7(¡2.3) NG 37.3(¡9.8) 17.5(¡0.5)**

Ustilago esculenta
(JYC070)

91.6(¡9.5) 175.0(¡1.4)** 93.2(¡36.3) 0** 192.6(¡38.2)** 563.8(¡34.8)**

Data are expressed as mean ¡ SD. NG5no growth. P,0.05 was considered significant.
*P,0.05;
**P,0.01.

doi:10.1371/journal.pone.0114196.t002
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determined. Yeasts of U. esculenta (strain JYC070) exhibited high IAA production

in all of the conditions (ex: L-Trp, pH, temperature) and was included in the

experiment. In contrast, H. coprosmaensis (strain YL-10) produced relatively low

IAA in all conditions. As a result, the elongation of primer roots of Arabidopsis

seedlings was inhibited by co-cultivation with U. esculenta or H. coprosmaensis

(Figures 3A, D, G). However, Arabidopsis seedlings co-cultivated with U. esculenta

led to significant 10-fold increase in lateral root number as compared with those

of H. coprosmaensis (Figures 3–4). These results indicated that the IAA produced

by the yeasts increased the number of lateral roots and inhibited primary root

elongation. Subsequently, the effect of IAA produced by the yeasts on the

formation of root hairs was analyzed. The Arabidopsis seedlings were grown in

medium containing U. esculenta. At 7 d after co-cultivation with U. esculenta, the

formation of root hairs was enhanced as compared with the control plants

without yeasts (Figure 5).

Figure 2. Effects of exogenous indole-3-acetic acid on yeast growth. Yeasts were grown in YPD medium containing different concentrations of indole-3-
acetic acid (0–5000 mM). Data are presented as relative growth rates. YPD medium without exogenous indole-3-acetic acid served as a control. (A)
Aureobasidium pullulans, strain YL-11; (B) Candida sp., strain JYC072; (C) Cryptococcus flavus, strain YL-2; (D) C. flavus, strain JYC071; (E) C. flavus,
strain YL-3; (F) C. flavus, strain YL-12; (G) C. flavus, strain JYC073; (H) Hannaella coprosmaensis, strain YL-10; (I) Pseudozyma aphidis, strain YL-8; (J) P.
aphidis, strain YL-16; (K) Sporisorium reilianum, strain YL-9; (L) Ustilago esculenta, strain JYC070.

doi:10.1371/journal.pone.0114196.g002
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Yeasts modify auxin-inducible gene expression in Arabidopsis

The observed effect of yeasts in promoting lateral root development is similar to

that described for auxins in plants [43]. Auxin plays a major role in plant growth

regulation; however, its role in plant-microbe interactions remains unclear. To

investigate whether the IAA produced by yeasts modifies auxin-regulated gene

expression in Arabidopsis, we inoculated DR5::uidA transgenic seedlings with the

supernatants from 5-d cultures. The DR5::uidA line has previously been used to

monitor auxin-regulated gene expression in plants [44]. Figure 3 shows

histochemical stains of transgenic DR5::uidA seedlings grown in the supernatants

of U. esculenta (strain JYC070) cultures. In untreated control plants, DR5::uidA

was absent from hypocotyls and young leaves, and was expressed primarily in the

leaf margin (Figs. 6A–6C). We observed GUS activity in the hypocotyls and young

leaves of DR5::uidA seedlings grown in 10 mM IAA produced by U. esculenta

(Figs. 6D–6I). Although patterns of GUS expression in DR5::uidA seedlings

treated with 100 mM IAA or 10 mM IAA were similar, GUS expression was higher

in the 100 mM IAA-treated seedlings than in the 10 mM IAA-treated seedlings.

Figure 3. IAA produced by yeasts increased the number of lateral roots and reduced root elongation. (A–C) Arabidopsis seedlings (9-d-old) were
grown on agar plates containing quarter-strength MS medium. (D–F) The seedlings were inoculated with Hannaella coprosmaensis at the opposite ends of
agar plates and grown for a further 7 d. (G–I) The Arabidopsis seedlings were inoculated with Ustilago esculenta at the opposite ends of agar plates, and the
seedlings were co-cultivated with the yeast for 7 d.

doi:10.1371/journal.pone.0114196.g003
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These results indicated that IAA produced by yeasts upregulates the expression of

auxin-inducible gene markers in plants. When we treated the transgenic seedlings

with the supernatants of other yeasts, we obtained similar results (data not

shown).

Discussion

According to our research, our study is the first to investigate yeasts in the

phyllosphere of the carnivorous plant D. indica L., the IAA-producing abilities of

such yeasts, and the effects of environmental factors on yeast IAA production. Our

results strongly support the existence of a Trp-independent IAA biosynthetic

pathway in yeast and suggest the potential use of IAA-producing yeasts as

biofertilizer inoculants to promote plant growth.

Yeasts associated with D. indica L.

Among the yeast species identified in the phyllosphere of D. indica, A. pullulans is

a common inhabitant of leaves of plants [45–48] and has been used as an

Figure 4. Effects of yeast-producing IAA on Arabidopsis lateral roots. Data show mean ¡ standard deviation (SD) from three groups of 10 seedlings in
figure 3. The significance of differences between groups was determined using Student t tests and analyses of variance. P,0.05 was considered
statistically significant. **P,0.01. The experiments were repeated twice with similar results.

doi:10.1371/journal.pone.0114196.g004
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indicator of environmental pollution [49]. A. pullulans is also used for biological

control of plant diseases [50–52] and has biotechnological applications [53, 54]. C.

flavus exists on Sphagnum mosses and the leaves of vascular plants [55]. Members

of the anamorphic genus Cryptococcus might represent one of the dominant

species in plant phyllospheres [56–58]. P. aphidis is a heterobasidiomycetous yeast

related to smut fungi of the Ustilago genus, which secretes extracellular

metabolites that inhibit various fungal pathogens, and is nonpathogenic to plants.

Thus, P. aphidis has potential use as a biocontrol agent of fungal pathogens [59].

S. reilianum is a phytopathogenic fungus that produces maize head smut [60], and

has caused substantial economic damage in temperate and relatively dry areas

where maize is cultivated. S. reilianum has been established as a model organism

to investigate fungus-host interactions at a molecular level, and its genome

sequence was recently published [61]. Further investigation on whether S.

reilianum causes disease in D. indica L. is warranted. Similar to S. reilianum, U.

esculenta is a biotrophic smut fungus that parasitizes Zizania latifolia, an edible

aquatic vegetable from the southern China region [62]. However, the mycelium of

U. esculenta exerts minimal pathologic effects on plants tissues, with no signs of

chlorosis or necrosis, though it does inhibit flowering. Therefore, the relationship

between U. esculenta and its host is considered a harmonious interaction [63].

However, it is noticeable that some of the yeasts isolated from the D. indica have

Figure 5. Effects of yeast-producing IAA on root hair formation in Arabidopsis. The plants inoculated
with U. esculenta enhanced formation of root hairs. (A–C) Arabidopsis seedlings (9-d-old) were grown on agar
plates containing quarter-strength MS medium. (D–F) The seedlings were inoculated with Ustilago esculenta
at the opposite ends of agar plates, and the seedlings were co-cultivated with the yeast for 7 d.

doi:10.1371/journal.pone.0114196.g005
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already been isolated from different plant phyllospheres. Some of them have been

shown to be pathogenic, which need to be examined before using its plant growth

promoting activities as biofertilizers. It needs more research to investigate the host

specificity of these yeasts with plants and the molecular mechanisms of yeasts-

plant communication. Our results show the role of IAA in plant-yeast

interactions, and supports the potential use of yeasts as plant biofertilizers in

controlled and field conditions [64]. However, in addition to phytohormone

production (IAA), a diverse range of plant growth promoting characteristics,

including pathogen inhibition, ACC (1-Aminocyclopropane-1-Carboxylate)

Deaminase, phosphate solubilisation, N and S oxidation, siderophore production

and stimulation of mycorrhizal-root colonization should be investigated in future

studies before inclusion of these yeasts in the commercial biofertilizer product

[64–66].

Figure 6. Effects of indole-3-acetic acid produced by Ustilago esculenta strain JYC070 on auxin-
regulated gene expression. GUS staining of DR5::uidA Arabidopsis seedlings grown in the supernatants of
5-d yeast cultures. (A–C) Control group inoculated in YPD medium containing L-tryptophan. In untreated
control plants, DR5::uidA was absent from hypocotyls and young leaves, and was expressed primarily in the
leaf margin. (D–F) Seedlings grown in medium supplied with 10 mg/mL IAA produced by U. esculenta. (G–I)
Seedlings grown in medium supplemented with 100 mg/mL IAA produced by U. esculenta. We observed
upregulated GUS expression in hypocotyls and young leaves following IAA treatment. Results are obtained
from duplicate experiments with similar results. When we treated the transgenic seedlings with the
supernatants of other yeasts, we obtained similar results.

doi:10.1371/journal.pone.0114196.g006
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Production of indole-3-acetic acid by yeast

Our assessments of the IAA-producing capabilities of the phyllosphere yeasts

revealed that all of the investigated yeasts produced IAA. Observations that the

different strains of one species exhibit different IAA-producing capabilities

indicate that IAA production is strain-dependent in yeasts associated with D.

indica. Previous studies evaluating other microorganisms similarly reported

differences in IAA biosynthesis among strains within the same species [67, 68]. A.

pullulans produced higher amounts of IAA than the other species did. However, a

precise analytical method, such as high-performance liquid chromatography or

gas chromatography-mass spectrometry, should be used to confirm the IAA

concentration produced by A. pullulans.

Trp-dependent and Trp-independent IAA biosynthetic pathways reportedly

coexist in plants [36, 69] and microbes [8]. However, the majority of previous

studies on IAA biosynthesis evaluated Trp-dependent processes. Few studies have

evaluated the Trp-independent pathways of IAA biosynthesis. The intermediates,

intermediate stages, and genes involved in Trp-independent pathways have yet to

be defined. In plants, 4 Trp-dependent pathways have been proposed: the indole-

3-acetamide (IAM), indole-3-pyruvic acid (IPA), tryptamine, and indole-3-

acetaldoxime pathways [36]. Although different plant species might use specific

strategies or modifications to optimize synthetic pathways, plants would be

expected to share evolutionarily conserved core mechanisms for IAA biosynthesis.

Little is known on the biochemical processes involved in Trp-independent IAA

production in plants [70, 71]. Several bacterial IAA biosynthetic pathways might

exist in Azospirillum brasilense, in which IAA can be synthesized from Trp through

IAM, IPA, and indole-3-acetonitrile pathways [72]. However, feeding experiments

with labeled precursors have indicated that Trp-independent IAA production in

Az. brasilense is derived from intermediates in Trp pathways [8, 72].

The fungal IAA biosynthetic pathway has not been widely investigated

[10, 40, 73]. In this study, all of the isolated yeasts produced IAA when cultivated

in YPD broth supplemented with 0.1% L-Trp. Limtong and Koowadjanakul [13]

collected yeasts from the phyllosphere of various plant species in Thailand,

observing that approximately 37.7% of the investigated yeast strains produced

IAA. Xin et al. [14] isolated 3 endophytic yeasts from Populus trees, which all

produced IAA when incubated with L-Trp. These studies suggest that IAA

production is a common feature in several types of yeast.

Rao et al. [40] observed that S. cerevisiae incubated with L-Trp synthesized 4-

fold higher amounts of IAA, compared with the wild type, when the genes (ALD2,

ALD3) involved in the final stage of IAA synthesis from Trp were compromised.

The amount of IAA produced by the ald2Dald3D mutant was similar to that

produced by the wild type in the absence of exogenous Trp. In this study, all yeast

isolates but one produced IAA in the absence of exogenous Trp, suggesting the

existence of an alternate IAA synthesis pathway in yeast. Additional studies are

required to detect and quantify the intermediates in this pathway by using

advanced analytical techniques and functional genomics. Such studies can
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increase knowledge on the various IAA biosynthesis pathways in IAA-producing

organisms.

Environmental factors modulating indole-3-acetic acid production

Numerous environmental variables can influence IAA biosynthesis [8], including

pH and temperature. Strzelczyk et al. [74] reported that auxin biosynthesis is

favored in mycorrhizal fungi at pH 6.0–9.0. Studies have observed similar trends

in rot fungus Pleurotus ostreatus [75] and Nectria pterospermi [76], a pathogenic

fungus of the canker of maple-leaved pterospermum. Our results support that

IAA production is influenced by the pH of the medium. We observed that 6 of the

yeast isolates produced lower amounts of IAA, 5 isolates produced similar

amounts of IAA, and one isolate produced higher amounts of IAA in an acidic

environment compared with in a nearly neutral environment. All of the isolates

were unable to produce IAA in an alkaline environment (pH 9).

When we investigated IAA production by the yeast isolates at different

temperatures, we observed that in the majority of the yeasts, 28 C̊ was the optimal

temperature for IAA production, compared with 37 C̊ and 16 C̊. In previous

studies, fungal IAA production was also maximal at 28 C̊ [77, 78]. However, 3 of

our isolates produced higher amounts of IAA at 37 C̊, and 2 isolates produced

higher amounts of IAA at 16 C̊, compared with at 28 C̊ (Table 2). Additional

analyses are required to determine the influence of factors such as substrate

concentration, carbon and nitrogen sources, and precursor (Trp) concentration

on IAA biosynthesis mechanisms to facilitate optimizing the culture environment.

Effects of exogenous indole-3-acetic acid on yeast growth

We evaluated the effects of exogenous IAA on yeast growth to determine the

biological role of IAA. IAA is considered a signaling molecule in bacteria and

might directly affect bacterial physiology [8]. Studies have indicated that fungi can

recognize chemical cues that signal the presence of the plant host to induce

invasion. The presence of IAA at wound sites in plants suggests that IAA is an

attractant for fungi. Our study results indicated that high IAA concentrations

inhibit yeast growth. Previous studies similarly reported that IAA inhibits

microbial growth in Agrobacterium, several other plant-associated bacteria [79],

and fungi [24, 80]. Our results also indicated that low exogenous IAA

concentrations promote yeast growth. In previous studies, IAA promoted the

growth of Fusarium delphinoides [80] and S. cerevisiae [24]. IAA can exert

stimulatory and inhibitory effects on yeasts, and such effects are strain-dependent.

Prusty et al. [24] reported that IAA promoted the growth of filamentous forms of

S. cerevisiae and promoted invasion, which supports the role of IAA as a signaling

molecule that regulates yeast growth. However, additional functional genomic

studies are required to fully elucidate the involvement of IAA in microorganism-

plant interactions and direct microbial conversion.
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Yeasts alter root system architecture in Arabidopsis

Fungal species have been applied to plants for the purpose of growth

enhancement, with a positive effect on plant weight, crop yields, and disease

control [81]. In maize (Zea mays), root growth is markedly enhanced by

colonization with Trichoderma harzianum. This enhancement can rescue some

stress-induced growth reduction and reverse oxidative injury [82]. The

ectomycorrhizal fungus Laccaria bicolor has also been proved to stimulate lateral

root formation in poplar and Arabidopsis through auxin transport and signaling

[83]. In this study, we found that co-cultivation of Arabidopsis plants with the

yeasts enhances formation of lateral roots, suggesting that the effects are mediated

by auxin (Figs. 3–5). Interestingly, the yeasts did not enhance the overall biomass

in the aspect of shoot growth. Instead, co-cultivation of Arabidopsis plants with

the yeast specifically promoted formation of lateral root and root hairs (Figs. 3–

5). Lateral roots extend horizontally from the primary root and to anchor the

plant securely into the soil. Root hairs increase the surface area of a root and play

critical roles in the uptake of water and nutrients. These results implied a

beneficial effect of yeast inoculation on plant growth and development.

Yeasts modify auxin-inducible gene expression in Arabidopsis

Although previous studies have characterized IAA-producing microorganisms

[8, 84], the interactions between microorganisms and plants are not well

described. We hypothesized that yeasts produce IAA as a colonization strategy.

Our hypothesis is supported by Prusty et al. [24], which indicated that IAA

induces adhesion and filamentation in S. cerevisiae. Contreras-Cornejo et al. [85]

similarly proposed that auxin produced by fungi promotes plant interactions by

circumventing basal plant defense mechanisms. Navarro et al. [86] identified that

inhibition of auxin signaling restricts the growth of Pseudomonas syringa in

Arabidopsis, implicating auxin in plant disease susceptibility. Our results

demonstrate that IAA produced by yeasts upregulates the expression of auxin-

inducible plant gene markers, which suggests that IAA plays a major role in plant

signaling.
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